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POSITIVE-DEFINITENESS, INTEGRAL
EQUATIONS AND FOURIER TRANSFORMS

J. BUESCU, A.C. PAIXAO, F. GARCIA AND I. LOURTIE

ABSTRACT. We show that positive definite kernel func-
tions k(x, y), if continuous and integrable along the main di-
agonal, coincide with kernels of positive integral operators in
L2(R). Such an operator is shown to be compact; under the
further assumption k(x, x) → 0 as |x| → ∞ it is also trace class
and the corresponding bilinear series converges absolutely and
uniformly. If k1/2(x, x) ∈ L1(R), all these results are car-

ried through to a ‘rotated’ Fourier transform: k̂(ν1,−ν2) is
the kernel of a compact positive operator and is represented
by the absolutely and uniformly convergent series of Fourier
transforms of eigenfunctions. The trace of the operator is an
invariant under Fourier transforms.

1. Introduction. A number of recent applications renewed interest
in the study of ‘positive definite matrices’ in the sense of Moore or,
as we shall call them below, a positive definite kernel functions. In
signal processing many physical phenomena are modeled by random
processes; for second order processes, reconstruction of the signal by
sampling requires consideration of the autocorrelation function both
in the time and frequency domains. This function is by construction
a positive definite kernel function [3]. In a similar vein, the theory
of machine learning leads to similar questions [4]. It thus becomes a
problem of interest for applications to study this class of functions and
their Fourier transforms.

The aim of this paper is to carry out this study. We show in Section 3
that, under the assumptions of continuity and summability along the
diagonal, a positive definite kernel function k(x, y) is the kernel of a
positive integral operator in L2(R). We show that positivity implies
that this operator is Hilbert-Schmidt and thus necessarily compact. It
then follows from standard spectral theory that k is expressed by an L2
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convergent bilinear eigenfunction series. Under the further assumption
that k(x, x) → 0 as |x| → 0, we show that this series is absolutely and
uniformly convergent in R and the associated operator is trace-class
with trK =

∫ +∞
−∞ k(x, x) dx =

∑
i≥0 µi. This differs from the classical

Mercer’s theorem in that the domain of the operator is not compact.

In Section 4 we show that many of these properties carry through
Fourier transformation. Defining k̃(ν1, ν2) = k̂(ν1,−ν2), we show
that k is the kernel of a positive operator if and only if k̃ is the
kernel of a positive operator. Moreover, these operators have the same
eigenvalues, and the corresponding orthonormal eigenfunctions are the
Fourier transforms of each other and k̃ has an L2 convergent bilinear
eigenfunction expansion. Under the further assumptions that k(x, x) →
0 as |x| → 0 and k1/2(x, x) ∈ L1(R), this expansion converges
absolutely and uniformly and the Fourier transformed operator K̃ is
a trace class with

tr K̃ = trK =
∫ +∞

−∞
k(x, x) dx =

∫ +∞

−∞
k̃(ν, ν) dν =

∑
i≥0

µi,

so that the trace may be thought of as a Fourier invariant for this class
of operators.

2. Positive definite kernel functions and kernels. We now
introduce the classes of functions with which we will work throughout
this paper, namely positive definite kernel functions and L2-positive
definite kernels.

Definition 2.1. Let k : R2 → C. We say that k is a positive definite
kernel function (PDKF) if

(1)
n∑

i,j=1

k(xi, xj) zi zj ≥ 0

for all n ∈ N, (x1, · · · , xn) ∈ Rn and (z1, · · · , zn) ∈ Cn.

Remark 2.2. Positive definite kernel functions were first introduced
by Moore, see e.g., Aronszajn [1] under the name ‘positive definite ma-
trices’. The term positive definite stems naturally from the analogy
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with the finite (matrix) case. To avoid confusion we avoid this termi-
nology. We use the term kernel in view of the link between positive
definite kernel functions and the L2-positive definite kernels (L2-PDK)
to be introduced below.

On the other hand, positive definite kernel functions are related
to the widely studied class of positive definite functions introduced
independently by Mathias, Caratheodory and Bochner. These are
functions f : R → C which satisfy (1) with k(xi, xj) replaced with
f(xi − xj). The most important result regarding positive definite
functions is Bochner’s theorem, which characterizes positive definite
functions as the Fourier-Stieltjes transform of positive measures; see
e.g. Stewart [10] and Rudin [8]. It is also to avoid confusion with these
that we choose the term PDKF.

Example 2.3. A first example of a positive definite kernel function
is k(x, y) = φ(x)φ(y), where φ : R → C. A less trivial example
is the following: given a set {φn(x)}n≥0 and a convergent series∑∞

n=0 µn of nonnegative terms, i.e. µn ≥ 0, suppose that the series∑
n≥0 µnφn(x)φn(y) is convergent for every (x, y) ∈ R2. Then, from

Remark 2.4 below we conclude that

(2) k(x, y) =
∑
n≥0

µnφn(x)φn(y)

is a PDKF. In fact, we will show in Section 3 that any continuous
PDKF k with k(x, x) ∈ L1(R) is of the form (2), where {φn}n≥0 is
an L2-orthonormal set of continuous functions and the series is L2

convergent.

Remark 2.4. The following properties of PDKFs are easy to verify.
First of all, if k is a PDKF, then so is k̄. Secondly, if k1, k2, . . . , kn

are PDKFs and ci ≥ 0 for 1 ≤ i ≤ n, then
∑n

i=1 cik(x, y) is a PDKF.
This implies that the set of PDKFs forms a cone in the space of all
functions from R2 to C; it is easy to see that the relation ≤ induces a
partial ordering in this set. Finally, if {kn}n≥0 is a sequence of PDKFs
converging pointwise to k, then k is a PDKF.

In the following proposition we state the most important properties
of PDKFs for our purposes. Properties (a), (b) and (c) are well-
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known from the literature, following easily from well-known facts about
‘positive definite matrices’ in the sense of Moore. Their proof is
omitted.

Proposition 2.5. Suppose k : R2 → C is a PDKF. Then:

(a) k is positive on the diagonal x1 = x2, that is, k(x, x) is real and
greater than or equal to 0 for all x ∈ R.

(b) for all x1, x2 ∈ R k(x1, x2) = k(x2, x1).

(c) for all x1, x2 ∈ R, |k(x1, x2)|2 ≤ k(x1, x1) k(x2, x2).

(d) If k(x, x) ∈ L1(R), then k(x1, x2) ∈ L2(R2) and ‖k‖L2 ≤(∫ +∞
−∞ k(x, x) dx

)2

.

Proof. As stated, (a), (b) and (c) are well-known from the literature;
see, e.g., Aronszajn [1] or Cucker and Smale [4].

To prove (d), note that by (c) above we have that for all x1, x2 ∈ R,
|k(x1, x2)|2 ≤ k(x1, x1) k(x2, x2). Thus∫∫

R2
|k(x1, x2)|2 dx1 dx2 ≤

∫∫
R2

k(x1, x1)k(x2, x2) dx1 dx2

=
(∫ +∞

−∞
k(x, x) dx

)2

showing that since k is positive on the diagonal x1 = x2 by (a), then
k ∈ L2(R2) if k(x, x) ∈ L1(R).

Remark 2.6. It is straightforward to note that, replacing k(xi, xj)
with f(xi − xj), the most important properties of positive definite
functions can be recovered from Proposition 2.5. In fact, if f : R → C
we conclude immediately that

a) f(0) is real and ≥ 0;

b) f(−x) = f(x) for all x ∈ R;

c) |f(x)| ≤ f(0) for all x ∈ R, implying in particular that f is
bounded.

We now introduce the integral analog of Definition 2.1.
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Definition 2.7. Let k ∈ L2(R2). We say that k is an L2-positive
definite kernel (L2-PDK) if

(3)
∫ +∞

−∞

∫ +∞

−∞
k(x, y) φ(y)φ(x) dx dy ≥ 0

for all φ ∈ L2(R).

Remark 2.8. A close link exists between conditions (1) and (3). With
particular relevance for our purposes is the fact that, if k is a continuous
L2(R2) function, then k is a PDKF if and only if it is an L2-PDK, and
thus for continuous L2 kernels conditions (1) and (3) are equivalent.
This was first shown in the compact case by Mercer, see Stewart [10];
Rudin’s proof [8] of this fact for positive definite functions translates
immediately to our setting and we omit it.

We should note that dropping the L2 requirement changes the picture
drastically. For continuous functions (3) is much stronger than (1): as
our first example in 2.3 shows, a PDKF need not be bounded or even
measurable.

Remark 2.9. An immediate consequence of Remark 2.8 is that, if
k is a continuous L2-PDK, then k has all the properties described in
Proposition 2.5.

Remark 2.10. It is useful to look at Definition 2.7 from the point of
view of operator theory. Given k ∈ L2(R2) we define a linear operator
K : L2(R) → L2(R) by setting

φ �−→ K(φ) =
∫ +∞

−∞
k(x, y) φ(y) dy,

that is, as an integral operator in R with kernel k.

The following facts are a consequence of standard operator theory, see
e.g. Reed and Simon [6]. First of all, the fact that k(x1, x2) = k(x2, x1)
from Proposition 2.5 and Remark 2.8 implies that K is self-adjoint. Sec-

ondly, Proposition 2.5 implies that ‖K‖ = ‖k‖L2 ≤
(∫ +∞

−∞ k(x, x) dx
)2

;
therefore K is Hilbert-Schmidt, and thus an automatically compact,
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operator. Finally, equation (3) states that
∫ +∞
−∞ K(φ)(x) φ(x)dx ≥ 0

or, in terms of the standard inner product in L2(R), 〈K(φ), φ〉 ≥ 0.
Thus K is a positive operator.

These properties imply the following spectral properties of K: the
spectrum is formed by a finite or countable sequence of real eigenval-
ues {µn}n≥0 with µn ≥ 0 whose only possible limit point is 0; the
multiplicity of every nonzero eigenvalue is finite; and L2(R) has a com-
plete orthonormal basis {φn}n≥0, where the {φn} are eigenfunctions of
K (Hilbert-Schmidt theorem).

In the rest of the paper we suppose for convenience that the eigen-
values have been ordered so that µ1 ≥ µ2 ≥ . . . ≥ µn . . . ≥ 0.

3. Characterization of L2-PDKs. In this section we show that
continuous PDKFs such that k(x, x) ∈ L1(R) are necessarily L2-
positive definite kernels, with all the resulting consequences. In the
rest of the paper we thus restrict to continuous L2-PDKs. We provide
a spectral characterization of the class of continuous L2-PDKs such that
k(x, x) ∈ L1(R) and k(x, x) → 0 as |x| → ∞, showing in particular that
the bilinear series expansion is uniformly and absolutely convergent and
that the corresponding integral operator is trace class. We also show
that the stronger conditions k1/2(x, x) ∈ L1(R) and k(x, x) → 0 as
|x| → ∞ imply sharp L1 norm estimates for k and for the eigenfunctions
associated with nonzero eigenvalues.

Proposition 3.1. Let k : R2 → C be a continuous PDKF such that
k(x, x) ∈ L1(R). Then k is a continuous L2-positive definite kernel
and therefore the kernel of an L2 positive integral operator K.

Proof. From Proposition 2.5 the condition k(x, x) ∈ L1(R) implies
that k(x, y) ∈ L2(R2). From Remark 2.10 it follows that K is Hilbert-
Schmidt and thus compact. Since k is continuous, from Remark 2.8 we
conclude that k is an L2-positive definite kernel, that is, the associated
L2 integral operator

K(φ) =
∫ +∞

−∞
k(x, y) φ(y) dy

is positive.
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Corollary 3.2. Let k : R2 → C be a continuous PDKF such that
k(x, x) ∈ L1(R). Then k admits the bilinear series expansion

(4) k(x, y) =
∑
i≥0

µi φi(x) φi(y),

where the {φi}i≥0 are the L2-orthonormal eigenfunctions of the asso-
ciated positive integral operator K, µi are the eigenvalues of K and the
bilinear series (4) converges in L2.

Proof. The existence of the bilinear expansion with these properties
is a consequence of Proposition 3.1 and standard facts from Hilbert
space operator theory, see e.g., [6, 7].

Remark 3.3. We may interpret these results as stating that the
extra condition of integrability along the diagonal forces the class of
continuous PDKFs to coincide with the class of continuous L2-PDKs.
We shall henceforth, without loss of generality, formulate all our results
in terms of the latter.

Theorem 3.4. Let k : R2 → C be a continuous L2-PDK such that
k(x, x) ∈ L1(R) and k(x, x) → 0 as |x| → ∞. Then

(i) Eigenfunctions φi of the associated operator K associated with
nonzero eigenvalues are uniformly continuous vanishing at infinity.

(ii) The bilinear series (4) converges absolutely and uniformly to k.

(iii) The operator K is trace class with

(5) trK =
∫ +∞

−∞
k(x, x) dx =

∑
i≥0

µi.

Proof. We first prove (i). Since k(x, x) ∈ L1(R) and is continuous,
the assumption k(x, x) → 0 as |x| → ∞ implies that k(x, x) is uniformly
continuous in R.

On the other hand, we note that limx→x0

∫ +∞
−∞ |k(x0, y)−k(x, y)|2 dy =

0 for all x0 ∈ R implies that, for all φ ∈ L2(R), K(φ)(x) is a continuous
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function. In fact,
(6)

|K(φ)(x0) −K(φ)(x)| =
∣∣∣∣
∫ +∞

−∞
k(x0, y) φ(y) dy −

∫ +∞

−∞
k(x, y) φ(y) dy

∣∣∣∣
≤

∫ +∞

−∞
|(k(x0, y) − k(x, y))| |φ(y)| dy

≤
[ ∫ +∞

−∞
|k(x0, y) − k(x, y)|2 dy

]1/2

‖φ‖L2 ,

from which the statement follows by taking limits. In particular
eigenfunctions of K are continuous.

It is shown elsewhere [2] that for continuous L2(R2)-PDKs the
condition

lim
x→x0

∫ +∞

−∞
|k(x, y) − k(x0, y)|2 dy = 0

is automatically satisfied. This property together with summability and
uniform continuity of k(x, x) allow us to apply Novitskii’s generalization
of Mercer’s theorem to unbounded domains [5]. We thus conclude that

k(x, y) =
∑
i≥0

µi φi(x) φi(y),

where the φi(x) are the eigenfunctions of the associated integral op-
erator K, which are continuous and L2-orthonormal; the µi are the
corresponding eigenvalues which by compactness and positivity of K
are real, positive and have 0 as its only possible limit point; and the bi-
linear series above converges absolutely and uniformly in R2. Uniform
continuity of the eigenfunctions associated with nonzero eigenvalues fol-
lows from the fact that k(x, x) ≥ ∑N

n=1 µi |φi(x)|2. Since k(x, x) → 0
as |x| → ∞ it follows that, for every i, |φi(x)| → 0 as |x| → ∞. Since
φi is continuous, φi is uniformly continuous, proving (ii).

To prove (iii), we note that since the convergence of the series (4) is
uniform, term by term integration is permissible, yielding

∫ +∞
−∞ k(x, x)×

dx =
∑

i≥0 µi. The set {φi}i≥0 of eigenfunctions associated with
nonzero eigenvalues forms a complete orthonormal basis for the range
of K. To these we adjoin a complete orthonormal basis for the null
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space of K; by the Hilbert-Schmidt theorem, we obtain a complete
orthonormal basis for L2(R). Computing the trace of K in this basis
yields

trK =
∑
i≥0

〈Kφi, φi〉 =
∑
i≥0

µi〈φi, φi〉 =
∑
i≥0

µi,

since eigenfunctions associated with 0 do not contribute to the sum.
This completes the proof.

Remark 3.5. The hypothesis k(x, x) → 0 as |x| → ∞, which
implies uniform continuity of k(x, x), is essential in Theorem 3.4,
as the following counterexample shows. Choose µn = 1/n2. It is
not hard to construct a family of continuous functions {φn(x)} such
that ‖φn‖L2 = 1 for all n ∈ N, the support of φn is contained in
In = [n, n + 1], maxIn

φn > n2 and
∑

n≥0 µn|φn(x)|2 ∈ L1(R). Then
the associated operator satisfies all other conditions in Theorem 3.4
but the series (4) does not converge uniformly since each finite sum is
bounded but the infinite sum is not.

With slightly stronger hypotheses we can derive a version of Theo-
rem 3.4 which shows how it is related to the rate of decay of the kernel
along the diagonal.

Corollary 3.6. Let K : L2(R) → L2(R) be a positive integral
operator with continuous kernel k(x, y) satisfying k(x, x) = O(1/x1+ε)
for some ε > 0. Then all the statements of Theorem 3.4 hold.

Proof. k(x, x) = O(1/x1+ε) implies the hypotheses of Theorem 3.4.

In the following lemma we use the positive function k1/2(x, x), which
is well-defined and continuous since k(x, x) ≥ 0 and is continuous for
all x ∈ R.

Lemma 3.7. Let K : L2(R) → L2(R) be a positive integral
operator with continuous kernel k(x, y) satisfying k1/2(x, x) ∈ L1(R)
and k(x, x) → 0 as |x| → ∞. Then, in addition to the statements of
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Theorem 3.4:

(i) For all φ ∈ L2(R), Kφ(x) ∈ L1(R) and

‖Kφ‖L1 ≤
∫ +∞

−∞
k1/2(x, x) dx

[∫ +∞

−∞
k(x, x) dx

]1/2

‖φ‖L2 .

(ii) Eigenfunctions φi associated to nonzero eigenvalues µi of K are
in L1(R) and

‖φi‖L1 ≤ 1
µi

∫ +∞

−∞
k1/2(x, x) dx

[∫ +∞

−∞
k(x, x) dx

]1/2

‖φi‖L2 .

(iii) k(x, y) ∈ L1(R2) with L1 norm bounded by

‖k‖L1(R2) ≤
[∫ +∞

−∞
k1/2(x, x) dx

]2

,

and the bilinear series (4) converges to k in the L1 norm.

Proof. The hypotheses on k imply those of Theorem 3.4: k1/2(x, x) ∈
L1(R) and k(x, x) → 0 as |x| → ∞ imply k(x, x) ∈ L1(R). Thus all
the corresponding results hold.

Given φ ∈ L2(R) we estimate the L1 norm of Kφ as follows:

‖Kφ‖L1 =
∫ +∞

−∞

∣∣∣∣
∫ +∞

−∞
k(x, y)φ(y) dy

∣∣∣∣ dx

≤
∫ +∞

−∞

[ ∫ +∞

−∞
|k(x, y)| |φ(y)| dy

]
dx

≤
∫ +∞

−∞

[ ∫ +∞

−∞
|k(x, y)|2 dy

]1/2[ ∫ +∞

−∞
|φ(y)|2 dy

]1/2

dx

≤
∫ +∞

−∞

[ ∫ +∞

−∞
k(x, x)k(y, y) dy

]1/2[ ∫ +∞

−∞
|φ(y)|2 dy

]1/2

dx

=
∫ +∞

−∞
k1/2(x, x) dx

[∫ +∞

−∞
k(y, y) dy

]1/2

‖φ‖L2 ,
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proving statement (i).

If φi is an eigenfunction of K associated with a nonzero eigenvalue
µi, that is, K(φi) = µiφi, by the previous paragraph φi ∈ L1(R) with
L1 norm satisfying

(7) ‖φi‖L1 ≤ 1
µi

∫ +∞

−∞
k1/2(x, x) dx

[∫ +∞

−∞
k(y, y) dy

]1/2

‖φi‖L2 ,

proving (ii). To prove (iii), we calculate the L1(R2) norm of k(x, y):

‖k‖L1(R2) =
∫∫

R2
|k(x, y)| dx dy

≤
∫∫

R2
k1/2(x, x)k1/2(y, y) dx dy

=
∫ +∞

−∞
k1/2(x, x) dx

∫ +∞

−∞
k1/2(y, y) dy

=
[ ∫ +∞

−∞
k1/2(x, x) dx

]2

< +∞.

Thus k ∈ L1(R2). Since
[∑

n≥0 µn |φn(x)|2
]1/2

is monotonely conver-

gent to k1/2(x, x) ∈ L1(R), it follows from Lebesgue’s theorem that

∫ +∞

−∞

[ ∑
n≥0

µn |φn(x)|2
]1/2

dx =
∫ +∞

−∞
k1/2(x, x) dx,

thus proving that the bilinear series converges in the L1 norm. By
Theorem 3.4 its limit is of course k(x, y) for all x, y ∈ R, providing the

bound ‖k‖L1 ≤
[∫ +∞

−∞ k1/2(x, x) dx
]2

.

As with Theorem 3.4, a slightly weaker version of this result shows
how it relates to the rate of decay of the kernel along the diagonal.

Corollary 3.8. Let K : L2(R) → L2(R) be a positive integral
operator with continuous kernel k(x, y) satisfying k(x, x) = O(1/x2+ε)
for some ε > 0. Then all the statements of Theorem 3.4 and Lemma 3.7
hold.
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Proof. k(x, x) = O(1/x2+ε) implies trivially k(x, x) → 0 as
|x| → ∞ and k(x, x) ∈ L1(R) while k1/2(x, x) = O(1/x1+ε/2) implies
k1/2(x, x) ∈ L1(R).

Remark 3.9. Lemma 3.7 is sharp, as the following counterexample
shows. Let φ(x) = sin x/x and consider the positive operator with
kernel k(x, y) = φ(x)φ(y). This operator is of finite rank; indeed it
has a single simple nonzero eigenvalue π, with associated normalized
eigenfunction 1/

√
πφ(x). Obviously k(x, x) = sin2 x/x2 is in L1(R)

and k(x, x) → 0 as |x| → ∞. On the other hand, k1/2(x, x) ∈ Lp(R)
for every p > 1 but k1/2(x, x) /∈ L1(R). In this case all the statements
of Lemma 3.7 are false: Kφ(x) = πφ(x) /∈ L1(R), so that neither the
image of L2 is contained in L1 nor the eigenfunctions associated with
nonzero eigenvalues are in L1. Furthermore, k(x, y) itself is not in
L1(R2), and therefore the bilinear series (which in this case trivially
has a single term) is not L1-convergent.

4. Fourier transforms of L2-PDKs. In this section we show
that an L2 kernel is positive definite if and only if its ‘rotated’ Fourier
transform k̂(ν1,−ν2) is an L2-positive definite kernel with the same
eigenvalues and whose eigenfunctions are the Fourier transforms of
the original eigenfunctions. We provide sharp sufficient conditions
along the diagonal of an L2-PDK to ensure that the properties of
uniform convergence and being trace class carry through the Fourier
transformation. In particular the trace of the associated integral
operator is, in this sense, invariant under Fourier transforms.

We consider below Fourier transforms of positive definite kernels.
We will use throughout the L2 version of the Fourier transform, briefly
recalling some facts to be used; a standard reference is, e.g., Stein and
Weiss [9].

For f ∈ L1(Rn)∩L2(Rn) one may define the Fourier transform f̂ of
f by

(8) f̂(ν) =
∫
Rn

f(t)e−2πiν.x dx,

where ν.x denotes the usual inner product in Rn. This may be
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extended by density to L2(Rn), yielding a linear map F : L2(Rn) →
L2(Rn) which is an L2 isometry and a Hilbert space isomorphism. The
inverse Fourier transform is likewise defined in L2(Rn); if f ∈ L2(Rn)
and f̂ ∈ L1(Rn) it is given by the inversion formula

(9) f(x) =
∫
Rn

f̂(ν)e2πiν.x dν a.e.,

with equality holding everywhere if f is continuous. Finally, for all
f, g ∈ L2(R) the following Parseval identity holds:

(10) 〈f, g〉 =
∫
Rn

f(x) g(x)dx =
∫
Rn

f̂(ν) ĝ(ν) dν.

In this paper we shall be concerned mainly with the two-dimensional
case, with occasional use of the case n = 1.

We now consider the implications of positive definiteness of k ∈
L2(R2) on its Fourier transform. That some such relationship should
exist is suggested by the Bochner theorem for positive definite func-
tions. In the L2(R2) setting we prove that positive definiteness is a
condition that carries through Fourier transforms in a symmetric way:
namely, a function is an L2-positive definite kernel if and only if its dou-
ble Fourier transform is itself (in an appropriate sense) an L2-positive
definite kernel with the same spectral properties. This is the content
of the next results.

Proposition 4.1. Let k ∈ L2(R2) and k̂ be its Fourier transform.
Then k(x, y) is a positive definite kernel if and only if k̂(ν1,−ν2) is a
positive definite kernel.

Proof. For each φ ∈ L2(R) define the functional Mφ : L2(R2) → C
by

(11) Mφ(k) =
∫∫

R2
k(x, y) φ(y)φ(x) dx dy.

We begin by showing that, for every φ ∈ L2(R), Mφ(k) = Mφ̂(k̃),
where φ̂ is the Fourier transform of φ and k̃(ν1, ν2) = k̂(ν1,−ν2).
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Suppose k ∈ L1(R2) ∩ L2(R2) and φ ∈ L2(R). Using Fubini’s
theorem we may write Mφ(k) =

∫ +∞
−∞ φ(x)

[∫ +∞
−∞ k(x, y) φ(y) dy

]
dx.

Noting that k(x, y) ∈ L2(R) as a function of y for almost every value of
x, writing k̂(x, ν2) for the Fourier transform of k in the second variable
and observing that φ̂(ν) = φ̂(−ν), we get from Parseval’s identity

Mφ(k) =
∫
R

φ(x)
[∫

R

k̂(x, ν2)φ̂(−ν2) dν2

]
dx.

Since k ∈ L1(R2)∩L2(R2), we also have k(x, y) ∈ L1(R) as a function
of y for almost every value of x. Hence we may write

Mφ(k) =
∫
R

φ(x)
∫
R

[ ∫
R

k(x, y)e−2πiν2y dy

]
φ̂(−ν2) dν2 dx;

using Fubini’s theorem again we have

Mφ(k) =
∫
R

φ̂(−ν2)
∫
R

e−2πiν2y

∫
R

k(x, y)φ(x) dx dy dν2.

From Parseval’s identity and performing a partial Fourier transform on
the variable x we get, in the same way as we did for y,

Mφ(k) =
∫
R

φ̂(−ν2)
∫
R

e−2πiν2y

∫
R

k̂(ν1, y)φ̂(ν1) dν1 dy dν2

=
∫
R

φ̂(−ν2)
∫
R

e−2πiν2y

∫
R

[ ∫
R

k(x, y)e−2πiν1x dx

]

× φ̂(ν1) dν1 dy dν2.

By Fubini’s theorem and the use of the definition of Fourier transform
in R2, we finally obtain

Mφ(k) =
∫
R

∫
R

φ̂(ν1)φ̂(−ν2)
[ ∫

R

∫
R

k(x, y)e−2πiν.x dx dy

]
dν1 dν2

=
∫∫

R2
k̂(ν1, ν2) φ̂(−ν2)φ̂(ν1) dν1 dν2

=
∫∫

R2
k̂(ν1,−ν2) φ̂(ν2)φ̂(ν1) dν1 dν2

= Mφ̂(k̂(ν1,−ν2))

= Mφ̂(k̃).
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Now, let k ∈ L2(R2) and kn ∈ L1(R2) ∩ L2(R2) be a sequence
converging to k in the L2 norm. Then k̃n → k̃ and, since Mφ is L2-
continuous, we get Mφ(k) = Mφ̂(k̃).

To finish the proof we finally observe that, from (11), k is an L2-
PDK if and only if Mφ(k) ≥ 0 for every φ ∈ L2(R) and that
k̃(ν1, ν2) = k̂(ν1,−ν2) is an L2-PDK if and only if Mφ̂(k̃) ≥ 0 for every
φ̂ ∈ L2(R2). Because the Fourier transform is an L2 isomorphism,
ŷ ranges over L2(R) when y ranges over L2(R), and the equality
Mφ(k) = Mφ̂(k̃) establishes the result.

For ease of reference we use from now on the notation k̃(ν1, ν2) =
k̂(ν1,−ν2) and denote by K̃ the positive L2(R2) operator with kernel
k̃(ν1, ν2).

Proposition 4.2. Let k ∈ L2(R2) be an L2-PDK and k̃(ν1, ν2) =
k̂(ν1,−ν2). Then:

(i) The operators K and K̃ have the same spectra, that is, the same
eigenvalues with the same multiplicities.

(ii) φi is an eigenfunction of K associated with the eigenvalue µi if
and only if φ̂i is an eigenfunction of K̃ associated with the eigenvalue
µi.

(iii) k is given by an L2 bilinear expansion (4) if and only if

k̃(ν1, ν2) =
∑
i≥0

µi φ̂i(ν1) φ̂i(ν2),

where the φ̂i are the Fourier transforms of the φi and the convergence
properties are the same as in (4).

Proof. φi ∈ L2(R) is an eigenfunction of K associated with the
eigenvalue µi if and only if

(12)
0 = ‖Kφi − µiφi‖2

= 〈Kφi − µiφi,Kφi − µiφi〉
= ‖Kφi‖2 − µi〈Kφi, φi〉 − µi〈φi,Kφi〉 + µ2

i ‖φi‖2.
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We now perform the Fourier transform on (12). We concentrate on
the first two terms since the third term is the complex conjugate of the
second and the fourth one translates to ‖φ̂i‖2 = ‖φi‖2 since the Fourier
transform is an L2 isometry.

Note that by Parseval’s identity we have, as in Proposition 4.1,

(13)

∫
R

k̂1(ν1, y)φi(y) dy =
∫
R

k̂(ν1, ν2)
ˆ

φi(ν2) dν2

=
∫
R

k̂(ν1, ν2)φ̂i(−ν2) dν2

=
∫
R

k̂(ν1,−ν2)φ̂i(ν2) dν2

=
∫
R

k̃(ν1, ν2)φ̂i(ν2) dν2.

The first term in (12) is therefore, using Parseval’s identity,

‖Kφi‖2 =
∫
R

∫
R

k(x, s)φi(s)ds

∫
R

k(x, t)φi(t) dt dx

=
∫
R

̂

∫
R

k1(ν1, s)φi(s)ds
̂

∫
R

k1(ν1, t)φi(t) dt dν1

=
∫
R

∫
R

k̂1(ν1, s)φi(s) ds

∫
R

k̂1(ν1, t)φi(t) dt dν1

=
∫
R

∫
R

k̃(ν1, σ)φ̂i(σ) dσ

∫
R

k̃(ν1, τ )φ̂i(τ ) dτ dν1

= ‖K̃φ̂i‖2.

Analogously, the second term satisfies

〈Kφi, φi〉 =
∫
R

[ ∫
R

k(x, y)φi(y) dy

]
φi(x) dx

=
∫
R

[ ∫
R

k̃(ν1, ν2)φ̂i(ν2) dν2

]
φ̂i(ν1) dν1

= 〈K̃φ̂i, φ̂i〉.
From (12) we conclude that

0 = ‖Kφi‖2 − µi〈Kφi, φi〉 − µi〈φi,Kφi〉 + µ2
i ‖φi‖2

= ‖K̃φ̂i‖2 − µi〈K̃φ̂i, φ̂i〉 − µi〈φ̂i, K̃φ̂i〉 + µ2
i ‖φ̂i‖2

= ‖K̃φ̂i − µiφ̂i‖2.
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Therefore φ̂i is an eigenfunction of K̃ with eigenvalue µi. Reversing
the roles of K and K̃ we find that this relationship is an equivalence.

To prove (iii), note that since ‖k̃‖L2 = ‖k‖L2 by Parseval’s identity, it
follows that ‖K̃‖ = ‖K‖. K̃ is therefore a Hilbert-Schmidt operator and
thus compact. As in Corollary 3.2, it follows from standard operator
theory that k̃ is expressed by a bilinear series

k̃(ν1, ν2) =
∑
i≥0

µi ϕi(ν1) ϕi(ν2),

where the ϕi are L2-orthonormal eigenfunctions, the series is L2 conver-
gent and the {ϕi}i≥0 associated to nonzero eigenvalues form a complete
orthonormal basis of the range of K̃. However, it follows from (ii) that
if

k(x, y) =
∑
i≥0

µi φi(x) φi(y),

then
k̃(ν1, ν2) =

∑
i≥0

µi φ̂i(ν1) φ̂i(ν2)

has all the required properties, orthonormality of the φ̂i and complete-
ness on the range being ensured by Parseval’s identity.

We are now ready to state our main result.

Theorem 4.3. Suppose k is a continuous L2-PDK such that
k1/2(x, x) ∈ L1(R) and k(x, x) → 0 as |x| → ∞. Then:

(i) k̃ is a continuous L2-PDK with k̃(ν, ν) ∈ L1(R) admitting the
bilinear eigenfunction expansion

(14) k̃(ν1, ν2) =
∑
i≥0

µi φ̂i(ν1) φ̂i(ν2),

which is absolutely and uniformly convergent, where {µi}i≥0 are the
eigenvalues of the integral operator K, each φ̂i is the Fourier trans-
form of the eigenfunction φi associated with µi, and the {φ̂i}i≥0 are
uniformly continuous, L2-orthonormal eigenfunctions of K̃.
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(ii) The operator K̃ is trace class and

tr K̃ = trK =
∫ +∞

−∞
k(x, x) dx =

∫ +∞

−∞
k̃(ν, ν) dν =

∑
i≥0

µi.

Proof. By Theorem 3.4 k(x, y) admits the expansion

(15) k(x, y) =
∑
i≥0

µi φi(x) φi(y),

where the {φi}i≥0 are the eigenfunctions of K, which are uniformly
continuous and L2-orthonormal, µi are the eigenvalues of K and the
bilinear series is absolutely and uniformly convergent.

Suppose φi is a normalized eigenfunction of K associated with a
nonzero eigenvalue µi. By Proposition 4.2, φ̂i is a normalized eigen-
function of K̂ associated with µi. Since by Lemma 3.7 φi ∈ L1(R),
it follows from the basic properties of the Fourier transform that φ̂i is
uniformly continuous and φ̂i(ν) → 0 as |ν| → ∞.

By Proposition 4.2, it follows that

(16) k̃(ν1, ν2) =
∑
i≥0

µi φ̂i(ν1) φ̂i(ν2)

holds in L2. Since k(x, x) ∈ L1(R), it follows from Theorem 3.4 that
convergence of the series in (15) is uniform, and so applying the Fourier
transform we conclude that (16) holds pointwise. Moreover, since from
Lemma 3.7 k ∈ L1(R2) it follows that k̂ is uniformly continuous and
k̂(ν1, ν2) → 0 as |(ν1, ν2)| → ∞.

However, stronger convergence properties are valid. Taking ν1 = ν2

in (16), it follows that

Sn(ν) =
n∑

i=0

µi |φ̂i(ν)|2 ≤ k̂(ν, ν)

for all n. Thus the sequence of continuous functions Sn(ν) is mono-
tone increasing and converges pointwise to k̂(ν, ν). Since k̂(ν, ν) → 0
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as |ν| → ∞, one may apply Dini’s theorem to the one-point compacti-
fication of R, concluding that convergence is uniform.

Uniform convergence of the series makes it possible to integrate
termwise along the diagonal ν1 = ν2, yielding the (possibly divergent)
equality

(17)
∫ +∞

−∞
k̃(ν, ν) dν =

∑
i≥0

µi.

However, since k1/2(x, x) ∈ L1(R) and k(x, x) → 0 as |x| → ∞,
it follows that k(x, x) ∈ L1(R) and k(x, x) → 0 as |x| → ∞. By
Theorem 3.4 the series on the righthand side of (17) is the trace of
K,

∫ +∞
−∞ k(x, x) dx. In particular it is, of course, convergent. Thus

k̃(ν, ν) ∈ L1(R), and the associated operator K̃ is trace class with
trace given by (17).

It then follows from Theorem 3.4 that convergence of the series (16)
is absolute and uniform.

Remark 4.4. As the proof of Theorem 4.3 shows, the condition
k1/2(x, x) ∈ L1(R) may be replaced by the weaker k(x, x) ∈ L1(R) and
k(x, y) ∈ L1(R2), under which Theorem 4.3 is still valid. The version
presented, although somewhat weaker, underlines how the behavior of
the kernel on the diagonal controls events.
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