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A NEWTON-LIKE ITERATIVE PROCESS FOR
THE NUMERICAL SOLUTION OF FREDHOLM

NONLINEAR INTEGRAL EQUATIONS

M.A. HERNÁNDEZ AND M.A. SALANOVA

ABSTRACT. In this paper, we give a semi-local conver-
gence result for an iterative process of Newton-Kantorovich-
type to solve nonlinear integral equations of Fredholm type
and second kind. We also illustrate with several examples
the technique for constructing a functional sequence that ap-
proaches solutions.

1. Introduction. Consider a nonlinear integral equation of Fred-
holm type and second kind

(1) φ(x) = f(x) + λ

∫ b

a

K(x, t)H(φ(t)) dt, x ∈ [a, b],

where λ is a real number, the kernel K(x, t) is a continuous function in
[a, b] × [a, b], H : R → R is a differentiable real function, and f(x)
is a given continuous real function defined in [a, b]. When H is a
linear function, there are several numerical methods to approximate the
solution of this type of equations [9, 10]. If H is nonlinear, the more
usual numerical procedures, such as Nyström, Galerkin, collocation,
etc., methods [4, 6] have the following two principal aspects. Firstly,
equation (1) is discretized and the associated nonlinear finite system is
solved by applying some methods to approximate the solutions. Next,
by interpolation, we obtain the approximation of the solution. Our
technique is different because we apply directly an iterative method to
integral equation (3). So, in this way we obtain approximations to the
solution.
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Firstly, we make a point-to-point iteration to solve this type of
equation. The technique consists of writing equation (1) in the form:

(2) F (φ) = 0,

where F : Ω ⊆ X → Y is a nonlinear operator defined by

(3) F (φ)(x) = φ(x) − f(x) − λ

∫ b

a

K(x, t)H(φ(t)) dt,

and X = Y = C([a, b]) is the space of continuous functions on the
interval [a, b], equipped with the max-norm:

‖φ‖ = max
x∈[a,b]

|φ(x)|, φ ∈ X.

Then we consider a point-to-point method, φn+1 = G(φn), to obtain
approximations to a solution of equation (1). The Picard iteration and
the Newton-Kantorovich method [1, 8] are the more used processes to
solve this kind of problem.

The Picard iteration is given by the following algorithm:

φn+1 = G(φn) = φn − F (φn), n ≥ 0,

where the starting point φ0 ∈ C[a, b] is given. It is well known [7] that
Picard’s iteration converges if G is a contractive operator, but this
condition is very restrictive and its application is then very difficult to
satisfy.

The Newton-Kantorovich iteration [3, 7] is given by

φ0 ∈ C[a, b], φn+1 = G(φn) = φn − [F ′(φn)]−1F (φn), n ≥ 0.

Note that this method requires one to calculate the operator [F ′(φ)]−1

in each step. This can make the use of this method difficult. When the
kernel of integral equation (1) is degenerated, it is simple to obtain the
operator [F ′(φ)]−1.

For instance, if K(x, t) = α(x)β(t) and we denote F ′(φ) = F ′
φ, it

follows that:

F ′
φ[ψ](x) = ψ(x) − λα(x)

∫ b

a

β(t)H ′(φ(t))ψ(t) dt, x ∈ [a, b], ψ ∈ X.
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If we denote F ′
φ[ψ](x) = θ(x), then [F ′

φ]
−1[θ](x) = ψ(x) and ψ(x) =

θ(x) + λα(x)Jψ, where

Jψ =
∫ b

a

β(t)H ′(φ(t))ψ(t) dt

is a value that can be calculated independently of ψ. This can be done
in the following form: firstly, we multiply the equality

ψ(x) − λα(x)
∫ b

a

β(t)H ′(φ(t))ψ(t) dt = θ(x)

by β(x)H ′(φ(x)); then, we integrate in the x variable the equality
obtained to get

Jψ − λ

∫ b

a

β(x)H ′(φ(x))α(x) dx Jψ =
∫ b

a

β(x)H ′(φ(x))θ(x) dx.

If we denote

A =
∫ b

a

β(x)H ′(φ(x))α(x) dx and B =
∫ b

a

β(x)H ′(φ(x))θ(x) dx,

we obtain the equation (1 − λA)Jψ = B, and therefore

Jψ =
B

1 − λA
.

Thus, we can find the inverse of F ′
φ:

[F ′
φ]

−1[θ](x) = θ(x) + λα(x)
B

1 − λA
.

Then, in a general situation, when K(x, t) is not degenerated, we look
for an approximation of this kernel by another degenerated one K̃(x, t)
and we approximate

F ′
φ[ψ](x) = ψ(x) − λ

∫ b

a

K(x, t)H ′(φ(t))ψ(t) dt, x ∈ [a, b], ψ ∈ X,
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by

(4)
Aφ[ψ](x) = ψ(x) − λ

∫ b

a

K̃(x, t)H ′(φ(t))ψ(t) dt,

x ∈ [a, b], ψ ∈ X,

then we can obtain A−1
φ .

For example, in Section 3, we study this situation when we take

K̃(x, t) =
m∑
j=1

αj(x)βj(t)

by means of the Taylor formula of K(x, t).

So, in this paper, we consider a Newton-type method [2] given by the
following algorithm:

(5) φn+1 = G(φn) = φn −A(φn)−1F (φn), n ≥ 0,

for φ0 ∈ C[a, b] given, where A(φ) is an approximation of F ′(φ) when
the kernel K(x, t) is approximated by a degenerated kernel K̃(x, t).
These types of iterative processes have been studied, for other nonlinear
problems, by other authors [3, 5], but in our study we establish a semi-
local convergence result under weak conditions for the operator H.

We finish with several numerical examples where algorithm (5) is
applied.

2. A semi-local convergence result. To study the semi-local
convergence of iterative process (5), we make sure that the sequence
{φn} is well-defined and converges to a solution of equation (2). Firstly,
we consider a starting point φ0 ∈ C[a, b] and we want to know if
A−1
φ0

exists. To do this, we use Banach’s lemma about the inversion
of operators, to have the following result:

Lemma 2.1. Let φ0 ∈ C[a, b], and we assume that

(I) |λ| < 1
Lε
.
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Then, A−1
φ0

exists and

‖A−1
φ0

‖ ≤ 1
1 − |λ|Lε ≡ δ,

where L = maxx∈[a,b]

∫ b
a
|K̃(x, t)| dt and ε ≡ ‖H ′(φ0)‖.

Proof. Taking into account that

(I −Aφ0)[ψ](x) = λ

∫ b

a

K̃(x, t)H ′(φ0(t))ψ(t) dt,

we have that ‖I −Aφ0‖ ≤ |λ|Lε < 1, and the result holds by Banach’s
lemma.

Now, in the following lemma, we give conditions for the existence of
A−1
φ , for each φ ∈ B(φ0, R) = {φ ∈ X; ‖φ − φ0‖ ≤ R}, where R is a

fixed positive real number.

Lemma 2.2. Let φ0 ∈ C[a, b] be such that A−1
φ0

exists and ‖A−1
φ0

‖ ≤ δ.
Assume:

(II) ‖H ′(φ)−H ′(ψ)‖ ≤ ω(‖φ−ψ‖), for φ, ψ ∈ B(φ0, R), where ω is
a nondecreasing positive real function, ω : R+ → R+, and

(III) h(R) ≡ δ|λ|Lω(R) < 1.

Then, for each φ ∈ B(φ0, R), A−1
φ exists and

‖A−1
φ ‖ ≤ 1

1 − h(R)
.

Proof. By using Banach’s Lemma, we obtain that (Aφ)−1 exists for
each φ ∈ B(φ0, R). From the hypotheses, we have

‖(I−A−1
φ0
Aφ)ψ‖ ≤ ‖A−1

φ0
‖ ‖(Aφ0−Aφ)ψ‖ ≤ δ|λ|L‖H ′(φ)−H ′(φ0)‖ ‖ψ‖.

Then,
‖I −A−1

φ0
Aφ‖ ≤ δ|λ|Lω(R) = h(R) < 1

and the result holds.
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Besides, if we prove that φ1 ∈ B(φ0, R), we deduce that φ2 is well
defined by Lemma 2.2. By means of a recursive procedure, if we prove
that φn ∈ B(φ0, R), we deduce that the sequence {φn}, given by (5),
is well defined.

Next, we give a semi-local convergence result for this sequence. For
that, we take into account the following expression

(6)

F (φn)(x) = F (φn)(x) −Aφn−1(φn − φn−1)(x) − F (φn−1)(x)

=
∫ φn

φn−1

[F ′
φ −Aφn−1 ](x) dφ

=
∫ 1

0

[F ′
φn−1+s(φn−φn−1)

−Aφn−1 ](x) ds.

In the following lemma we give a bound for ‖φn+1 − φn‖.

Lemma 2.3. Let φ0 ∈ C[a, b] be such that A−1
φ0

exists and ‖A−1
φ0

‖ ≤ δ.
If φn ∈ B(φ0, R), for each n ∈ N, assume the conditions of Lemma 2.2
and

(IV) ‖H ′(φ)‖ ≤ ω̃(‖φ‖), φ ∈ B(φ0, R), where ω̃ is a nondecreasing
positive real function, ω̃ : R+ → R+. Then,

‖φn+1 − φn‖ ≤ 1
1 − h(R)

|λ|g(R)‖φn − φn−1‖, n ≥ 1,

where g(R) = Nω(2R)+Mω̃(‖φ0‖+R), N = maxx∈[a,b]

∫ b
a
|K(x, t)| dt

and M = maxx∈[a,b]

∫ b
a
|R(x, t)| dt.

Proof. Firstly, we need a bound for ‖F ′
φn−1+s(φn−φn−1)

− Aφn−1‖.
From the expression

[F ′
φn−1+s(φn−φn−1)

−Aφn−1 ]ψ(x)

= −λ
∫ b

a

[
K(x, t)H ′(φn−1+s(φn−φn−1))− K̃(x, t)H ′(φn−1)

]
ψ(t) dt

= −λ
∫ b

a

[
K(x, t) (H ′(φn−1 + s(φn − φn−1)) −H ′(φn−1))

−R(x, t)H ′(φn−1)
]
ψ(t) dt,
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it follows that

‖F ′
φn−1+s(φn−φn−1)

−Aφn−1‖
≤ |λ| [N‖H ′(φn−1 + s(φn − φn−1)) −H ′(φn−1)‖ +M‖H ′(φn−1)‖]
≤ |λ| [Nω(s‖φn − φn−1‖) +Mω̃(‖φn−1‖)] .

Thus, we deduce, by (6), that

‖F (φn)‖ ≤ |λ| [Nω(2R) +Mω̃(‖φ0‖ +R)] ‖φn − φn−1‖
= |λ|g(R)‖φn − φn−1)‖.

So we have

(7) ‖F (φn)‖ ≤ |λ|g(R)‖φn − φn−1‖,

and the result holds from Lemma 2.2.

Finally, we give the main result of semi-local convergence for the
sequence {φn}. For that, we denote

Δ(R) =
1

1 − h(R)
|λ|g(R).

Then, if we consider |λ| < 1/Lε, by Lemma 2.1, A−1
φ0

exists and
‖A−1

φ0
‖ ≤ δ. Now, we denote ‖A−1

φ0
F (φ0)‖ ≤ η, and we consider the

following auxiliary scalar equation

(8) t(1 − Δ(t)) − η = 0.

Theorem 2.4. Assume the previous conditions (I), (II), (III) and
(IV). Let R be the minimum positive solution of equation (8) and we
suppose that Δ ≡ Δ(R) < 1. Then, the sequence {φn}, given by
(5), converges to a solution φ∗ of equation (2) and φn, φ∗ ∈ B(φ0, R).
Moreover, we have the following error bounds:

‖φ∗ − φn‖ ≤ Δn

1 − Δ
η.
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Proof. Notice that ‖φ1 − φ0‖ ≤ ‖A−1
φ0
F (φ0)‖ ≤ η, and therefore it

follows that φ1 ∈ B(φ0, R), since η < R. Then, by applying Lemma 2.2,
we obtain that A−1

φ1
exists and φ2 is well defined. Now, from Lemma

2.3, we have that

‖φ2 − φ1‖ ≤ 1
1 − h(R)

|λ|g(R)‖φ1 − φ0‖ ≤ Δη.

Besides,

‖φ2 − φ0‖ ≤ ‖φ2 − φ1‖ + ‖φ1 − φ0‖ ≤ (1 + Δ)η < R

and φ2 ∈ B(φ0, R).

Thus, by an inductive procedure and taking into account Lemmas 2.2
and 2.3, we obtain that, for all n ∈ N, φn is well defined, φn ∈ B(φ0, R)
and ‖φn − φn−1‖ ≤ Δn−1η, for n ≥ 0.

We only need to prove that {φn} is a Cauchy sequence. Taking into
account the previous lemmas, we have

‖φn+m − φn‖ ≤ ‖φn+m − φn+m−1‖ + ‖φn+m−1 − φn+m−2‖ + · · ·
+ ‖φn − φn−1‖

≤ [
Δn+m−1 + Δn+m−2 + · · · + Δn

] ‖φ1 − φ0‖

≤ Δn
m−1∑
k=0

Δk‖φ1 − φ0‖ ≤ Δn

1 − Δ
η.

But this quantity goes to zero when n→ ∞. If φ∗ = limn→∞ φn, then,
by letting m→ ∞ and n = 0 in the previous inequality, we have

‖φ∗ − φ0‖ ≤ 1
1 − Δ

η = R.

We only need to prove that F (φ∗) = 0. From (7), we have

‖F (φn)‖ ≤ |λ|g(R)‖φn − φn−1‖ ≤ (1 − h(R))ηΔn.

Then, as Δ < 1, F (φ∗) = 0 by the continuity of the operator F .
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Remark. Notice that condition (IV) can be obtained from (II) by
taking into account that, if φ ∈ B(φ0, R),

‖H ′(φ)‖ ≤ ‖H ′(φ0)‖ + ω(‖φ− φ0‖) ≤ ε+ ω(R).

We have demanded both conditions because, in practice, from condi-
tion (IV), we can improve the error bounds, as we can see in Example 1.

3. A practical construction of Aφ. In this section we consider
a particular case of the construction of the operator Aφ. Then, by
assuming that K(x, t) has (m + 1) partial derivatives in the second
variable t, we consider the Taylor formula of K(x, t) in the variable t,
we obtain

K(x, t) =
m∑
i=1

1
i!
∂iK

∂ti
(x, 0)tn +Rm(x, t) =

m∑
i=1

αi(x)βi(t) +Rm(x, t),

then we take

K̃(x, t) =
m∑
i=1

αi(x)βi(t) =
m∑
i=1

1
i!
∂iK

∂ti
(x, 0)tn.

Our next aim is to obtain the inverse operator [Aφ]−1 for the last
K̃(x, t). For this, if we denote Ij =

∫ b
a
βj(t)H ′(φ(t))ψ(t) dt, we have

(9) Aφ[ψ](x) = θ(x) = ψ(x) − λ

n∑
j=1

αj(x)Ij

and

[Aφ]−1[θ](x) = ψ(x) = θ(x) + λ
m∑
j=1

αj(x)Ij ,

when the integrals Ij can be calculated independently of ψ. This can be
done in the following form: we multiply equality (9) by βi(x)H ′(φ(x)),
then we integrate in the x variable the equality obtained, and we have

Ii − λ
n∑
j=1

( ∫ b

a

βi(x)H ′(φ(x))αj(x) dx
)
Ij =

∫ b

a

βi(x)H ′(φ(x))θ(x) dx.



10 M.A. HERNÁNDEZ AND M.A. SALANOVA

Now, if we denote

aij(φ) =
∫ b

a

βi(x)H ′(φ(x))αj(x) dx

and

bi(φ) =
∫ b

a

βi(x)H ′(φ(x))θ(x) dx,

we have the following linear system of equations

(10) Ii − λ
m∑
j=1

aij(φ)Ij = bi(φ), i = 1, . . . ,m.

This system has a unique solution if

(−λ)m

⎛⎜⎝
a11(φ)−(1/λ) a12(φ) a13(φ) . . . a1m(φ)

a21(φ) a22(φ)−(1/λ) a23(φ) . . . a2m(φ)

· · · · · · · · · · · · · · ·
am1(φ) am2(φ) am3(φ) . . . amm(φ)−(1/λ)

⎞⎟⎠

= 0.

Then, we assume 1/λ is not an eigenvalue of the matrix (aij(φ)). Thus,
if I1, I2, . . . , Im is the solution of system (10), we can define

[Aφ]−1[θ](x) = θ(x) + λ

m∑
j=1

αj(x)Ij ,

and we obtain iteration (5), whose convergence was established in
Theorem 2.4. Notice that the last condition required for λ has to be
satisfied in each iteration φn.

Notice that, if the differentiability conditions are satisfied by the
kernel in the first argument, we can make a similar procedure.

To illustrate the above theoretical results, we provide some examples.

Example 1. We consider the following nonlinear integral equation

(11) φ(x) = sin(πx) +
1
20

∫ 1

0

ext sin(φ(t)) dt, x ∈ [0, 1].
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Let X = C[0, 1] be the space of continuous functions defined on the
interval [0, 1], where the max-norm is used and let F : X → X be the
nonlinear operator given by

(12) F (φ)(x) = φ(x) − sin(πx) − 1
20

∫ 1

0

ext sin(φ(t)) dt, x ∈ [0, 1].

By differentiating (12), we have:

(13) F ′
φ[ψ](x) = ψ(x) − 1

20

∫ 1

0

ext cos(φ(t))ψ(t) dt, x ∈ [0, 1],

and we define

(14) Aφ[ψ](x) = ψ(x) − 1
20

∫ 1

0

K̃(x, t) cos(φ(t))ψ(t) dt, x ∈ [0, 1],

where we take as K̃(x, t) the Taylor’s formula for the second variable
when t = 0, and R(x, t) is Taylor’s rest. Namely,

(15) K̃(x, t) =
3∑
i=1

αi(x)βi(t) = 1 + xt+ x2 t
2

2

and

R(x, t) = ext − K̃(x, t) = x3 e
xθ

6
t3, θ ∈ (0, t).

Firstly we check the convergence conditions of Theorem 2.4. For this,
we calculate the constants of Section 2,

λ =
1
20
, N = e− 1, L =

5
3
, M =

e

24
.

We take the starting-point φ0(x) = sin(πx). Then, we obtain, from
(14),

Aφ0 [ψ](x) = ψ(x) − 1
20

∫ 1

0

(
1 + xt+ x2 t

2

2

)
cos(sin(πt))ψ(t) dt,

and H ′(φ0) = cos(sin(πx)). Therefore ε = ‖H ′(φ0)‖ = 1 and the
hypotheses of Lemma 2.1 are satisfied, since |λ| = 1/20 < 1/Lε = 3/5.
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Then, the eigenvalues of the matrix (aij) are: ρ1 = 0.0928853, ρ2 =
8.32667×10−17 and ρ3 = 2.30925×10−18, and λ 
= 1/ρi, for i = 1, 2, 3.
So, [Aφ0 ]

−1 exists and δ = 60/55. The function ω is the identity and
ω̃ is the constant function 1. The functions h(R) and g(R) are

h(R) =
1
11
R and g(R) = (e− 1)2x+

e

24
(x+ 1).

Hence

Δ(R) =
(e− 1)2x+ (e/24)(x+ 1)

1 − (1/11)R
.

Next, we have to solve auxiliary equation (8). To do this, we need a
bound for ‖F (φ0)‖. By using a Gauss-Legendre numerical integration
formula with two nodes, we obtain ‖F (φ0)‖ ≤ 0.0496412. Then
η = 0.0541541 and the solutions of equation (8) are r1 = 0.111454 and
r2 = 0.133458. From Theorem 2.4, R = r1 = 0.111454. For this value,
h(R) = 0.0101322 < 1 and Δ = 0.514115 < 1, and the hypotheses of
Theorem 2.4 hold. So, we can deduce that the sequence given by (5)
converges to a solution of the equation F (φ) = 0, and the iterates and
the solution are in B(φ0, 0.111454).

To finish this example, we are going to deal with the computational
aspect of the method (5) to solve (12). To calculate the iterations
φn(x), with starting-point φ0(x), we proceed in the following way:

1. We compute A−1
φ0

. For this, α1(x) = 1, α2(x) = x, α3(x) = x2 and
β1(t) = 1, β2(t) = t, β3 = t2/2, by (15). Linear system (10) is then
given by:{

0.96174I1 − 0.0191299I2 − 0.0133386I3 = −0.0292223

−0.0191299I1 + 0.986661I2 − 0.0104429I3 = −0.0161642

−0.00666928I1 − 0.00522143I2 + 0.995677I3 = −0.00588616.

whose solutions are I1 = −0.03081, I2 = −0.0170458 and I3 =
−0.00620747.

2. We define

φ1(x) = φ0(x) − F (φ0)(x) − λ
3∑
j=1

αj(x)Ij

= sin(πx) + 0.0144483(e0.211325x + e0.788675x)
+ 0.05(0.03081 + 0.0170458x+ 0.00620747x2)
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By using the Mathematica program, we obtain the following approx-
imations:

φ0(x) = sin(πx),
φ1(x) = sin(πx) + 0.0144483(e0.211325x + e0.788675x)

+ 0.0015405 + 0.00085229x+ 0.000310374x2,

φ2(x) = sin(πx) + 0.0151317e0.211325x + 0.0153788e0.788675x

+ 4.28099 × 10−6 + 2.53791 × 10−6x+ 9.63343 × 10−7x2,

φ3(x) = sin(πx) + 0.0151334e0.211325x + 0.0153816e0.788675x

+ 9.96116 × 10−9 + 5.79993 × 10−9x+ 2.19471 × 10−9x2,

φ4(x) = sin(πx) + 0.0151334e0.211325x + 0.0153816e0.788675x

+ 2.07491 × 10−11 + 1.20498 × 10−11x+ 4.56067 × 10−12x2,

φ5(x) = sin(πx) + 0.0151334e0.211325x + 0.0153816e0.788675x

+ 4.11672 × 10−14 + 2.38836 × 10−14x+ 9.04246 × 10−15x2.

We can consider the last iteration φ5(x) as a good approximation of
the solution taking into account the difference

φ5(x) − φ4(x) = 8.55373 × 10−12e0.211325x + 1.30048 × 10−12e0.788675x

− 2.0708 × 10−11 − 1.2026 × 10−11x

+ 4.55163 × 10−12x2.

Finally, a graphic of this error and the approximate solution are given
in Figures 1 and 2, respectively.

If we take more terms in Taylor’s formula to construct K̃(x, t), the
obtained accuracy does not compensate the operational cost.

Example 2. The aim of this example is to show a situation where the
error made can be exactly computed. Moreover, the Picard iteration
does not converge and method (5) converges to a solution of F (φ) = 0.

We consider the following nonlinear integral equation

(16) φ(x) = x3 +
1
7

∫ 1

0

e−x−tφ(t)3 dt, x ∈ [0, 1].
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FIGURE 1. φ5(x) − φ4(x).
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FIGURE 2. φ5(x).
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Let X = C[0, 1] be the space of continuous functions defined on the
interval [0, 1], where the max-norm is used and F : X → X is the
nonlinear operator given by

(17) F (φ)(x) = φ(x) − x3 − 1
7
e−x

∫ 1

0

e−tφ(t)3 dt, x ∈ [0, 1].

As the kernel of integral equation (17) is degenerated, we can find
the exact solutions of this equation:

(18)
u1(x) = 5.15105e−x + x3, u2(x) = 0.00584052e−x + x3,

u3(x) = −5.47631e−x + x3.

We take the starting-point φ0(x) = x3 and we prove that the hypothe-
ses of Theorem 2.4 hold. So, we can deduce that the sequence given
by (5) converges to a solution of the equation F (φ) = 0. Moreover, the
iterates and the solution are in B(φ0, 0.0102037).

In a similar way, we compute the iterations of method (5) starting in
different points. Then, by using the Mathematica program, we obtain
the following approximations:

• For φ0 = x3, with a precision of 10−16:

φ0(x) = x3,

φ1(x) = x3 + 0.00585398e−x,
φ2(x) = x3 + 0.00584049e−x,
φ3(x) = x3 + 0.00584052e−x,
φ4(x) = x3 + 0.00584052e−x.

We observe the sequence {φn} converges to the solution u2(x). In
Table 1, we show the error ‖u2(x) − φn(x)‖ of these approximations.

If we use Picard’s iteration starting at the same initial point, we
obtain the following sequences:

φ0(x) = x3,

φ1(x) = x3 + 0.0057763e−x,
φ2(x) = x3 + 0.00583981e−x,
φ3(x) = x3 + 0.00584051e−x,
φ4(x) = x3 + 0.00584052e−x.
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whose errors can be seen in Table 2.

TABLE 1. The error of sequence (5).

‖u2(x) − φ0(x)‖ = 0.00584052
‖u2(x) − φ1(x)‖ = 0.0000134541
‖u2(x) − φ2(x)‖ = 3.21471 × 10−8

‖u2(x) − φ3(x)‖ = 7.68056 × 10−11

‖u2(x) − φ4(x)‖ = 1.83503 × 10−13

TABLE 2. The error for the Picard iteration.

‖u2(x) − φ0(x)‖ = 0.00584052
‖u2(x) − φ1(x)‖ = 0.0000642242
‖u2(x) − φ2(x)‖ = 7.10535 × 10−7

‖u2(x) − φ3(x)‖ = 7.86144 × 10−9

‖u2(x) − φ4(x)‖ = 8.69798 × 10−11

• If we start at φ0 = x − 6, we obtain the following sequence that
converges to u3(x)

φ0(x) = x− 6,
φ1(x) = x3 − 6.88453e−x,
φ2(x) = x3 − 5.83435e−x,
φ3(x) = x3 − 5.51213e−x,
φ4(x) = x3 − 5.47723e−x,
φ5(x) = x3 − 5.47633e−x,
φ6(x) = x3 − 5.47631e−x.

The error of the last iteration is ‖2.4277 × 10−7e−x‖ = 2.4277 × 10−7.

The Picard iteration does not converge in this case.
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