
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 17, Number 1, Spring 2005

STEADY STATE OSCILLATION PROBLEMS
IN THE THEORY OF ELASTICITY

FOR CHIRAL MATERIALS

DAVID NATROSHVILI, LEVAN GIORGASHVILI

AND SHOTA ZAZASHVILI

Dedicated to the memory of Professor Ilia Vekua

ABSTRACT. Mathematical problems of the theory of steady
state oscillations of hemitropic (chiral) elastic materials are
considered. In the case of unbounded domains, the general-
ized Sommerfeld-Kupradze type radiation conditions are in-
troduced and in the space of radiating solutions the unique-
ness results are established. Applying the potential method
and the theory of pseudodifferential equations, the unique
solvability in various function spaces of the Dirichlet, Neu-
mann and mixed boundary value problems for the steady state
oscillation equations are proved. Regularity properties and
representability of solutions by layer potentials are analyzed
in the cases of smooth and Lipschitz domains.

1. Introduction. A solid which is not isotropic with respect to
inversion is called noncentrosymmetric, acentric, hemitropic, or chiral.
Materials may exhibit chirality on the atomic scale, as in quartz and in
biological molecules, as well as on a large scale, as in composites with
helical or screw-shaped inclusions (for details see, e.g., [1, 20 and the
references therein]).

Mathematical models describing the chiral properties of elastic mate-
rials have been proposed by Aero and Kuvshinski [1,2] (for the history
of the problem see also [27, 36, 38, 46 and the references therein]).

Particular problems of the elasticity theory of hemitropic continuum
related to the present paper have been considered in [10, 20, 22 24,
36, 37, 39, 46]. In [33, 34] the basic boundary value problems
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(BVP) of statics and pseudo-oscillations of the elasticity theory for
hemitropic bodies with smooth and Lipschitz boundaries are studied
by the potential method.

The main goal of the present investigation is to study the three-
dimensional basic BVPs of steady state oscillations, i.e., the time har-
monic dependent dynamic case, of the elasticity theory of hemitropic
bodies by the layer potentials method. It should be noted that in com-
parison with the static and pseudo-oscillation cases here essential dif-
ficulties arise in the proof of uniqueness and existence of solutions (for
arbitrary values of the oscillation parameter and arbitrary boundary
data). To this end, in this paper the generalized Sommerfeld-Kupradze
type radiation conditions are formulated which play a crucial role to
establish the uniqueness results in the case of exterior boundary value
problems. Further, the boundary integral (pseudodifferential) opera-
tors generated by the single and double layer potentials are studied
and their ellipticity and normal solvability properties are established.
Based on the results obtained, the uniqueness and existence theorems
of solutions to the basic BVPs of steady state oscillations are proved in
various Hölder (Ck,α), Sobolev-Slobodetski (W s

p,loc), Bessel potential
(Hs

p,loc), and Besov (Bs
p,q,loc) function spaces.

The paper is organized as follows.

In Section 2 we give an overview concerning the basic mechani-
cal characteristics of the theory of elasticity of chiral materials. We
show that an arbitrary solution to the differential equations of steady
state oscillations can be represented as a sum of metaharmonic vector-
functions corresponding to real wave numbers and formulate the gen-
eralized Sommerfeld-Kupradze type radiation conditions SK(Ω−). We
give the weak and classical formulations of the exterior BVPs and prove
the corresponding uniqueness theorems in the class of radiating vectors.
The boundary conditions are understood either in the classical sense
or in the usual or generalized trace sense.

In Section 3 we derive the general integral representation formula of
a radiating solution by means of the radiating layer potentials. We
analyze the mapping properties of these potentials and the correspond-
ing boundary integral (pseudodifferential) operators. In particular, we
describe in detail Fredholm properties of these pseudodifferential oper-
ators on manifolds without boundary and with boundary.
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In Section 4, applying special representation formulas, we reduce
the basic exterior BVPs of steady state oscillations to the equivalent
strongly elliptic boundary integral (pseudodifferential) equations with
zero index and prove their unique solvability for an arbitrary value
of the oscillation parameter. These results yield unique solvability
of the original BVPs for arbitrary values of the oscillation parameter
and for arbitrary boundary data. We establish also the almost best
regularity results for solutions to the Dirichlet, Neumann and mixed
type BVPs for domains with smooth boundaries. In the case of domains
with Lipschitz boundaries by the potential method we show existence
of radiating weak solutions to the BVPs in the Sobolev-Slobodetski
function space W 1

2, loc(Ω
−) ∩ SK(Ω−).

2. Auxiliary material and uniqueness results.

2.1. Constitutive equations. Let Ω+ ⊂ R3 be a bounded, simply con-
nected domain with a piecewise smooth connected Lipschitz boundary
S := ∂Ω+ and Ω+ = Ω ∪ S. Then it follows that Ω− := R3\Ω+ is
also simply connected and ∂Ω− = ∂Ω+. Further, let Ω ∈ {Ω+, Ω−} be
filled with an elastic material possessing the hemitropic properties, see
[1, 2].

Denote by u = (u1, u2, u3)� and ω = (ω1, ω2, ω3)� the displacement
vector and the micro-rotation vector, respectively; here and in what
follows the symbol (·)� denotes transposition. Note that the micro-
rotation vector in the hemitropic elasticity theory is kinematically
distinct from the macro-rotation vector curlu/2.

The force stress tensor {τpq} and the couple stress tensor {μpq} in
the linear theory are as follows (the constitutive equations)

τpq = τpq(U) := (μ+ α)
∂uq

∂xp
+ (μ− α)

∂up

∂xq

+ λδpq divu+ δ δpq divω

+ (κ+ ν)
∂ωq

∂xp
+ (κ− ν)

∂ωp

∂xq
− 2α

3∑
k=1

εpqkωk,
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μpq = μpq(U) := δ δpq divu+ (κ+ ν)

[
∂uq

∂xp
−

3∑
k=1

εpqkωk

]
+ β δpq divω

+ (κ− ν)

[
∂up

∂xq
−

3∑
k=1

εqpkωk

]
+ (γ + ε)

∂ωq

∂xp
+ (γ − ε)

∂ωp

∂xq
,

where U = (u, ω)�, δpq is the Kronecker delta, εpqk is the permutation
(Levi-Civitá) symbol, and α, β, γ, δ, λ, μ, ν, κ and ε are the material
constants, see [1].

The components of the force stress vector τ (n) and the couple stress
vector μ(n), acting on a surface element with a normal vector n =
(n1, n2, n3), read as

τ (n)
q (U) =

3∑
p=1

τpq(U)np, μ(n)
q (U) =

3∑
p=1

μpq(U)np, q = 1, 2, 3.

Further we introduce the generalized stress operator (6 × 6 matrix
differential operator)

(2.1)
T (∂, n) =

[
T (1)(∂, n) T (2)(∂, n)
T (3)(∂, n) T (4)(∂, n)

]
6×6

,

T (j) =
[
T (j)

pq

]
3×3

, j = 1, 4,

where ∂ = (∂1, ∂2, ∂3) with ∂j = ∂/∂xj , ∂/∂n denotes the directional
derivative along the vector n (normal derivative),

T (1)
pq (∂, n) = (μ+ α) δpq

∂

∂n
+ (μ− α)nq

∂

∂xp
+ λnp

∂

∂xq
,

T (2)
pq (∂, n) = (κ+ ν) δpq

∂

∂n
+ (κ− ν)nq

∂

∂xp

+ δnp
∂

∂xq
− 2α

3∑
k=1

εpqknk,

T (3)
pq (∂, n) = (κ+ ν) δpq

∂

∂n
+ (κ− ν)nq

∂

∂xp
+ δnp

∂

∂xq
,

T (4)
pq (∂, n) = (γ + ε) δpq

∂

∂n
+ (γ − ε)nq

∂

∂xp

+ βnp
∂

∂xq
− 2ν

3∑
k=1

εpqknk.
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It can be easily checked that(
τ (n)(U), μ(n)(U)

)�
= T (∂, n)U.

Denote by T0(∂, n) the principal homogeneous part (6 × 6 matrix) of
the differential operator T (∂, n), i.e.,

(2.2)

T0(∂, n) =
[
T

(1)
0 (∂, n) T

(2)
0 (∂, n)

T
(3)
0 (∂, n) T

(4)
0 (∂, n)

]
6×6

, T
(j)
0 =

[
T

(j)
0pq

]
3×3

,

T
(1)
0pq(∂, n) = (μ+ α) δpq

∂

∂n
+ (μ− α)nq

∂

∂xp
+ λnp

∂

∂xq
,

T
(2)
0pq(∂, n) = (κ+ ν) δpq

∂

∂n
+ (κ− ν)nq

∂

∂xp
+ δnp

∂

∂xq
,

T
(3)
0pq(∂, n) = (κ+ ν) δpq

∂

∂n
+ (κ− ν)nq

∂

∂xp
+ δnp

∂

∂xq
,

T
(4)
0pq(∂, n) = (γ + ε) δpq

∂

∂n
+ (γ − ε)nq

∂

∂xp
+ βnp

∂

∂xq
.

We have the evident equality

(2.3) T (∂x, n)U = T0(∂x, n)U + 2[αn× ω, ν n× ω]�,

where the symbol × denotes the cross product of two vectors.

2.2. The basic equations. The equations of dynamics of the
hemitropic theory of elasticity have the form

3∑
p=1

∂p τpq(x, t) + 
Fq(x, t) = 

∂2uq(x, t)

∂t2
,

3∑
p=1

∂p μpq(x, t) +
3∑

l,r=1

εqlr τlr(x, t) + 
Gq(x, t) = I ∂
2ωq(x, t)
∂t2

,

q = 1, 2, 3,

where t is the time variable, F = (F1, F2, F3)� and G = (G1, G2, G3)�

are the body force and body couple vectors per unit mass, 
 is the mass
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density of the elastic material, and I is a constant characterizing the
so called spin torque corresponding to the interior micro-rotations, i.e.,
the moment of inertia per unit volume.

Using the relations (2.1) (2.3) we can rewrite the above dynamic
equations in terms of the displacement and micro-rotation vectors.

If all the quantities involved in these equations are harmonic time
dependent, i.e., u(x, t) = u(x) exp{−i tσ}, ω(x, t) = ω(x) exp{−i tσ},
F (x, t) = F (x) exp{−i tσ} and G(x, t) = G(x) exp{−i tσ}, with σ ∈ R
and i =

√−1, we obtain the steady state oscillation equations of the
hemitropic theory of elasticity:
(2.4)

(μ+α)Δu(x) + (λ+μ−α)grad divu(x) + (κ+ν)Δω(x)
+ (δ+κ−ν)graddivω(x) + 2αcurlω(x) + 
 σ2u(x) = −
F (x),

(κ+ν)Δu(x) + (δ+κ−ν)grad divu(x) + 2αcurlu(x) + (γ+ε)Δω(x)
+(β+γ−ε)grad divω(x)+4νcurlω(x)+(I σ2−4α)ω(x) = −
G(x),

where Δ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplace operator and u, ω, F and G are

complex-valued vector functions and σ is a frequency parameter.

If σ = σ1 + i σ2 is complex with σ2 �= 0, then the above equations are
called the pseudo-oscillation equations, while for σ = 0 they represent
the equilibrium equations of statics.

Throughout the paper we deal with the basic BVPs for the steady
state oscillation equations and assume that

(2.5) σ > 0, I σ2 − 4α > 0.

Let us introduce the matrix differential operator corresponding to the
system (2.4):

(2.6) L(∂, σ) :=
[
L(1)(∂, σ), L(2)(∂, σ)
L(3)(∂, σ), L(4)(∂, σ)

]
6×6

,

where
(2.7)

L(1)(∂, σ) := [(μ+ α) Δ + 
 σ2] I3 + (λ+ μ− α)Q(∂),

L(2)(∂, σ) = L(3)(∂, σ) := (κ+ ν) Δ I3 + (δ + κ− ν)Q(∂) + 2αR(∂),

L(4)(∂, σ) := [(γ +ε) Δ + (Iσ2− 4α)] I3 + (β + γ −ε)Q(∂) + 4ν R(∂).
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Here and in the sequel Ik stands for the k × k unit matrix and

(2.8) R(∂) :=

⎡⎣ 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

⎤⎦
3×3

, Q(∂) := [ ∂k∂j ]3×3.

It is easy to see that

(2.9) R(∂)u = curlu, Q(∂)u = grad divu.

Equations (2.4) can be rewritten in matrix form as

L(∂, σ)U(x) = Φ(x), U = (u, ω)�,

Φ = (Φ(1),Φ(2))� := (−
F (x),−
G(x))�.

Further, let us remark that the differential operator

(2.10) L(∂) := L(∂, 0)

corresponds to the static equilibrium case, while the differential oper-
ator

(2.11) L0(∂) :=
[
L

(1)
0 (∂), L

(2)
0 (∂)

L
(3)
0 (∂), L

(4)
0 (∂)

]
6×6

with

(2.12)

L
(1)
0 (∂) := (μ+ α)Δ I3 + (λ+ μ− α)Q(∂),

L
(2)
0 (∂) = L

(3)
0 (∂) := (κ+ ν)Δ I3 + (δ + κ− ν)Q(∂),

L
(4)
0 (∂) := (γ + ε)Δ I3 + (β + γ − ε)Q(∂),

represents the principal homogeneous part of the operators (2.6) and
(2.10).

It is evident that

(2.13)
L(∂, σ)U − L(∂)U = (
 σ2 u, I σ2 ω)�,
L(∂, σ) = L0(∂) + L1(∂) + L2(∂),
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where L0(∂) is given by (2.11) and

(2.14)

L1(∂) :=
[

[0]3×3, 2αR(∂)
2αR(∂), 4ν R(∂)

]
6×6

,

L2(∂) :=
[

 σ2 I3, [0]3×3

[0]3×3, (I σ2 − 4α) I3

]
6×6

.

Let us remark that the operators L(∂, σ) for real σ2, L(∂), and L0(∂)
are formally self-adjoint.

2.3. Green’s formulae. For real-valued vectors U := (u, ω)�, U ′ :=
(u′, ω′)� ∈ [C2(Ω+)]6 there holds Green’s formula [33]

(2.15)
∫

Ω+
[L(∂)U · U ′ + E(U,U ′)] dx =

∫
∂Ω+

[T (∂, n)U ]+ · [U ′]+ dS,

where n is the outward unit normal vector to ∂Ω+, the symbols [·]±
denote the limits on S from Ω±, E(· , ·) is the so called energy bilinear
form
(2.16)

E(U,U ′) = E(U ′, U) =
3∑

p,q=1

{
(μ+ α)u′pqupq + (μ− α)u′pquqp

+ (κ+ ν)(u′pqωpq + ω′
pqupq) + (κ− ν)(u′pqωqp + ω′

pquqp)
+ (γ + ε)ω′

pqωpq + (γ − ε)ω′
pqωqp + δ(u′ppωqq + ω′

qqupp)

+ λu′ppuqq + βω′
ppωqq

}
with

(2.17) upq = ∂puq −
3∑

k=1

εpqk ωk, ωpq = ∂p ωq, p, q = 1, 2, 3.

Here and in what follows a · b denotes the usual scalar product of two
(in general) complex vectors a, b ∈ Cm,

(2.18) a · b =
m∑

j=1

aj bj ,
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where the over bar denotes complex conjugation. The above Green
formula immediately follows from the identity

L(∂)U · U ′ + E(U,U ′) =
3∑

p,q=1

∂p [u′q τpq(U) + ω′
q μpq(U)].

From (2.16) and (2.17) we get

(2.19)

E(U,U) =
3λ+ 2μ

3

(
div u+

3δ + 2κ
3λ+ 2μ

div ω
)2

+
1
3

(
3β + 2γ − (3δ + 2κ)2

3λ+ 2μ

)
(divω)2

+
μ

2

3∑
k,j=1, k �=j

[
∂uk

∂xj
+
∂uj

∂xk
+
κ

μ

(
∂ωk

∂xj
+
∂ωj

∂xk

)]2

+
μ

3

3∑
k,j=1

[
∂uk

∂xk
− ∂uj

∂xj
+
κ

μ

(
∂ωk

∂xk
− ∂ωj

∂xj

)]2

+
(
γ − κ2

μ

) 3∑
k,j=1, k �=j

[
1
2

(
∂ωk

∂xj
+
∂ωj

∂xk

)2

+
1
3

(
∂ωk

∂xk
− ∂ωj

∂xj

)2
]

+
(
ε− ν2

α

)
(curl ω)2

+ α
(
curl u+

ν

α
curl ω − 2ω

)2

.

From physical considerations (positive definiteness of the potential
energy density (2.19) with respect to the variables (2.17)), it follows
that the material constants satisfy the inequalities, cf. [2]

μ > 0, α > 0, 3λ+ 2μ > 0, μ γ − κ2 > 0, α ε− ν2 > 0,
(3λ+ 2μ)(3β + 2γ) − (3δ + 2κ)2 > 0,

whence

(2.20)
γ > 0, ε > 0, λ+ μ > 0, β + γ > 0,
d1 := (μ+ α)(γ + ε) − (κ+ ν)2 > 0,
d2 := (λ+ 2μ)(β + 2γ) − (δ + 2κ)2 > 0.
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Throughout the paper Lp, W r
p , Hs

p , and Bs
p,q, with r ≥ 0, s ∈ R,

1 < p < ∞, 1 ≤ q ≤ ∞, denote the well-known Lebesgue, Sobolev-
Slobodetski, Bessel potential, and Besov function spaces, respectively,
see, e.g., [25, 44]. We will use the abbreviations W r

2 =W r, Hs
2 =Hs,

H0 =L2. We recall that Hr
2 =W r

2 =Br
2,2, Hs

2 =Bs
2,2, W t

p =Bt
p,p, and

Hk
p =W k

p , for any r ≥ 0, s ∈ R, for any positive and noninteger t, and
for any nonnegative integer k.

Moreover, for an open submanifold M with boundary, which is a
proper part of the surface S = ∂Ω+, we put

Hs
p(M) :=

{
f |M : f ∈ Hs

p(S)
}
,

H̃s
p(M) := {f ∈ Hs

p(S) : supp f ⊂ M},
Bs

p,q(M) :=
{
f |M : f ∈ Bs

p,q(S)
}
,

B̃s
p,q(M) := {f ∈ Bs

p,q(S) : supp f ⊂ M},

where f |M denotes the restriction of f to M. Recall that H−s
p ′ (M),

respectively B−s
p′,q′(M), is the space adjoint to H̃s

p(M), respectively
B̃s

p,q(M), and vice versa, where 1 < p, q < ∞ and 1/p+ 1/p′ = 1 and
1/q + 1/q′ = 1.

If U = (u, ω)� = (u(1) + i u(2), ω(1) + i ω(2))� = U (1) + i U (2) is
complex-valued, where U (j) = (u(j), ω(j))� (j = 1, 2) are real-valued
vectors, then

E(U,U) = E(U (1), U (1)) + E(U (2), U (2)),

and, due to the positive definiteness of the energy form for real-valued
vector functions with respect to the variables (2.17), we have

(2.21) E(U,U) ≥ c1

3∑
p,q=1

[ | ∂puq |2 + | ∂pωq |2
]− c2

3∑
p=1

|ωp |2,

where c1 and c2 are positive numbers depending only on the material
constants, and u

(j)
pq and ω

(j)
pq are defined by formulae (2.17) with u(j)

and ω(j) for u and ω.
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From (2.21) it follows that, for an arbitrary complex-valued vector
U ∈ [H1(Ω+)]6 and an arbitrary Lipschitz region Ω+,

B
Ω+ (U,U) :=

∫
Ω+

E(U,U) dx

≥ c1

∫
Ω+

{ 3∑
p,q=1

[ |∂puq|2 + |∂pωq|2
]}

dx− c2

∫
Ω+

3∑
p=1

|ωp|2 dx,

i.e., the following Korn’s type inequality

(2.22) B
Ω+ (U,U) ≥ c∗1 ||U ||2[H1(Ω+)]6 − c∗2 ||U ||2[H0(Ω+)]6

holds, cf. [12, Part I, Section 12], [26, Chapter 10], where || · ||[Hs(Ω)]6

denotes the norm in the Sobolev-Slobodetski space [Hs(Ω)]6, and c∗1
and c∗2 are positive numbers depending only on the material constants.

These results imply that the differential operators L(∂, σ), L(∂), and
L0(∂) are strongly elliptic and the following inequality (the accretivity
condition)

c′1 |ξ|2 |η|2 ≤ L0(ξ) η · η =
6∑

k,j=1

{L0(ξ)}kj
ηj ηk

≤ c′2 |ξ|2 |η|2

holds with some constants c′k > 0, k = 1, 2, for arbitrary ξ ∈ R3 and
arbitrary complex vector η ∈ C6, cf., e.g., [12, Part I, Section 5], [26,
Chapter 4, Lemma 4.5].

Remark 2.1. For an arbitrary complex parameter σ and complex-
valued vectors U,U ′ ∈ [C2(Ω+)]6, we have, cf. (2.13), (2.15),∫

Ω+

[
L(∂, σ)U · U ′ − U · L(∂, σ)U ′

]
dx

=
∫

∂Ω+

{
[TU ]+ · [U ′ ]+ − [U ]+ · [TU ′ ]+

}
dS.

Remark 2.2. By standard arguments, Green’s formula (2.15) can be
extended to general Lipschitz domains and to complex-valued vector
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functions U ∈ [W 1
p (Ω+)]6 and U ′ ∈ [W 1

p′(Ω+)]6 with 1/p + 1/p′ = 1
and L(∂)U ∈ [Lp(Ω+)]6, cf. [4, 25, 26, 35]

(2.23)
∫

Ω+

[
L(∂)U · U ′ + E(U,U ′ )

]
dx =

〈
[T (∂, n)U ]+, [U ′ ]+

〉
∂Ω+ ,

where 〈 · , · 〉∂Ω+ denotes the duality between the spaces [B−1/p
p,p (∂Ω+)]6

and [B1/p
p′,p′(∂Ω+)]6, which extends the usual (real) L2-scalar product

for f, g ∈ [L2(S)]6

(2.24)

〈f, g 〉S =
6∑

k=1

∫
S

fk gk dS =: (f, g)[L2(S)]6 for f, g ∈ [L2(S)]6.

Note that [U ′]+ ∈ [B1−1/p′

p′,p′ (∂Ω+)]6 is the trace of U ′ on ∂Ω+. Clearly,

in this case the functional [T (∂, n)U ]+ ∈ [B−1/p
p,p (∂Ω+)]6 is correctly

determined by the relation (2.23). This functional will be referred to
as the trace of stress vector on ∂Ω+.

In the case of unbounded domain Ω− we can apply the same approach
for a vector U ∈ [W 1

p, loc(Ω
−)]6 with L(∂)U ∈ [Lp, loc(Ω−)]6 to define the

generalized trace functional [T (∂, n)U ]− ∈ [B−1/p
p,p (∂Ω−)]6 by Green’s

formula
(2.25)∫

Ω−

[
L(∂)U · U ′+E(U,U ′)

]
dx = − 〈

[T (∂, n)U ]−, [U ′ ]−
〉

∂Ω− ,

where U ′ is an arbitrary vector from the space [W 1
p′, comp (Ω−)]6 and

[U ′]− ∈ [B1−1/p′

p′,p′ (∂Ω−)]6 is the trace of U ′ on ∂Ω−.

2.4. Fundamental solutions. Generalized Sommerfeld-Kupradze type
radiation conditions. Let us consider the pseudodifferential (differen-
tial) operator

det L(∂, σ) := F−1 detL(−i ξ, σ)F ,
where F = Fx→ξ and F−1 = F−1

ξ→x denote the direct and inverse
generalized Fourier transform in the space of tempered distributions
(Schwartz space S ′(R3)).
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As is shown in [33] the function detL(−i ξ, σ) for ξ = r ξ̂ with ξ̂ ∈ R3,
| ξ̂ | = 1, and r ∈ C admits the representation

detL(−i ξ, σ) = Φ1(r) Φ2(r) = d2
1 d2

6∏
j=1

(
r2 − k2

j

)
,

where d1 and d2 are given by (2.20),

Φ1(r) := r4[(λ+ 2μ)(β + 2γ) − (δ + 2κ)2] − r2[(β + 2γ)
 σ2

+ (λ+ 2μ)(Iσ2 − 4α)] + 
 σ2(Iσ2 − 4α),
Φ2(r) := r8[(μ+ α)(γ + ε) − (κ+ ν)2]2 − r6{[ 4α(κ+ ν) − 4ν(μ+ α)]2

+ 2[ (μ+ α)(γ + ε) − (κ+ ν)2][(μ+ α)(Iσ2 − 4α)
+ (γ + ε)
 σ2 + 4α2]}
+ r4{[(μ+ α)(Iσ2 − 4α) + (γ + ε)
σ2 + 4α2]2

+ 32ν 
 σ2(νμ− ακ)
+ 2
σ2(Iσ2 − 4α)[(μ+ α)(γ + ε) − (κ+ ν)2]} − r2{16ν2
2σ4

+ 2
 σ2(Iσ2 − 4α)[(μ+ α)(Iσ2 − 4α) + (γ + ε)
 σ2 + 4α2]}
+ 
2σ4(Iσ2 − 4α)2.

Here ±k1 and ±k2 are the roots of the equation Φ1(r) = 0, while ±k3,
±k4, ±k5 and ±k6 are roots of the equation Φ2(r) = 0. Note that, due
to the evenness of the functions Φ1(r) and Φ2(r) and since σ ∈ R, it is
evident that if r = k is a root of the equation detL(−i ξ, σ) = 0 then so
are r = −k and r = k. Moreover, (2.5) implies that kl �= 0 for l = 1, 6.

Now we prove

Lemma 2.3. All the roots of the equation detL(−i r ξ̂, σ) =
Φ1(r)Φ2(r) = 0 are real provided (2.5) is fulfilled, ξ̂ ∈ R3 and |ξ̂| = 1.

Proof. Let us assume that k = t + i τ �= 0, with t, τ ∈ R, solves the
equation

detL(−i k ξ̂, σ) = Φ1(k) Φ2(k) = 0, i.e., k ∈ {±k1, · · · ,±k6},

where ξ̂ ∈ R3 and |ξ̂| = 1. We will show that τ = 0.



32 D. NATROSHVILI, L. GIORGASHVILI AND S. ZAZASHVILI

It is evident that the simultaneous system of linear algebraic equa-
tions

(2.26) L(−i k ξ̂, σ) η = 0

has then a nontrivial solution with respect to the unknown vector
η = (η1, · · · , η6)� ∈ C6.

Denote

η′ := (η1, η2, η3)�, η′′ := (η4, η5, η6)�, i.e., η = (η′, η′′)� �= 0.

Rewrite the relation (2.26) as

L(−i k ξ̂, σ) η = (−i k)2 L0( ξ̂ ) η + (−i k)L1( ξ̂ ) η + L2( ξ̂ ) η = 0

and multiply it by the nonzero vector η to obtain, see (2.18),

(2.27) (−i k)2 L0( ξ̂ ) η · η + (−i k)L1( ξ̂ ) η · η + L2( ξ̂ ) η · η = 0.

Taking into account that L0( ξ̂ ) is a positive definite matrix and
applying the relations (2.8), (2.9), (2.11) and (2.14), we easily derive
from (3.27) by dividing it by i k and separating the real part

−τ L0( ξ̂ ) η · η − 
{
L1( ξ̂ ) η · η}− τ

| k |2 L2( ξ̂ ) η · η = 0,

i.e.,

(2.28) τ L0(ξ̂) η · η +
τ

|k|2 {
 σ2 η′ · η′ + (I σ2 − 4α) η′′ · η′′}

+ 
{2α [ξ̂ × η′′ ] · η′ + 2α [ξ̂ × η′ ] · η′′ + 4ν [ξ̂ × η′′ ] · η′′} = 0.

One can easily check that

(2.29)
[ξ̂ × η′′ ] · η′ = −[ξ̂ × η′ ] · η′′ = −[ξ̂ × η′ ] · η′′,

[ξ̂ × η ′′ ] · η′′ = −[ξ̂ × η′′ ] · η′′ = −[ξ̂ × η′′ ] · η′′,
which yield

(2.30)
[ξ̂ × η′′ ] · η′ + [ξ̂ × η′ ] · η′′ = i 2�{[ξ̂ × η′′ ] · η′},


{[ξ̂ × η′′ ] · η′′} = 0.
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By these relations from (2.28) we then get

τ
{
L0(ξ̂) η · η +

1
|k|2

[

 σ2|η′|2 + (I σ2 − 4α)|η′′|2] } = 0,

whence τ = 0 due to positive definiteness of the matrix L0( ξ̂ ) and
(2.5).

By Lemma 2.3 we conclude that, since all the roots kl are real, we can
choose kl > 0 for all l = 1, 6 and decompose the operator detL(∂, σ)
as follows

detL(∂, σ) = d2
1 d2

6∏
l=1

(
Δ + k2

l

)
.

From now on we assume that

(2.31) kl > 0, kl �= kj for l �= j.

It is evident that any solution to the equation L(∂, σ)U(x) = 0 in Ω−

satisfies also the equation

[detL(∂, σ)]U(x) = d2
1 d2

6∏
l=1

(
Δ + k2

l

)
U(x) = 0 in Ω−.

Therefore, due to the results in [45] we conclude that U can be
represented in the form

(2.32) U(x) =
6∑

l=1

U (l)(x) in Ω−,

where U (l) = (U (l)
1 , · · · , U (l)

6 )� solves the following Helmholtz equation

(2.33)
(
Δ + k2

l

)
U (l) = 0 in Ω−.

We say that a solution U to the equation L(∂, σ)U(x) = 0 in
Ω− satisfies the Sommerfeld-Kupradze radiation condition at infinity
(belongs to the class SK(Ω−)) if U is represented in the form (2.32)
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and each component U (l)
p (p = 1, 6) of the vector U (l) satisfies the

uniform radiation condition at infinity

∂

∂|x| U
(l)
p (x) − i kl U

(l)
p (x) = o ( |x|−1) as |x| → ∞, l = 1, 6.

Such solutions will be referred to as radiating.

As is well known, for radiating solutions and for sufficiently large |x|,
as |x| → ∞, there hold the relations (for details see, e.g., [45])

U (l)(x) =
exp{i kl |x|}

|x| U (l)
∞ (x̂) + O ( |x|−2),(2.34)

∂

∂|x| U
(l)
p (x) − i kl U

(l)
p (x) = O ( |x|−2),(2.35)

∂

∂xq
U (l)

p (x) − i kl x̂q U
(l)
p (x) = O ( |x|−2),(2.36)

x̂q =
xq

|x| , q = 1, 2, 3,

where U (l)
∞ (x̂) is the so called far field pattern, cf., e.g., [3]

U (l)
∞ (x̂) := − 1

4π

∫
∂Ω−

e−i kl x̂·y { [ ∂n(y)U
(l)(y)

]−
+ i kl

(
x̂ · n(y)

) [
U (l)(y)

]−}
dS.

We remind the reader also about the celebrated Rellich-Vekua lemma
stating that if U (l)

p solves equation (2.33) in Ω− and

lim
R→∞

∫
ΣR

|U (l)
p (x)|2 dΣR = 0,

where ΣR is the sphere centered at the origin and radius R, then
U

(l)
p = 0 in Ω−. As a consequence we get that U (l)

∞ = 0 implies U (l) = 0
in Ω−.

Note that in the Appendix the fundamental matrix Γ(x − y, σ) for
the operator L(∂, σ) satisfying the Sommerfeld-Kupradze radiation
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condition at infinity is constructed explicitly in terms of standard
elementary functions, provided the conditions (2.31) are fulfilled.

2.5. Formulation of boundary value problems. Our main goal is to
investigate the following exterior Dirichlet, Neumann and mixed BVPs
of steady state oscillations.

Find a distributional solution U ∈ [H1
loc(Ω

−) ]6 of the differential
equation

(2.37) L(∂, σ)U = 0 in Ω−

satisfying the Sommerfeld-Kupradze radiation condition at infinity and
one of the following boundary conditions:

(2.38) Problem (D)− : [U ]− = f on S,

(2.39) Problem (N)− : [T (∂, n)U ]− = F on S,

(2.40) Problem (M)− : [U ]− = fD on SD, [T (∂, n)U ]− = FN

on SN ,

where

f ∈ [H1/2(S)]6, F ∈ [H−1/2(S)]6,

f
D
∈ [H1/2(SD)]6, F

N
∈ [H−1/2(SN )]6,

and where SD and SN are two open, disjoint parts of S with SD ∪ SN

= S.

Here and in what follows we assume that S = ∂Ω− is a compact,
piecewise smooth, simply connected Lipschitz surface (if not otherwise
stated). Moreover, we assume that both submanifolds SD and SN have
a positive measure.

The Dirichlet type boundary conditions are understood in the usual
trace sense, while the Neumann type boundary conditions are under-
stood in the functional sense described in Remark 2.2.

Note that, instead of the above (weak) formulation, we can consider
the classical one, when the surface S is C1 smooth and the sought
for radiating vector-function U is regular, i.e., U ∈ [C2(Ω−)]6 ∩
[C1(Ω−)]6, all the boundary data are continuous, and all the conditions



36 D. NATROSHVILI, L. GIORGASHVILI AND S. ZAZASHVILI

(2.37) (2.40) are understood in the usual classical (pointwise) sense.
We recall that even for C∞-smooth boundary S and C∞-smooth
boundary data fD and fN , a solution of the corresponding mixed BVP
does not belong to the space [Cα′

(Ω−)]6 with α′ > 1/2, in general.
The smoothness is violated in a neighborhood of the curve ∂SD = ∂SN

(across which the types of boundary conditions change).

First we prove the following uniqueness

Theorem 2.4. The homogeneous boundary value problems (D)−,
(N)− and (M)− have only the trivial solution.

Proof. Let R be a sufficiently large positive number such that
Ω+ ⊂ BR, and set Ω−

R := Ω− ∩ BR, where BR is a ball centered at
the origin and radius R. Denote ΣR := ∂BR.

Let U be a radiating solution to one of the homogeneous boundary
value problems (D)−, (N)−, or (M)−.

Keeping in mind that U solves the equation (2.37) and applying
Green’s formula to the vectors U and U in the bounded domain Ω−

R

due to Remarks 2.1 and 2.2 we easily get

(2.41)

0 =
∫

ΣR

{[T (∂, x̂)U ] · [U ] − [U ] · [T (∂, x̂)U ]} dΣR

= 2 i�
{∫

ΣR

[T (∂, x̂)U ] · [U ] dΣR

}
= 2 i

6∑
j=1

�
{∫

ΣR

[T (∂, x̂)U ]j Uj dΣR

}
, x̂ =

x

|x| .

Note that the integrals over the domain Ω−
R and the surface S =

∂Ω− (duality expressions) vanish in view of the homogeneity of the
differential equations and the boundary conditions under consideration.
Remark also that x̂ is the exterior unit normal vector at the point
x ∈ ΣR.

Since U is radiating and R is sufficiently large, with the help of (2.3),
(2.32) and (2.36) we derive for x ∈ ΣR
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(2.42) T (∂, x̂)U(x)

= T0(∂, x̂)U(x) + 2 [αx̂× ω(x), νx̂× ω(x)]�

=
6∑

l=1

{
i kl T0(x̂, x̂)U (l)(x) + 2 [αx̂× ω(l)(x), νx̂× ω(l)(x)]�

}
+ O (R−2)

=
6∑

l=1

{
i kl T0(x̂, x̂)U (l)

∞ (x̂) + 2 [αx̂× ω(l)
∞ (x̂), νx̂× ω(l)

∞ (x̂)]�
}

× exp{i klR}
R

+ O (R−2).

Comparing (2.2), (2.11) and (2.12), we see that

(2.43) T0(x̂, x̂) = L0(x̂).

With the help of (2.42), (2.43) and (2.34) from (2.41), we have

(2.44)

0 =
6∑

j=1

�
{∫

ΣR

[T (∂, x̂)U ]j Uj dΣR

}

= �
6∑

l, m=1

∫
Σ1

exp{i (kl − km)R}
{
i kl L0(x̂)U (l)

∞ (x̂) · U (m)
∞ (x̂)

+ 2α [x̂× ω(l)
∞ (x̂)] · u(m)

∞ (x̂)

+ 2ν [x̂× ω(l)
∞ (x̂)] · ω(m)

∞ (x̂)
}
dΣ1 + O (R−1).

Let us integrate this equality with respect to R over the interval
[R1, 2R1] and divide the result by R1 (assuming that R1 is sufficiently
large). Keeping in mind that kl �= km for l �= m we have

1
R1

∫ 2R1

R1

exp{i (kl − km)R} dR = O (R−1
1 ) for l �= m.

Taking into account these relations from (2.44) we finally get

�
6∑

l=1

∫
Σ1

{
i kl L0(x̂)U (l)

∞ (x̂) · U (l)
∞ (x̂) + 2α [x̂× ω(l)

∞ (x̂)] · u(l)
∞ (x̂)

+ 2ν [x̂× ω(l)
∞ (x̂)] · ω(l)

∞ (x̂)
}
dΣ1 = O (R−1

1 ) .
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Pass to the limit, as R → ∞, in the last equality to obtain

�
6∑

l=1

∫
Σ1

{
i kl L0(x̂)U (l)

∞ (x̂) · U (l)
∞ (x̂) + 2α [x̂× ω(l)

∞ (x̂)] · u(l)
∞ (x̂)

+ 2ν [x̂× ω(l)
∞ (x̂)] · ω(l)

∞ (x̂)
}
dΣ1 = 0,

i.e.,

(2.45)
6∑

l=1

∫
Σ1

{
kl L0(x̂)U (l)

∞ (x̂) · U (l)
∞ (x̂) + 2α�{[x̂× ω(l)

∞ (x̂)] · u(l)
∞ (x̂)}

+ 2ν �{[x̂× ω(l)
∞ (x̂)] · ω(l)

∞ (x̂)}
}
dΣ1 = 0.

Our goal is to show that U (l)
∞ (x̂) = 0 for all x̂ ∈ Σ1.

To this end let us remark that for arbitrary radiating solution U of
the homogeneous differential equation (2.37) each summand U (l) in the
representation (2.32) solves the same differential equation (2.37) since

U (l) =
6∏

j=1 (j �=l)

1
k2

j − k2
l

(
Δ + k2

j

)
U.

Therefore, the equation

L(∂, σ)U (l)(x) = L0(∂)U (l)(x) + L1(∂)U (l)(x) + L2(∂)U (l)(x)

= L0(∂)U (l)(x) +
[

2α curlω(l)(x)
2α curlu(l)(x) + 4ν curlω(l)(x)

]
+
[


 σ2 u(l)(x)
(I σ2 − 4α)ω(l)(x)

]
= 0

for sufficiently large |x| = R yields

(i kl)2 L0(x̂)U (l)
∞ (x̂) + i kl

[
2α x̂× ω

(l)
∞ (x̂)

2α x̂× u
(l)
∞ (x̂) + 4ν x̂× ω

(l)
∞ (x̂)

]
+
[


 σ2 u
(l)
∞ (x̂)

(I σ2 − 4α)ω(l)
∞ (x̂)

]
= O (R−1)
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due to the radiation conditions (2.34) (2.36). Passing to the limit as
R→ ∞ and dividing the equality obtained by i kl we get

(i kl)L0(x̂)U (l)
∞ (x̂) +

[
2α x̂× ω

(l)
∞ (x̂)

2α x̂× u
(l)
∞ (x̂) + 4ν x̂× ω

(l)
∞ (x̂)

]
− i

kl

[

 σ2 u

(l)
∞ (x̂)

(I σ2 − 4α)ω(l)
∞ (x̂)

]
= 0.

Multiply this equality by the vector U (l)
∞ (x̂) and apply the relations

(2.29) and (2.30) to obtain

(i kl)L0(x̂)U (l)
∞ (x̂) · U (l)

∞ (x̂) + 2α [x̂× ω(l)
∞ (x̂)]u(l)

∞ (x̂)

+ 2α [x̂× u(l)
∞ (x̂)] · ω(l)

∞ (x̂)

+ 4ν [x̂× ω(l)
∞ (x̂)] · ω(l)

∞ (x̂)

− i

kl
{
 σ2 |u(l)

∞ (x̂) |2 + (I σ2 − 4α) |ω(l)
∞ (x̂) |2}

= (i kl)L0(x̂)U (l)
∞ (x̂) · U (l)

∞ (x̂)

+ i 4α�{[x̂× ω(l)
∞ (x̂)] · u(l)

∞ (x̂)}
+ i 4ν �{[x̂× ω(l)

∞ (x̂)] · ω(l)
∞ (x̂)}

− i

kl
{
 σ2 |u(l)

∞ (x̂) |2 + (I σ2 − 4α) |ω(l)
∞ (x̂) |2} = 0.

Whence it follows that

(2.46) 2
{
kl L0(x̂)U (l)

∞ (x̂) · U (l)
∞ (x̂) + 2α�{[x̂× ω(l)

∞ (x̂)] · u(l)
∞ (x̂)}

+ 2ν �{[x̂× ω(l)
∞ (x̂)] · ω(l)

∞ (x̂)}
}

= kl L0(x̂)U (l)
∞ (x̂) · U (l)

∞ (x̂)

+
1
kl

{
 σ2 |u(l)
∞ (x̂) |2 + (I σ2 − 4α) |ω(l)

∞ (x̂) |2}.

In view of (2.46) from (2.45) we have

6∑
l=1

∫
Σ1

{kl

2
L0(x̂)U (l)

∞ (x̂) · U (l)
∞ (x̂) +

1
2kl

{
 σ2 |u(l)
∞ (x̂) |2

+ (I σ2 − 4α) |ω(l)
∞ (x̂) |2}

}
dΣ1 = 0,
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which, due to (2.5) and positive definiteness of the matrix L0(x̂), yields
U

(l)
∞ (x̂) = 0, l = 1, 6, on Σ1. By the Rellich-Vekua lemma then

U (l)(x) = 0, l = 1, 6, in Ω−, and consequently, the vector U is identical
zero in Ω− in accordance with the representation (2.32). This completes
the proof.

3. Integral representation of solutions. Properties of poten-
tials.

3.1. Integral representation formulae. For simplicity, henceforward
we assume, if not otherwise stated, that

(3.1) S = ∂Ω± ∈ Ck, α′
with integer k ≥ 2 and 0 < α′ ≤ 1,

and n(x) will stand for the outward unit normal vector to Ω+ at the
point x ∈ S.

Let Γ(x− y, σ) be the radiating fundamental matrix of the operator
L(∂, σ) whose explicit expression is given in the Appendix.

We introduce the generalized single and double layer potentials and
the Newtonian type volume potential

V (ϕ)(x) =
∫

S

Γ (x− y, σ)ϕ(y) dSy, x ∈ R3 \ S,
(3.2)

W (ϕ)(x) =
∫

S

[T (∂y, n(y)) Γ (y − x, σ)]� ϕ(y) dSy, x ∈ R3 \ S,
(3.3)

NΩ(ψ)(x) =
∫

Ω

Γ (x− y, σ)ψ(y) dy, x ∈ R3,

where T (∂, n) is the stress operator of the theory of hemitropic elas-
ticity, see (2.1), ϕ = (ϕ1, · · · , ϕ6)� is a density vector-function defined
on S, while a density vector-function ψ = (ψ1, · · · , ψ6)� is defined on
Ω ∈ {Ω+,Ω−}.

It can easily be checked that the potentials defined by (3.2) and
(3.3) are radiating, C∞-smooth in R3 \ S, and solve the homogeneous
equations (2.37) for an arbitrary Lp-integrable vector function ϕ. The
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volume potential is radiating and solves the non-homogeneous equation
L(∂, σ)NΩ(ψ)(x) = ψ(x) in R3 for ψ ∈ [Lp, comp(Ω)]6.

Applying Green’s formula, see Remark 2.1, we can represent a so-
lution of the steady state oscillation equations by means of the above
introduced layer and volume potentials.

Theorem 3.1. Let U be a regular vector of the class [C2(Ω+)]6.
Then there holds the following integral representation formula
(3.4)

W ([U ]+)(x)−V ([TU ]+)(x)+NΩ+(L(∂, σ)U)(x) =
{
U(x) for x ∈ Ω+,
0 for x ∈ Ω−.

Note that by the standard limiting procedure this theorem can be
extended to the case U ∈ [H1(Ω+)]6 with L(∂, σ)U ∈ [L2(Ω+)]6, cf.,
e.g., [6, 25, 26].

Now we are in the position to prove the following

Theorem 3.2. Let U ∈ [H1
loc(Ω−)]6 be a radiating solution of the

homogeneous equation L(∂, σ)U(x) = 0 in Ω−. Then there holds the
following integral representation formula

(3.5) −W ([U ]−)(x) + V ([TU ]−)(x) =
{
U(x) for x ∈ Ω−,
0 for x ∈ Ω+.

Proof. Let R be a sufficiently large positive number such that
Ω+ ⊂ BR, where as above BR is the ball of radius R centered at
the origin. Denote Ω−

R := Ω− ∩BR.

Let x ∈ Ω− be an arbitrary point, and choose R such that x ∈ Ω−
R.

Write the integral representation formula (3.4) for U(x) in the bounded
domain Ω−

R,
(3.6) U(x) = −W ([U ]−)(x) + V ([TU ]−)(x) + Ψ(x,R)
with

(3.7) Ψ(x,R) :=
∫

ΣR

{
[T (∂y, ŷ) Γ (y − x, σ)]� U(y)

− Γ (x− y, σ)T (∂y, ŷ)U(y)
}
dΣR,
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where ΣR is the boundary of BR and ŷ = y/|y| is the outward normal
to ΣR.

Further, let

Ũ(x) := U(x) +W ([U ]−)(x) − V ([TU ]−)(x).

From (3.6) we then have Ũ(x) = Ψ(x,R), x ∈ Ω−
R. Note that the

lefthand side expression Ũ(x) does not depend on R.

Let us integrate the last equality with respect to R over the interval
(R1, 2R1) and divide the result by R1 where R1 is a sufficiently large
number. We get

(3.8) Ũ(x) =
1
R1

∫ 2R1

R1

Ψ(x,R) dR.

In what follows we show that for a radiating solution U , the righthand
side expression in (3.8) tends to zero as R1 → 0.

To this end, note that, since U and Γ (·, σ) are radiating, for a fixed
x and sufficiently large |y| we have (see the Appendix)

T (∂y, ŷ)U(y) =
6∑

j=1

{i kj T0(ŷ, ŷ)U (j)(y) + A(ŷ)U (j)(y)} + O(R−2),

T (∂y, ŷ) Γ (y − x, σ) =
6∑

j=1

{
i kj T0(ŷ, ŷ) Γ(j)(y − x, σ)

+A(ŷ) Γ(j)(y − x, σ)
}

+ O(R−2),

where, see (2.3) and (2.8)

A(ŷ) :=
[

[ 0 ]3×3 2αR(ŷ)
[ 0 ]3×3 2ν R(ŷ)

]
6×6

.

Evidently,

A(ŷ)U (j)(y) = 2 [α ŷ × ω(j)(y), ν ŷ × ω(j)(y)]�.
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Therefore, from (3.11) and (3.7) it follows that

(3.9) Ũ(x) =
1
R1

∫ 2R1

R1

dR

∫
ΣR

6∑
j,q=1

{[(
i kj T0(ŷ, ŷ) + A(ŷ)

)
Γ̃(j)(y − x, σ)

]�
U (q)(y)

− [Γ̃(j)(y − x, σ)]�[i kq T0(ŷ, ŷ)U (q)(y)

+ A(ŷ)U (q)(y)]
}
dΣR + O(R−1

1 ).

To show that the righthand side in (3.9) tends to zero as R1 → ∞, it
suffices to prove that

(3.10) ψjq(R1) :=
1
R1

∫ 2R1

R1

dR

∫
Σ1

h(j)(Rŷ) g(q)(Rŷ)R2 dΣ1 → 0

as R1 → ∞, where

h(j)(Rŷ) = O(R−1), ∂R h
(j)(Rŷ) − i kj h

(j)(Rŷ) = O(R−2),

g(q)(Rŷ) = O(R−1), ∂R g
(q)(Rŷ) − i kq g

(q)(Rŷ) = O(R−2),
∂R := ∂/∂R.

Note that h(j)(Rŷ) := Γ(j)
ps (Rŷ−x, σ) and g(q)(Rŷ) := U

(q)
m (Rŷ) satisfy

the above relations due to the radiation conditions.

Taking into account that kj + kq > 0 we get

h(j)(Rŷ) g(q)(Rŷ)

=
1

i(kj + kq)

[
i kj h

(j)(Rŷ) g(q)(Rŷ) + h(j)(Rŷ) i kq g
(q)(Rŷ)

]
=

1
i(kj + kq)

[
g(q)(Rŷ) ∂

R
h(j)(Rŷ) + h(j)(Rŷ) ∂

R
g(q)(Rŷ)

]
+ O(R−3).
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Therefore from (3.10) with the help of the integration by parts
formula we derive

ψjq(R1) =
1
R1

∫
Σ1

dΣ
∫ 2R1

R1

R2

i(kj + kq)

× ∂

∂R

[
h(j)(Rŷ) g(q)(Rŷ)

]
dR + O(R−1

1 )

=
1

i(kj + kq)R1

∫
Σ1

{[
R2 h(j)(Rŷ) g(q)(Rŷ)

]2R1

R1

−
∫ 2R1

R1

h(j)(Rŷ) g(q)(Rŷ) 2RdR
}
dΣ1

=
1

i(kj + kq)R1

∫
Σ1

O(1) dΣ1 = O(R−1
1 ) → 0

as R1 −→ +∞.

Thus ψjq(R1) → 0 as R1 → +∞, which shows that the righthand
side in (3.9) tends to zero as R1 → +∞. In turn this yields Ũ(x) = 0,
whence the proof of the equality (3.5) follows for x ∈ Ω−. The proof
for the case x ∈ Ω+ may be verbatim performed.

3.2. Properties of potentials and boundary pseudodifferential opera-
tors. The jump and mapping properties of the above introduced sin-
gle and double layer potentials and the corresponding boundary in-
tegral (pseudodifferential) operators in the Hölder (Ck+α′

), Sobolev-
Slobodetski (W s

p ), Bessel potential (Hs
p) and Besov (Bs

p,q) spaces can
be established by standard methods, see, e.g., [6, 8, 9, 11, 19, 26,
28 33]. We remark only that the layer potentials corresponding to the
fundamental matrices with different values of the parameter σ (σ1 and
σ2 say) have the same smoothness properties and possess the same jump
relations, since the entries of the difference of the fundamental matrices
Γ(x, σ1) − Γ(x, σ2) are bounded functions in R3 and their derivatives
of order m have a singularity of type O(|x|−m) in a neighborhood of
the origin. Moreover, the boundary integral operators generated by
the single layer potentials (respectively, by the double layer potentials)
constructed by the kernels Γ(x, σ1) and Γ(x, σ2) differ by a compact
perturbations. Therefore, using the word-for-word arguments given in
[33] we can prove the following theorems concerning the above intro-
duced layer potentials.
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Theorem 3.3. Let S, k, and α′ be as in (3.1), 0 < γ′ < α′, and let
m ≤ k − 1 be an integer. Then, the operators

(3.11)
V : [Cm, γ′

(S)]6 → [Cm+1, γ′
(Ω±)]6,

W : [Cm, γ′
(S)]6 → [Cm, γ′

(Ω±)]6

are bounded.

For any g ∈ [C 0, γ′
(S)]6, h ∈ [C 1, γ′

(S)]6, and any x ∈ S

[V (g)(x)]± = V (g)(x) = H g(x),(3.12)

[T (∂x, n(x))V (g)(x)]± =
[∓2−1I6 + K] g(x),(3.13)

[W (g)(x)]± =
[±2−1I6 + K∗] g(x),(3.14)

[T (∂x, n(x))W (h)(x)]+ = [T (∂x, n(x))W (h)(x)]− = Lh(x),
(3.15)

where

H g(x) :=
∫

S

Γ(x− y, σ) g(y) dSy,

(3.16)

K g(x) :=
∫

S

[T (∂x, n(x)) Γ(x− y, σ) ] g(y) dSy,

(3.17)

K∗ g(x) :=
∫

S

[T (∂y, n(y)) Γ(y − x, σ) ]� g(y) dSy,

(3.18)

(3.19) Lh(x)

:= lim
Ω±�z→x∈S

T (∂z, n(x))
∫

S

[T (∂y, n(y)) Γ(y − z, σ) ]� h(y) dSy.

It can easily be shown that the operators K and K∗ are mutually
adjoint singular integral operators, H is a smoothing (weakly singular)
integral operator, while L is a singular integro-differential operator. For
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C∞-smooth surfaces all these operators can be treated as pseudodiffer-
ential operators on manifolds.

Theorem 3.4. Let S be as in (3.1). The operators V and W can be
extended by continuity to the bounded mappings

V : [H−1/2(S)]6 −→ [H1(Ω+)]6
[
[H−1/2(S)]6 −→ [H1

loc(Ω
−)]6

]
,

W : [H1/2(S)]6 −→ [H1(Ω+)]6
[
[H1/2(S)]6 −→ [H1

loc(Ω
−)]6

]
.

The jump relations (3.12) (3.15) on S remain valid for the extended
operators in the corresponding function spaces.

Theorem 3.5. Let S, k, α′, γ′ and m be as in Theorem 3.3. Then
the operators

H : [Cm, γ′
(S)]6 −→ [Cm+1, γ′

(S)]6,(3.20)

: [H−1/2(S)]6 −→ [H1/2(S)]6,(3.21)

K : [Cm, γ′
(S)]6 −→ [Cm, γ′

(S)]6,(3.22)

: [H−1/2(S)]6 −→ [H−1/2(S)]6,(3.23)

K∗ : [Cm, γ′
(S)]6 −→ [Cm, γ′

(S)]6,(3.24)

: [H1/2(S)]6 −→ [H1/2(S)]6,(3.25)

L : [Cm, γ′
(S)]6 −→ [Cm−1, γ′

(S)]6,(3.26)

: [H1/2(S)]6 −→ [H−1/2(S)]6(3.27)

are bounded.

Moreover,

(i) the principal homogeneous symbol matrices of the operators
±2−1I6 + K and ±2−1I6 + K∗ are nondegenerate, while the principal
homogeneous symbol matrices of the operators −H and L are positive
definite;

(ii) the operators H, ±2−1I6 + K, ±2−1I6 + K∗ and L are elliptic
pseudodifferential operators (of order −1, 0, 0, and 1, respectively) with
zero index;
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(iii) the following equalities hold in appropriate function spaces:

(3.28)
K∗ H = HK, LK∗ = KL,
HL = −4−1 I6 + [K∗ ]2, LH = −4−1 I6 + K2;

(iv) the operators K and K∗ (acting between the Bessel potential
spaces as in (3.23) and (3.25)) are mutually adjoint with respect to the
duality brackets (2.24), while the operators H and L (acting between
the Bessel potential spaces as in (3.21) and (3.27)) are self-adjoint.

The next assertion is a direct consequence of the general theory
of elliptic pseudodifferential operators on smooth manifolds without
boundary, see, e.g., [7, 11, 13, 14, 40, 42, 43, and the references
therein].

Theorem 3.6. Let V , W , H, K, K∗ and L be as in Theorems 3.3,
3.4 and 3.5, and let s ∈ R, 1 < p <∞, 1 ≤ q ≤ ∞, S ∈ C∞. The layer
potential operators (3.11) and the boundary integral (pseudodifferential)
operators (3.20) (3.27) can be extended continuously to the following
bounded operators

V : [Bs
p,p(S)]6 −→ [Hs+1+(1/p)

p (Ω+)]6,

:
[
[Bs

p,p(S)]6 −→ [Hs+1+(1/p)
p,loc (Ω−)]6

]
,

: [Bs
p,q(S)]6 −→ [Bs+1+(1/p)

p,q (Ω+)]6,

:
[
[Bs

p,q(S)]6 −→ [Bs+1+(1/p)
p,q,loc (Ω−)]6

]
,

W : [Bs
p,p(S)]6 −→ [Hs+(1/p)

p (Ω+)]6,

:
[
[Bs

p,p(S)]6 −→ [Hs+(1/p)
p, loc (Ω−)]6

]
,

: [Bs
p,q(S)]6 −→ [Bs+(1/p)

p,q (Ω+)]6,

:
[
[Bs

p,q(S)]6 −→ [Bs+(1/p)
p,q,loc (Ω−)]6

]
,

H : [Hs
p(S)]6 −→ [Hs+1

p (S)]6
[
[Bs

p,q(S)]6−→ [Bs+1
p,q (S)]6

]
,

(3.29)

±2−1I6 + K : [Hs
p(S)]6 −→ [Hs

p(S)]6
[
[Bs

p,q(S)]6 −→ [Bs
p,q(S)]6

]
,

(3.30)
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±2−1I6 + K∗ : [Hs
p(S)]6 −→ [Hs

p(S)]6
[
[Bs

p,q(S)]6 −→ [Bs
p,q(S)]6

]
,

(3.31)

L : [Hs+1
p (S)]6 −→ [Hs

p(S)]6
[
[Bs+1

p,q (S)]6−→ [Bs
p,q(S)]6

]
.

(3.32)

The jump relations (3.12) (3.15) remain valid for arbitrary g ∈
[Bs

p,q(S)]6 with s ∈ R if the limiting values (traces) on S are understood
in the sense described in [40].

The null-spaces of the operators (3.29) (3.32) are invariant with
respect to p, q, and s.

3.3. Some results from the theory of pseudodifferential equations on
manifolds with boundary. In this subsection we shall present some re-
sults from the theory of elliptic pseudodifferential equations on mani-
folds with boundary in Bessel potential and Besov spaces which will be
the main tools for proving existence theorems for the mixed problems.
They can be found in [7, 11, 13, 41, 42].

Let M ∈ C∞ be a compact, n-dimensional, non self-intersecting,
two-sided manifold with boundary ∂M ∈ C∞, and let A be a strongly
elliptic m × m matrix pseudodifferential operator of order r ∈ R on
M. Denote by σA(x, ξ) the principal homogeneous symbol matrix of
the operator A in some local coordinate system (x ∈ M, ξ ∈ Rn \ {0})
and associate with σA the m×m matrix function

(3.33) A0η(x, ξ) = |ξ|−r σA(x, |ξ′|η, ξn),

where η ∈ Rn−1 with |η| = 1 and ξ′ = (ξ1, . . . , ξn−1).

It is known that the matrix A0η given by (3.33) admits the factoriza-
tion

A0η(x, ξ) = A−
η (x, ξ)D(η, x, ξ)A+

η (x, ξ) for x ∈ ∂M,

where [A−
η (x, ξ)]±1 and [A+

η (x, ξ)]±1 are matrices, which are homoge-
neous of degree 0 in ξ and admit analytic bounded continuations with
respect to ξn into the lower and upper complex half-planes, respec-
tively; D(η, x, ξ) is a bounded lower triangular matrix with entries of
the form (

ξn − i |ξ′|
ξn + i |ξ′|

)δj(x)

, j = 1, . . . ,m,
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on the main diagonal; here

δj(x) = (2π i)−1 lnλj(x), j = 1, . . . ,m,

where λ1(x), . . . , λm(x) are the eigenvalues of the matrix

σ̃A(x) = [σA(x, 0, · · · , 0,−1)]−1 [σA(x, 0, · · · , 0,+1)].

The branch in the logarithmic function is chosen with regard to the
inequality

1/p− 1 < 
 δj(x) < 1/p, j = 1, . . . ,m.

The numbers δj(x) do not depend on the choice of the local coordinate
system. Note that if σA(x, ξ) is a positive definite matrix for every
x ∈ M and ξ ∈ Rn \ {0}, then


 δj(x) = 0 for j = 1, . . . ,m,

since, in this case, the eigenvalues of the matrix σ̃A(x) are positive
numbers for any x ∈ M. The Fredholm properties of such operators
are characterized by the following assertion, see, e.g., [7, 42].

Lemma 3.7. Let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, and let A be
a strongly elliptic pseudodifferential operator of order r ∈ R having a
positive definite principal homogeneous symbol matrix, i.e.,

σA(x, ξ) ζ · ζ ≥ c0 |ζ|2 for x ∈ M, ξ ∈ Rn

with |ξ| = 1, and ζ ∈ Cm,

where c0 is a positive constant.

Then the operators

A : [H̃s
p(M)]m → [Hs−r

p (M)]m,(3.34)

: [B̃s
p,q(M)]m → [Bs−r

p,q (M)]m,(3.35)

are Fredholm with zero index if and only if

(3.36)
1
p
− 1 < s− r

2
<

1
p
.
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Moreover, the null-spaces and indices of the operators (3.34), respec-
tively (3.35), are the same provided p and s satisfy the inequality (3.36)
and q ∈ [1,+∞].

4. Existence and regularity results.

4.1. Problem (D)−. We look for a solution to Problem (D)− in the
form

(4.1) U(x) = W (g)(x) + i V (g)(x), x ∈ Ω−,

where W and V are double and single layer potentials respectively and
g = (g1, g2, . . . , g6)� : S → C6 is a sought for vector-function. Due to
Theorem 3.3 the boundary condition (2.38) leads then to the integral
equation

(4.2)
{− 2−1 I6 + K∗ + iH}

g = f on S,

where K∗ and H are defined as in Theorem 3.3, see (3.16) and (3.18).

We assume that S, k, α′, γ′ and m are as in Theorem 3.3, and either

f ∈ [H1/2(S)]6 and g ∈ [H1/2(S)]6,

or

f ∈ [Cm, γ′
(S)]6 and g ∈ [Cm, γ′

(S)]6.

Lemma 4.1. Let S, k and α′ be as in (3.1). The operator

(4.3) D := − 2−1 I6 + K∗ + iH : [H1/2(S)]6 −→ [H1/2(S)]6

is invertible.

Proof. The normally solvable singular integral operator (elliptic
pseudodifferential operator of order 0) (4.3) is Fredholm with zero index
due to Theorem 3.5. Therefore, for its invertibility we need to show
that the corresponding null-space is trivial. To this end let us prove
that the adjoint operator

− 2−1 I6 + K + iH : [H−1/2(S)]6 −→ [H−1/2(S)]6
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is injective, see Theorem 3.5 (iv). Let h ∈ [H−1/2(S)]6 be a solution to
the corresponding homogeneous equation

(4.4)
[− 2−1 I6 + K + iH ]

h = 0 on S.

Consider the single layer potential U0(x) := V (h)(x), x ∈ R3\S.
Clearly U0 ∈ [H1

loc(R
3)]6 and satisfies the Sommerfeld-Kupradze ra-

diation conditions. Equation (4.4) corresponds to the boundary value
condition

(4.5) [T (∂, n)U0]+ + i [U0]+ = 0 on S.

Applying Green’s identity (2.23) in Ω+ with U ′ = U = U0 and taking
into consideration (4.5), we get

i
〈
[U0]+, [U0 ]+

〉
S

= i

∫
S

| [U0]+ |2 dS

=
∫

Ω+

[
E(U0, U0) − 
σ2|u0|2−(Iσ2−4α)|ω0|2

]
dx.

Since the righthand side expression is real, we conclude that [U0]+S = 0,
and consequently [T U0]+S = 0 due to (4.5). Therefore by the integral
representation formula (3.4), see Theorem 3.1, it follows that U0(x) = 0
in Ω+. Further, using the continuity property of the single layer
potential we have [U0]+S = [U0]−S = 0. Since U0 is radiating, by the
uniqueness Theorem 2.4, U0 vanishes in Ω−. By the jump formulas
then we have [T U0]−S − [T U0]+S = h = 0. Thus, equation (4.4) has only
the trivial solution, which implies that the null-space of the operator
(4.3) is trivial. This completes the proof.

By Theorems 3.3, 3.5, 3.6 and Lemma 4.1, the well-known imbedding
theorems and the interpolation properties of the function spaces under
consideration, we arrive at the following corollaries.

Corollary 4.2. Let S, k, α′, γ′ and m be as in Theorem 3.3. The
operator

D = − 2−1I6 + K∗ + iH : [Cm, γ′
(S)]6 −→ [Cm, γ′

(S)]6
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is invertible.

Corollary 4.3. Let S ∈ C∞, s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞. The
operators

D = − 2−1 I6 + K∗ + iH : [Hs
p(S)]6 −→ [Hs

p(S)]6

: [Bs
p,q(S)]6 −→ [Bs

p,q(S)]6

are invertible.

These assertions lead to the following existence results.

Theorem 4.4. (i) Let S, k, and α′ be as in (3.1). The exterior
Dirichlet problem (D)− is uniquely solvable for arbitrary boundary data
f ∈ [H1/2(S)]6, and the solution U ∈ [H1

loc(Ω
−)]6 ∩ SK(Ω−) can be

represented in the form (4.1) where the density vector g ∈ [H1/2(S)]6

solves the integral equation (4.2).

Moreover, in addition,

(ii) if S, k, α′, γ′ and m are as in Theorem 3.3 and f ∈ [Cm, γ′
(S)]6,

then the density vector g belongs to the space [Cm, γ′
(S)]6 and, con-

sequently, the solution U represented in the form (4.1) belongs to the
space [Cm, γ′

(Ω−)]6 ∩ SK(Ω−);

(iii) if S ∈ C∞, 1 < p < ∞, 1 ≤ q ≤ ∞, s ∈ R, and
f ∈ [Bs−(1/p)

p,q (S)]6, then the density vector g belongs to the space
[Bs−(1/p)

p,q (S)]6 and, consequently, the solution U represented in the form
(4.1) belongs to the space [Bs

p,q,loc(Ω
−)]6 ∩ SK(Ω−).

4.2. Problem (N)−. We look for a solution to Problem (N)− again
in the form (4.1). Due to Theorem 3.3 the boundary condition (2.39)
leads then to the integral equation

(4.6)
{L + i

[
2−1 I6 + K] } g = F on S,

where L and K are defined as in Theorem 3.3, see (3.17) and (3.19).

Here we assume again that S, k, α′, γ′ and m ≥ 1 are as in
Theorem 3.3, and either

F ∈ [H−1/2(S)]6 and g ∈ [H1/2(S)]6,
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or
F ∈ [Cm−1, γ′

(S)]6 and g ∈ [Cm, γ′
(S)]6.

As a first step we prove the following invertibility result.

Lemma 4.5. Let S, k, and α′ be as in (3.1). The operator

(4.7) N := L + i
[
2−1 I6 + K] : [H1/2(S)]6 −→ [H−1/2(S)]6

is invertible.

Proof. The elliptic pseudodifferential operator of order 1 (singular
integro-differential operator) (4.7) is Fredholm with zero index due
to Theorem 3.5. Therefore the invertibility of (4.7) follows from its
injectivity.

To show that the kernel (null-space) of the operator (4.7) is trivial,
we consider the homogeneous equation{L + i

[
2−1 I6 + K] } g = 0 on S.

Let g0 ∈ [H1/2(S)]6 be some solution of this equation and U0(x) :=
W (g0)(x) + i V (g0)(x), x ∈ R3 \ S. It is easy to see that then
U0 ∈ [H1

loc(Ω
−)]6 ∩ SK(Ω−) is a solution to the homogeneous BVP

(N)− in Ω−. Therefore U0 = 0 in Ω− due to uniqueness Theorem 2.4.
Whence, [U0]−S = D g0 = 0 and consequently g0 = 0 on S in accordance
with Lemma 4.1. This completes the proof.

Quite similarly as above, by Theorems 3.3, 3.5, 3.6 and Lemma 4.5,
the well-known imbedding theorems and the interpolation properties of
the function spaces under consideration we immediately arrive at the
following corollaries.

Corollary 4.6. Let S, k, α′, γ′ and m ≥ 1 be as in Theorem 3.3.
The operator

(4.8) N = L + i
[
2−1 I6 + K] : [Cm, γ′

(S)]6 −→ [Cm−1, γ′
(S)]6

is invertible.
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Corollary 4.7. Let S ∈ C∞, s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞. The
operators

(4.9)
N = L + i

[
2−1 I6 + K] : [Hs+1

p (S)]6 −→ [Hs
p(S)]6

: [Bs+1
p,q (S)]6 −→ [Bs

p,q(S)]6

are invertible.

From invertibility of the operators (4.7), (4.8) and (4.9), the following
existence results follow directly.

Theorem 4.8. (i) Let S, k, and α′ be as in (3.1). The exterior
Neumann problem (N)− is uniquely solvable for arbitrary boundary
data F ∈ [H−1/2(S)]6, and the solution U ∈ [H1

loc(Ω
−)]6∩SK(Ω−) can

be represented in the form (4.1) where the density vector g ∈ [H1/2(S)]6

solves the integral equation (4.6).

Moreover, in addition,

(ii) if S, k, α′, γ′, m ≥ 1 are as in Theorem 3.3 and F ∈
[Cm−1, γ′

(S)]6, then the density vector g belongs to the space [Cm,γ′
(S)]6

and, consequently, the solution U represented in the form (4.1) belongs
to the space [Cm, γ′

(Ω−)]6 ∩ SK(Ω−);

(iii) if S ∈ C∞, 1 < p < ∞, 1 ≤ q ≤ ∞, s ∈ R, and
F ∈ [Bs−1−(1/p)

p,q (S)]6, then the density vector g belongs to the space
[Bs−(1/p)

p,q (S)]6 and, consequently, the solution U represented in the form
(4.1) belongs to the space [Bs

p,q,loc(Ω
−)]6 ∩ SK(Ω−).

4.3. Steklov-Poincaré type relations. From the results of the previous
subsections, it follows that an arbitrary radiating solution vector U ∈
[Bs

p,q, loc(Ω
−)]6 to the homogeneous oscillation equations (2.37) can

be represented by the two equivalent formulas with the help of the
corresponding Cauchy data,

(4.10)
U(x) = W (D−1 [U ]−)(x) + i V (D−1 [U ]−)(x), x ∈ Ω−,
U(x) = W (N−1 [TU ]−)(x) + i V (N−1 [TU ]−)(x), x ∈ Ω−,

since the operators D and N are invertible in the corresponding func-
tion spaces. These representations lead to the formulas relating the
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Cauchy data of the vector U on S,

[TU ]− = N D−1 [U ]− and [U ]− = DN−1 [TU ]− on S.

These equations are called the Steklov-Poincaré type relations, which
are equivalent to the equality D−1 [U ]− = N−1 [TU ]− on S.

Lemma 4.9. Let s, p, q and S be as in Theorems 4.4 (iii). If two
vectors g ∈ [Bs−(1/p)

p,q (S)]6 and h ∈ [Bs−1−(1/p)
p,q (S)]6 are related by the

equation N−1 h = D−1 g on S, then g and h are Cauchy data on S of
some radiating solution U of the homogeneous steady state oscillation
equations in Ω−, namely, g = [U ]− and h = [TU ]− on S.

Proof. It follows directly from Theorems 4.4 and 4.8, and Corollaries
4.3 and 4.7.

Lemma 4.10. Let S ∈ C∞, s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞. The
Steklov-Poincaré operators

(4.11)
P := −N D−1 : [Hs

p(S)]6 −→ [Hs−1
p (S)]6

: [Bs
p,q(S)]6 −→ [Bs−1

p,q (S)]6

are elliptic invertible pseudodifferential operators of order 1 with pos-
itive definite principal homogeneous symbol matrix. Moreover, for
s = 1/2 and p = q = 2 the operator P is self-adjoint.

Proof. The ellipticity and invertibility of the operators (4.11) follow
from Theorem 3.5 and Corollaries 4.3 and 4.7. The fact that for s = 1/2
and p = q = 2 the operator P is self-adjoint follows from the equation[− 2−1 I6 + K + iH] [L + i

(
2−1 I6 + K)]

=
[L + i

(
2−1 I6 + K∗)] [− 2−1 I6 + K∗ + iH],

which is a ready consequence of the intertwining identities (3.28).

Further, denote by σ(A;x; ξ) the principal homogeneous symbol
matrix of a pseudodifferential operator A on the manifold S. Here
x ∈ S and ξ ∈ R2 \ {0}. It is evident that

σ(P;x; ξ) = −σ(L;x; ξ)
[
σ(−2−1I + K∗;x; ξ)

]−1
.
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Using again the identities (3.28) and Theorem 3.5, we derive

σ(P;x; ξ) = − [σ(H;x; ξ)]−1 [σ(2−1I + K∗;x; ξ)
]

= − [
σ(2−1I + K;x; ξ)

]
[σ(H;x; ξ)]−1 .

Applying the word for word arguments of the proof of Lemma 7.14
in [33] we can establish that the principal homogeneous symbol matrix
of the pseudodifferential operator P is positive definite.

4.4. Mixed BVP. In this subsection we consider the mixed BVP
(M)−, see (2.37) and (2.40), and assume that

(4.12)
fD ∈ [H1/2(SD)]6, FN ∈ [H−1/2(SN )]6, S ∈ C∞,

∂SD = ∂SN ∈ C∞.

Moreover, for simplicity, throughout this subsection we provide that
S ∈ C∞.

Denote by f (e) some fixed extension of the vector-function fD from
SD onto the whole of S preserving the function space,

f (e) ∈ [H1/2(S)]6, rSD
f (e) = fD,

‖ f (e) ‖[H1/2(S)]6 ≤ C0 ‖ fD ‖[H1/2(SD)]6 ,

where C0 is some positive constant independent of fD (concerning the
boundedness of extension operators see, e.g., [44, Chapter 4, Section
4.2], [26, Appendix A].

Evidently, every extension f of fD onto S which preserves the
function space can now be represented as

f = f (e) + ϕ with ϕ ∈ [H̃1/2(SN )]6.

In accordance with (4.10) we can look for a solution to the mixed
BVP in the form

(4.13) U(x) = W
(
D−1 (f (e) + ϕ)

)
(x) + i V

(
D−1 (f (e) + ϕ)

)
(x),

where ϕ ∈ [H̃1/2(SN )]6 is an unknown vector function.



PROBLEMS OF ELASTICITY FOR CHIRAL MATERIALS 57

It is easy to check that the Dirichlet condition on SD in (2.40)
is satisfied automatically. It remains only to satisfy the Neumann
condition on SN which leads to the pseudodifferential equation for the
unknown vector function ϕ

(4.14) N D−1 (f (e) + ϕ) = FN on SN .

Equation (4.14) can be rewritten as

(4.15) rSN
P ϕ = F (0) on SN ,

where P = −N D−1 and

F (0) := −FN − rSN
Pf (e) ∈ [H−1/2(SN )]6.

Lemma 4.11. The operators
(4.16)

r
SN

P : [H̃s
p(SN )]6 −→ [Hs−1

p (SN )]6
[
B̃s

p,q(SN )]6 −→ [Bs−1
p,q (SN )]6

]
,

are invertible if and only if

(4.17)
1
p
− 1

2
< s <

1
p

+
1
2
.

Moreover, the operators (4.16) have the trivial null-spaces and zero
indices, for all values of the parameter q ∈ [1,+∞], provided p and
s satisfy the inequality (4.17).

Proof. The mapping properties (4.16) follow from Corollaries 4.3 and
4.7. Further, from Lemmas 3.7 and 4.10 it follows that the operators
(4.16) are Fredholm with zero index.

To prove the invertibility we first consider the particular case p = 2,
s = 1/2, and q = 2, and show that the null-space of the operator

(4.18)

r
SN

P : [H̃1/2
2 (SN )]6 = [B̃1/2

2,2 (SN )]6 −→ [H−1/2
2 (SN )]6 = [B−1/2

2,2 (SN )]6



58 D. NATROSHVILI, L. GIORGASHVILI AND S. ZAZASHVILI

is trivial, i.e., the equation

(4.19) rSN
P ϕ = 0 on SN

admits only the trivial solution (ϕ = 0) in the space [H̃1/2
2 (SN )]6.

Indeed, let ϕ ∈ [H̃1/2
2 (SN )]6 be any solution of the homogeneous

equation (4.19). It is evident that, due to Theorem 3.4, the vector

U(x) = W
(D−1 ϕ

)
(x) + i V

(D−1 ϕ
)
(x), x ∈ Ω−,

is radiating, belongs to the space [H1
2,loc(Ω

−)]6 = [W 1
2,loc(Ω

−)]6, and
solves the homogeneous mixed BVP. Therefore, U(x) = 0 for x ∈ Ω−,
due to the uniqueness Theorem 2.4. The evident equation [U ]−S = ϕ = 0
on S immediately implies that the operator (4.18) is injective. In
accordance with Lemma 4.10 the principal homogeneous symbol matrix
of P is positive definite. In view of Lemma 3.7 the operator (4.18) is
then Fredholm with zero index. Consequently, from the injectivity of
(4.18) its invertibility follows. Now Lemma 3.7 completes the proof.

As an immediate consequence of Lemma 4.11 and the uniqueness
Theorem 2.4 we have the following existence result.

Theorem 4.12. Let the conditions (4.12) be fulfilled. Then the mixed
BVP (M)− has a unique solution in the class [H1

loc(Ω
−)]6 ∩ SK(Ω−)

representable in the form of (4.13) where ϕ ∈ [H̃1/2(SN )]6 is defined by
the uniquely solvable pseudodifferential equation (4.15).

The solution U and the vector f (e) +ϕ do not depend on the form of
the extension operator.

In turn this theorem yields

Corollary 4.13. Let 4/3 < p < 4 and

(4.20) fD ∈ [B1−1/p
p,p (SD)]6, FN ∈ [B−1/p

p,p (SN )]6.

Then the mixed problem (M)− has a unique radiating solution U ∈
[W 1

p,loc(Ω
−)]6 ∩ SK(Ω−) which is representable in the form of (4.13),
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where f (e) ∈ [B1−1/p
p,p (S)]6 is some fixed extension of the vector func-

tion fD from SD onto S preserving the function space and ϕ ∈
[B̃1−1/p

p,p (SN )]6 is defined by the uniquely solvable pseudodifferential
equation

(4.21)
r

SN
P ϕ = F (0) on SN with

F (0) := −FN − r
SN

P f (e) ∈ [B−1/p
p,p (SN )]6.

Proof. First we note that, in accordance with Lemma 3.7, equation
(4.21) is uniquely solvable for s = 1 − 1/p with 4/3 < p < 4. The
restriction for p follows from the inequality (4.17). This implies that
Problem (M)− is solvable in the space [W 1

p,loc(Ω
−)]6 ∩ SK(Ω−) with

p ∈ (4/3, 4).

Next we show the uniqueness of solution in the space [W 1
p,loc(Ω

−)]6

for arbitrary p ∈ (4/3, 4) (for p = 2 it has been proved in Theorem 2.4).
Let U ∈ [W 1

p,loc(Ω
−)]6 be some radiating solution of the homogeneous

mixed BVP (M)−. Clearly, then

(4.22) [U ]− ∈ [B̃1−1/p
p,p (SN )]6.

Due to the results mentioned in subsection 4.3 we have the representa-
tion

U(x) = W (D−1 [U ]−)(x) + i V (D−1 [U ]−)(x), x ∈ Ω−.

Since U satisfies the homogeneous Neumann condition on SN , we
have rSN

P [U ]− = 0 on SN , whence [U ]− = 0 on S follows due to
the inclusion (4.22), Lemma 4.11, and the inequality 4/3 < p < 4.
Therefore, [U ]− = 0 on S and consequently U = 0 in Ω−.

Further we prove the main regularity result for a solution to the mixed
problem (M)−.

Theorem 4.14. Let the conditions (4.20) and

(4.23)
4/3 < p < 4, 1 < t <∞, 1 ≤ q ≤ ∞, 1/t− 1/2 < s < 1/t+ 1/2,
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be fulfilled, and let U ∈ [W 1
p (Ω−)]6 ∩ SK(Ω−) be the unique radiating

solution to the mixed problem (M)− represented by the formula (4.13)
with ϕ satisfying equation (4.21).

In addition to (4.20),

i) if

(4.24) fD ∈ [Bs
t,t(SD)]6, FN ∈ [Bs−1

t,t (SN )]6,

then

(4.25) U ∈ [Hs+1/t
t,loc (Ω−)]6 ∩ SK(Ω−);

ii) if

(4.26) fD ∈ [Bs
t,q(SD)]6, FN ∈ [Bs−1

t,q (SN )]6,

then

(4.27) U ∈ [Bs+1/t
t,q,loc(Ω

−)]6 ∩ SK(Ω−);

iii) if

(4.28) fD ∈ [Cα′
(SD)]6, FN ∈ [Bα′−1

∞,∞(SN )]6, α′ > 0,

then

U ∈
[ ⋂

β′ < α′′
[Cβ′

(Ω−)]6
] ⋂

SK(Ω−) with α′′ := min{α′, 1/2}.

Proof. Applying Corollary 4.13, Lemma 4.11, the inclusions (4.20)
and (4.24), respectively (4.26) along with the inequalities (4.23), we
conclude from (4.24) that ϕ ∈ [B̃s

t,t(SN )]6, respectively ϕ ∈ [B̃s
t,q(SN )]6,

since F0 ∈ [Bs−1
t,t (SN )]6, respectively F0 ∈ [Bs−1

t,q (SN )]6.

Note that f (e) ∈ [Bs
t,t(S)]6, respectively f (e) ∈ [Bs

t,q(S)]6, is some
extension of the vector fD onto the whole of S. Therefore, by The-
orem 3.6 and the representation formula (4.13) the inclusion (4.25),
respectively (4.27), follows.
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To prove (iii) we use the following embeddings, see, e.g., [44],

(4.29)
Cα′

(S) = Bα′
∞,∞(S) ⊂ Bα′−ε′

∞,1 (S) ⊂ Bα′−ε′
∞,q (S)

⊂ Bα′−ε′
t,q (S) ⊂ Cα′−ε′−k/t(S),

where ε′ is an arbitrary small positive number, S ⊂ R3 is a compact
k-dimensional, k = 2, 3, smooth manifold with smooth boundary,
1 ≤ q ≤ ∞, 1 < t < ∞ and α′ − ε′ − k/t > 0, α′, and α′ − ε′ − k/t
are not integers. From (4.28) and the embeddings (4.29), the condition
(4.27) follows with any s ≤ α′ − ε′.

Bearing in mind (4.23) and taking t sufficiently large and ε′ suffi-
ciently small, we may put s = α′ − ε′ if

(4.30) 1/t− 1/2 < α′ − ε′ < 1/t+ 1/2,

and s ∈ (1/t− 1/2, 1/t+ 1/2) if

(4.31) 1/t+ 1/2 < α′ − ε′.

By (4.27) the solution U belongs then to [Bs+1/t
t,q,loc(Ω

−)]6 with s +
1/t = α′ − ε′ + 1/t if (4.30) holds, and with s + 1/t ∈ (2/t −
1/2, 2/t + 1/2) if (4.31) holds. In the last case we can take s + 1/t =
2/t + 1/2 − ε′. Therefore, we have either U ∈ [Bα′−ε′+1/t

t,q,loc (Ω−)]6, or

U ∈ [B1/2+2/t−ε′

t,q,loc (Ω−)]6 in accordance with the inequalities (4.30) and
(4.31). The last embedding in (4.29), with k = 3, yields that either
U ∈ [Cα′−ε′−2/t(Ω−)]6, or U ∈ [C1/2−ε′−1/t(Ω−)]6 which leads to the
inclusion

(4.32) U ∈ [Cα′′−ε′−2/t(Ω−)]6,

where α′′ := min{α′, 1/2}. Since t is sufficiently large and ε′ is
sufficiently small, the embedding (4.32) completes the proof.

4.5. Some remarks concerning the BVPs in Lipschitz domains. Here
we discuss some results concerning the above considered BVPs in the
W 1

2 -weak setting (see the formulation of the BVPs in subsection 2.5)
which remain valid for domains with Lipschitz boundaries. We recall
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that all the boundary conditions under consideration are understood
in the usual or generalized trace sense.

Using the above established results, Remark 5.1 (see the Appendix),
and the results obtained in subsections 7.1 and 7.2 in [34] it can be
shown that if the boundary S = ∂Ω− is Lipschitz then the uniqueness
Theorem 2.4, the integral representation formulas (3.4) and (3.5),
mapping properties of potentials described in Theorem 3.4, properties
of the boundary integral operators (3.21), (3.23), (3.25) and (3.27),
also formulas (3.28) still hold true. As a consequence we easily derive
that Lemmas 4.1 and 4.5 about the invertibility of the operators D and
N , and the existence results concerning the Dirichlet and Neumann
problems, Theorems 4.4 (i) and 4.8 (i) are valid for Lipschitz domains
as well.

Concerning equation (4.15) which corresponds to the mixed boundary
value problem (M)−, see (2.40), we have the following existence result
in the case of Lipschitz domains.

Lemma 4.15. Let S = ∂Ω− be a Lipschitz surface, and let SN ⊂ S
be a proper part of S with Lipschitz boundary ∂SN . The operator

(4.33) r
SN

P = r
SN

[−N D−1
]

: [H̃1/2
2 (SN )]6 → [H−1/2

2 (SN )]6

is invertible.

Proof. First of all let us remark that the operator P : [H1/2
2 (S)]6 →

[H−1/2
2 (S)]6 is bounded due to Lemmas 4.1 and 4.5. Consequently, the

sesquilinear form 〈 r
SN

P ϕ , ψ 〉
SN

defined on [H̃1/2
2 (SN )]6×[H̃1/2

2 (SN )]6

is bounded. Here the symbol 〈 · , · 〉SN
again denotes the duality be-

tween the mutually adjoint spaces [H−1/2
2 (SN )]6 and [H̃1/2

2 (SN )]6.

Next, let us prove that the null-space of the operator (4.33) is trivial.
Let, ϕ ∈ [H̃1/2

2 (SN )]6 and rSN
P ϕ = 0 on SN . Then it follows that the

radiating vector

U = W
(D−1 ϕ

)
+ i V

(D−1 ϕ
) ∈ [H1

2,loc(Ω
−)]6 ∩ SK(Ω−)

solves the homogeneous mixed boundary value problem (2.40) in Ω−

(with fD = 0 on SD = S \ SN and FN = 0 on SN ). Due to the
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uniqueness Theorem 2.4 we have U = 0 in Ω−. This implies that
[U ]−S = ϕ = 0 on S. Thus the operator (4.33) is injective.

Further, we show that the following G̊arding type inequality

(4.34)
〈
r

SN
P ϕ , ϕ

〉
SN

≥ a1 ‖ϕ‖
[H̃

1/2
2 (S)]6

− a2 ‖ϕ‖[H0
2 (S)]6

holds for arbitrary ϕ ∈ [H̃1/2
2 (SN )]6 with positive constants aj (j =

1, 2) independent of ϕ. To this end, we apply Green’s formula (2.25)
to the vectors

U(x) := W
(D−1 ϕ

)
(x) + i V

(D−1 ϕ
)
(x) and U ′(x) := χ(x)U(x),

where ϕ is an arbitrary vector from the space [H̃1/2
2 (SN )]6 and χ ∈

C∞
comp(Rn) is a fixed cut-off real function with χ(x) = 1 in a spatial

neighborhood of the boundary S. We arrive at the equality

(4.35)

∫
Ω−

0

[−L2(∂)U · χU + E(U, χU)
]
dx = − 〈

[TU ]−, [U ]−
〉

∂Ω−

=
〈
r

SN
P ϕ,ϕ

〉
SN

,

where Ω−
0 = Ω− ∩ suppχ is a bounded region and L2(∂) is given by

(2.14). With the help of (2.22), the trace lemma, and the inequality,
cf., e.g., [26, Chapter 6, Theorem 6.12 and Exercise 6.4]

||U ||2
[H0

2 (Ω−
0 )]6

≤ c1 ||ϕ ||2
[H

−1/2
2 (∂Ω−)]6

,

from (4.35) we easily derive〈
r

SN
P ϕ , ϕ

〉
SN

≥ c2 ||U ||2
[H1

2 (Ω−
0 )]6

− c3 ||U ||2
[H0

2 (Ω−
0 )]6

≥ c4 || [U ]− ||2
[H

1/2
2 (∂Ω−)]6

− c5 ||ϕ ||2
[H

−1/2
2 (∂Ω−)]6

≥ c4 ||ϕ ||2
[H

1/2
2 (∂Ω−)]6

− c5 ||ϕ ||2[H0
2 (∂Ω−)]6 ,

where all the constants ck > 0 are independent of ϕ. This proves the
inequality (4.34).
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Due to the well-known results based on the Lax-Milgram lemma we
conclude that the operator (4.33) is Fredholm with zero index (see,
e.g., [26, Chapter 2, Theorem 2.32]). Therefore the injectivity of the
operator (4.33) implies its invertibility.

From Lemma 4.15 it follows immediately that Theorem 4.12 holds
true for Lipschitz domains as well.

Appendix

5. Fundamental matrices. Here we give an explicit expression of
the radiating fundamental matrix Γ(x, σ) of the differential equations
(in the distributional sense) of steady state oscillations

L(∂, σ) Γ(x, σ) = δ(x) I6.

If we follow the approach employed in Section 3 of the reference
[33] and take into consideration the conditions (2.31), we arrive at
the following formula

(5.1) Γ(x, σ) =
6∑

j=1

Γ(j)(x, σ),

where

Γ(j)(x, σ) = − aj

4π d2
1 d2

[
L(4)(∂, σ)M(∂) −L(2)(∂, σ)M(∂)
−L(2)(∂, σ)M(∂) L(1)(∂, σ)M(∂)

]
eikj |x|

|x| ,

d1 and d2 are given by (2.20), kj , j = 1, 6, are the roots of the
characteristic equation introduced in subsection 2.4 and satisfy the
conditions (2.31), the numbers aj , j = 1, 6 are defined by the system
of linear algebraic equations

(5.2)
6∑

j=1

k2

j aj = 0, � = 0, 4,

6∑
j=1

k10
j aj = 1;

the 3× 3 matrix differential operators L(j)(∂, σ) are given by (2.7) and

M(∂) := a(∂) [a(∂) − b(∂) Δ] I3 +
[
a(∂) b(∂) + [c(∂)]2

]
Q(∂)

+ c(∂) [a(∂) − b(∂) Δ]R(∂)
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with

a(∂) = [(μ+ α)(γ + ε) − (κ+ ν)2] Δ Δ + [ (μ+ α) (I σ2 − 4α)
+ (γ + ε) 
 σ2 + 4α2] Δ + 
 σ2 (Iσ2 − 4α),

b(∂) = −[(μ+ α)(β + γ − ε) + (λ+ μ− α)(β + 2γ) − (δ + κ− ν)2

− 2(κ+ ν)(δ + κ− ν)] Δ − [(β + γ − ε) 
 σ2

+ (λ+ μ− α)(I σ2 − 4α) − 4α2],
c(∂) = 4[α(κ+ ν) − ν(μ+ α)] Δ − 4ν 
 σ2.

This representation shows that the entries of the matrix Γ(j)(x, σ) and
its derivatives satisfy the Sommerfeld radiation conditions at infinity,

∂

∂|x| Γ(j)
pq (x, σ) − i kj Γ(j)

pq (x, σ) = O (|x|−2),

∂

∂xl
Γ(j)

pq (x, σ) − i kj
xl

|x| Γ(j)
pq (x, σ) = O (|x|−2)

as |x| → +∞.

These asymptotic equalities can be differentiated many times with
respect to the variable x.

In view of (5.2) we have

6∑
j=1

aj

|x| e
i kj |x| =

∑
q∈{1,3,5,7,9}

{ |x|q−1 iq

q!

6∑
j=1

aj k
q
j

}
− |x|9

10!

+
∞∑

q=11

6∑
j=1

|x|q−1 iq aj k
q
j

q!

which yields that the fundamental solution (5.1) has a singularity of
type O(|x|−1) in a neighborhood of the origin, since the entries of the
matrix L(j)(∂, σ)M(∂), j = 1, 4 are differential operators of order 10.
One can also show that Γ(−x, σ) = [Γ(x, σ)]�.

Denote by Γ0(x) the fundamental matrix of the operator L0(∂), see
(2.11) and (2.12), i.e., Γ0(x) solves the equation (in the distributional
sense) L0(∂) Γ0(x) = δ(x) I6. The explicit form of Γ0(x) is given in [33],

Γ0(x)

= − 1
8πd1d2|x|

{[
d3 I3 −d4 I3
−d4 I3 d5 I3

]
− 1

|x|2
[
d6Q(x) −d7Q(x)
−d7Q(x) d8Q(x)

]}
,
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where

d3 := d2 (γ + ε) + d1 (β + 2γ), d4 := d2 (κ+ ν) + d1 (δ + 2κ),
d5 := d2 (μ+ α) + d1 (λ+ 2μ), d6 := d1 (β + 2γ) − d2 (γ + ε),
d7 := d1 (δ + 2κ) − d2 (κ+ ν), d8 := d1 (λ+ 2μ) − d2 (μ+ α).

Clearly, the entries of the matrix Γ0(x) are homogeneous functions
of order −1. Moreover, in a neighborhood of the origin (i.e., for small
|x|) the following relations

(5.3) ∂α [Γ(x, σ) − Γ0(x)] = O (|x|−|α|)

hold for an arbitrary multi-index α = (α1, α2, α3). This implies that
the Γ0(x) is the principal singular part of the matrix Γ(x, σ), cf. [33].
Denote by H0, K0, K∗

0 and L0 the boundary pseudodifferential oper-
ators generated by the single and double layer potentials constructed
with the help of the matrix Γ0(x) and the boundary operator T0(∂, n),
cf. (3.16) (3.19),

V0(ϕ)(x) =
∫

S

Γ0(x− y)ϕ(y) dSy, x ∈ R3 \ S,

W0(ϕ)(x) =
∫

S

[T0(∂y, n(y)) Γ0(y − x) ]� ϕ(y) dSy, x ∈ R3 \ S,

where T0(∂, n) is the principal homogeneous part of the stress operator
T (∂, n), see (2.1) and (2.2).

Remark 5.1. With the help of relation (5.3) it can easily be shown that
the operators H0, K0, K∗

0 and L0 have the same principal homogeneous
symbol matrices, the same mapping and Fredholm properties as the
respective operators H, K, K∗ and L. The differences H−H0, K−K0,
K∗ −K∗

0 and L−L0 acting between the corresponding function spaces
involved in (3.29) (3.32) are compact (smoothing) operators. Note that
this is also valid for complex values of the parameter σ.
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