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FREDHOLMNESS OF SINGULAR INTEGRAL
OPERATORS WITH PIECEWISE CONTINUOUS

COEFFICIENTS ON WEIGHTED
BANACH FUNCTION SPACES

ALEXEI YU. KARLOVICH

ABSTRACT. We prove necessary conditions for the Fred-
holmness of singular integral operators with piecewise contin-
uous coefficients on weighted Banach function spaces. These
conditions are formulated in terms of indices of submultiplica-
tive functions associated with local properties of the space,
of the curve, and of the weight. As an example, we con-

sider weighted Nakano spaces L
p(·)
w (weighted Lebesgue spaces

with variable exponent). Moreover, our necessary conditions
become also sufficient for weighted Nakano spaces over nice
curves whenever w is a Khvedelidze weight, and the variable
exponent p(t) satisfies the estimate

|p(τ) − p(t)| ≤ A/(− log |τ − t|).

1. Introduction. Let Γ be a Jordan curve, that is, a curve that
homeomorphic to a circle. We suppose that Γ is rectifiable. We
equip Γ with Lebesgue length measure |dτ | and the counter-clockwise
orientation. The Cauchy singular integral of a measurable function
f : Γ → C is defined by

(Sf)(t) := lim
R→0

1
πi

∫
Γ\Γ(t,R)

f(τ )
τ − t

dτ, t ∈ Γ,

where the “portion” Γ(t, R) is

Γ(t, R) := {τ ∈ Γ : |τ − t| < R}, R > 0.
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It is well known that (Sf)(t) exists almost everywhere on Γ whenever
f is integrable, see [11, Theorem 2.22]. A measurable function w : Γ →
[0,∞] is referred to as a weight if 0 < w(t) <∞ almost everywhere on
Γ. The Cauchy singular integral generates a bounded linear operator
S on the weighted Lebesgue space Lpw, 1 < p <∞, with the norm

‖f‖Lp
w

:=
( ∫

Γ

|f(τ )|pwp(τ )|dτ |
)1/p

if and only if w is a Muckenhoupt weight, w ∈ Ap(Γ), that is,

sup
t∈Γ

sup
R>0

(
1
R

∫
Γ(t,R)

wp(τ )|dτ |
)1/p( 1

R

∫
Γ(t,R)

w−p′(τ )|dτ |
)1/p′

< ∞,

1
p

+
1
p′

= 1,

see, e.g., [3, Theorem 4.15]. By Hölder’s inequality, if w ∈ Ap(Γ), then
Γ is a Carleson, or Ahlfors-David regular, curve, that is,

(1.1) CΓ := sup
t∈Γ

sup
R>0

|Γ(t, R)|
R

<∞,

where |Ω| denotes the measure of a measurable set Ω ⊂ Γ. The
constant CΓ is said to be the Carleson constant. We denote by PC
the Banach algebra of all piecewise continuous functions on the curve
Γ: by definition, a is in PC if and only if a is in L∞ and the one-sided
limits

a(t± 0) := lim
τ→t±0

a(τ )

exist for every t ∈ Γ.

A bounded linear operator A on a Banach space is said to be semi-
Fredholm if its image is closed and at least one of the so-called defect
numbers

n(A) := dim kerA, d(A) := dim kerA∗

is finite. A semi-Fredholm operator A is called Fredholm if both n(A)
and d(A) are finite. In this case the difference n(A) − d(A) is referred
to as the index of the operator A. Basic properties of (semi)-Fredholm
operators are discussed in [5, 16, 40] and in many other monographs.
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The study of Fredholmness of one-dimensional singular integral op-
erators of the form

Ra := aP+ + P−, a ∈ PC, P± := (I ± S)/2

on Lebesgue spaces with power (Khvedelidze) weights

(1.2) �(t) :=
n∏

k=1

|t− τk|λk , τk ∈ Γ, k ∈ {1, . . . , n}, n ∈ N,

over Lyapunov curves started in the fifties with Khvedelidze [27] and
was continued in the sixties by Widom, Simonenko, Gohberg and
Krupnik, and others. The history and corresponding references can
be found, e.g., in [3, 16, 21, 28, 40]. In the beginning of the nineties,
Spitkovsky proved Fredholm criteria for singular integral operators with
piecewise continuous coefficients on Lebesgue spaces with Muckenhoupt
weights over smooth curves [52]. In the middle of nineties, Böttcher
and Yu. Karlovich accomplished the Fredholm theory for the algebra
of singular integral operators with piecewise continuous coefficients
on Lebesgue spaces with Muckenhoupt weights over general Carleson
curves. These results are documented in [3]; see also the brief but nice
presentation in [4].

Lebesgue spaces Lp, 1 ≤ p ≤ ∞, are the simplest examples of so-
called Banach function spaces introduced by Luxemburg in 1955. This
scale of spaces includes Orlicz, Lorentz, and all other rearrangement-
invariant spaces. By analogy with weighted Lebesgue spaces, for a
Banach function space X and a weight w, it is possible to define the
weighted Banach function space

Xw :=
{
f is measurable on Γ and fw ∈ X

}
.

Under some restrictions on the weight w, the space Xw is itself a
Banach function space, although if X is a rearrangement-invariant
Banach function space, then Xw is not necessarily rearrangement-
invariant (even if X is a Lebesgue space). Another interesting class
of Banach function spaces which are not rearrangement-invariant are
constituted by Nakano spaces Lp(·) (generalized Lebesgue spaces with
variable exponent). For details and references, see Section 2.
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Unfortunately, little known about the boundedness of S on general
weighted Banach function spaces Xw. As far as we know, even a
criterion for the boundedness of S on Orlicz spaces Lϕw with general
weights w over general Carleson curves is unknown at the moment
(February, 2003). We proved necessary conditions for the boundedness
of S on weighted rearrangement-invariant Banach function spaces [24,
Theorem 3.2] in terms of an analog of the Muckenhoupt class. On
the other hand, if a weight w belongs to the Muckenhoupt classes
A1/αX

(Γ) and A1/βX
(Γ) where αX , βX ∈ (0, 1) are the Boyd indices of a

rearrangement-invariant Banach function space X, then S is bounded
on the weighted rearrangement-invariant Banach function space Xw,
see [26, Theorem 4.5].

On the basis of these boundedness results, following the approach
of Böttcher, Yu. Karlovich, and Spitkovsky, the author proved sepa-
rately necessary and sufficient conditions for Fredholmness of singular
integral operators with piecewise continuous coefficients on weighted
rearrangement-invariant Banach function spaces [25, 26]. Under some
restrictions on spaces, curves, and weights, these conditions coincide,
that is, become criteria. In those cases, the Banach algebra of singular
integral operators with piecewise continuous coefficients is also studied
[26].

Very recently Kokilashvili and Samko have proved criteria for the
boundedness of S on Nakano spaces L

p(·)
� with Khvedelidze weights

� over Lyapunov curves or Radon curves without cusps provided the
variable exponent p satisfies the estimate

(1.3) |p(τ ) − p(t)| ≤ A/(− log |τ − t|), τ, t ∈ Γ, |τ − t| ≤ 1/2,

see [30, Theorem 2] or Theorem 6.2. With the help of this key result,
they have proved Fredholm criteria for the operator aP+ + bP− with
piecewise continuous functions a, b having finite numbers of jumps on
(non-weighted) Nakano spaces Lp(·), see [31, Theorem A].

For an arbitrary weight w and an arbitrary Banach function space
X, we define the weighted Banach function space Xw. Assume that

(B) the Cauchy singular integral operator S is bounded on Xw;

(R) Xw is reflexive.

We show that property (B) implies the condition AX(Γ) of Mucken-
houpt type. In that case Xw is itself a Banach function space. Under
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the assumptions (B) and (R) we prove necessary conditions for Fred-
holmness of singular integral operators Ra with piecewise continuous
coefficients a in the weighted Banach function spaces Xw. This result
generalizes corresponding necessary conditions in [25, Theorem 4.2]. As
an example, we consider these necessary conditions in Nakano spaces
L
p(·)
w with general weights w. They have almost the same form as in the

case of Lebesgue spaces Lpw with Muckenhoupt weights over Carleson
curves, see [3, Proposition 7.3]. We need only replace the constant
p (for weighted Lebesgue spaces Lpw) by the value p(t) of the vari-
able exponent p(·) at each point t ∈ Γ (for weighted Nakano spaces
L
p(·)
w ). Our approach is based on a local principle of Simonenko type,

the Wiener-Hopf factorization of local representatives, and the theory
of submultiplicative functions associated with local properties of the
curve, of the weight, and of the space. Using the local principle allows
us to consider coefficients a having a countable number of jumps (in
contrast to [31], where only a finite number of jumps is allowed).

The paper is organized as follows. In Section 2 we collect necessary
preliminaries on weighted Banach function spaces Xw and Nakano
spaces Lp(·). In Section 3 we define an analog of the Muckenhoupt class
Ap(Γ), replacing the norm in Lp by the norm in a Banach function space
X. We denote this class by AX(Γ). We show that if w ∈ AX(Γ) and
1 ∈ AX(Γ), then logw has bounded mean oscillation. In Section 4 we
recall the definitions and some properties of submultiplicative functions
associated with the local behavior of the curve, of the weight, and of
the space. In Section 5 we study inequalities between the indices of
submultiplicative functions defined in Section 4. We investigate so-
called indicator functions α∗

t , β
∗
t and αt, βt of the triple (Γ, X,w) and

of the pair (Γ, w), respectively. In particular, we show that if X is a
Nakano space Lp(·) with a variable exponent p(·) satisfying (1.3), then
we can separate the influence of the space from the influence of the
weight and the curve, that is,

α∗
t (x) =

1
p(t)

+ αt(x), β∗
t (x) =

1
p(t)

+ βt(x)

for x ∈ R such that |(τ − t)y+ix|w(τ ) ∈ ALp(·)(Γ, t), where ALp(·)(Γ, t)
is the local analog of ALp(·)(Γ). So, weighted Nakano spaces satisfy the
“disintegration condition” in the terminology of [24, 26].
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In Section 6 we prove that the condition w ∈ AX(Γ) is necessary
for the boundedness of the Cauchy singular integral operator S on the
weighted Banach function spaces Xw. Further we extend basic results
on the Fredholmness of singular integral operators with bounded mea-
surable coefficients (the local principle, the theorem about a Wiener-
Hopf factorization, etc.) to weighted Banach function spaces satisfying
Axioms (B) and (R). These results are natural extensions of the classi-
cal theory for Lebesgue spaces with Khvedelidze weights over Lyapunov
curves, see, e.g., [16, Chapters 7 8] or [40, Chapter 4]. A canonical lo-
cal representative gt,γ for a piecewise continuous function is constructed
in Section 7. We prove separately necessary and sufficient conditions
for factorability of gt,γ in the weighted Banach function space Xw. On
the basis of our necessary conditions for factorability, with the help of
the results of Section 6, we prove necessary conditions for Fredholmness
of the singular integral operator Ra = aP+ + P− with a ∈ PC in Xw.
These conditions are formulated in terms of the indicator functions α∗

t

and β∗
t defined in Section 5. In Section 8 we reformulate these neces-

sary conditions for weighted Nakano spaces Lp(·)w with general weights
w and variable exponents satisfying (1.3) in terms of simpler indicator
functions αt and βt. With the help of the boundedness criteria by Kok-
ilashvili and Samko [30, Theorem 2], we prove that the latter necessary
conditions become also sufficient if w = � is a Khvedelidze weight and
Γ is either a Lyapunov Jordan curve or a Radon Jordan curve without
cusps.

2. Weighted Banach function spaces.

2.1 Banach function spaces. Let Γ be a rectifiable Jordan
(i.e., homeomorphic to a circle) curve equipped with Lebesgue length
measure |dτ |. The set of all measurable complex-valued functions on
Γ is denoted by M. Let M+ be the subset of functions in M whose
values lie in [0,∞]. The characteristic function of a measurable set
E ⊂ Γ is denoted by χE .

Definition 2.1 (Luxemburg, 1955, see [1, Chapter 1, Definition 1.1]).
A mapping ρ : M+ → [0,∞] is called a Banach function norm if, for
all functions f, g, fn (n ∈ N) in M+, for all constants a ≥ 0, and for
all measurable subsets E of Γ, the following properties hold:
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(A1) ρ(f) = 0 ⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f+g) ≤ ρ(f) + ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),

(A4) ρ(χE) <∞,

(A5)
∫
E
f(τ )|dτ | ≤ CEρ(f)

with CE ∈ (0,∞) may depend on E and ρ but is independent of f .

When functions differing only on a set of measure zero are identified,
the set X of all functions f ∈ M for which ρ(|f |) < ∞ is called a
Banach function space. For each f ∈ X, the norm of f is defined by

‖f‖X := ρ(|f |).
The set X under the natural linear space operations and under this
norm becomes a Banach space [1, Chapter 1, Theorems 1.4 and 1.6].

If ρ is a Banach function norm, its associate norm ρ′ is defined on
M+ by

ρ′(g) := sup
{∫

Γ

f(τ )g(τ )|dτ | : f ∈ M+, ρ(f) ≤ 1
}
, g ∈ M+.

It is a Banach function norm itself [1, Chapter 1, Theorem 2.2]. The
Banach function spaceX ′ determined by the Banach function norm ρ′ is
called the associate space (Köthe dual) of X. The associate space X ′ is a
subspace of the dual space X∗. The construction of the associate space
implies the following Hölder inequality for Banach function spaces.

Lemma 2.2 (see [1, Chapter 1, Theorem 2.4]). Let X be a Banach
function space and X ′ be its associate space. If f ∈ X and g ∈ X ′,
then fg is integrable and ‖fg‖L1 ≤ ‖f‖X‖g‖X′ .

2.2 Rearrangement-invariant Banach function spaces. Let
M0 and M+

0 be the classes of almost everywhere finite functions in
M and M+, respectively. Two functions f, g ∈ M0 are said to be
equimeasurable if∣∣∣{τ ∈ Γ : |f(τ )| > λ}

∣∣∣ =
∣∣∣{τ ∈ Γ : |g(τ )| > λ}

∣∣∣ for all λ ≥ 0.
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A Banach function norm ρ : M+ → [0,∞] is called rearrangement-
invariant if for every pair of equimeasurable functions f, g ∈ M+

0 the
equality ρ(f) = ρ(g) holds. In that case, the Banach function space X
generated by ρ is said to be a rearrangement-invariant Banach function
space (or simply rearrangement-invariant space). Lebesgue, Orlicz,
Lorentz, and Lorentz-Orlicz spaces are classical examples of rearrange-
ment-invariant Banach function spaces, see, e.g., [1] and the references
therein.

If X is an arbitrary rearrangement-invariant Banach function space
and X ′ is its associate space, then for a measurable set E ⊂ Γ,

(2.1) ‖χE‖X‖χE‖X′ = |E|,

see, e.g., [1, Chapter 2, Theorem 5.2].

2.3 Nakano spaces Lp(·). Function spaces Lp(·) of Lebesgue type
with variable exponent p were studied for the first time probably by
Orlicz [45] in 1931. Inspired by the successful theory of Orlicz spaces,
Nakano defined in the late forties [43, 44] so-called modular spaces. He
considered the space Lp(·) as an example of modular spaces. Musielak
and Orlicz [42] extended Nakano’s definition of modular spaces in 1959.
Actually, that paper was the starting point for the theory of Musielak-
Orlicz spaces (generalized Orlicz spaces generated by Young functions
with a parameter), see [41].

Let p : Γ → [1,∞) be a measurable function. Consider the convex
modular (see [41, Chapter 1] for definitions and properties)

m(f, p) :=
∫

Γ

|f(τ )|p(τ)|dτ |.

Denote by Lp(·) the set of all measurable complex-valued functions f
on Γ such that m(λf, p) < ∞ for some λ = λ(f) > 0. This set becomes
a Banach space with respect to the Luxemburg-Nakano norm

‖f‖Lp(·) := inf
{
λ > 0 : m(f/λ, p) ≤ 1

}
,

see, e.g., [41, Chapter 2]. So, the spaces Lp(·) are a special case of
Musielak-Orlicz spaces. Sometimes the spaces Lp(·) are referred to as
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Nakano spaces, see, e.g., [13, p. 151], [19, p. 179]. We will follow
this tradition. Clearly, if p(·) = p is constant, then the Nakano space
Lp(·) is isometrically isomorphic to the Lebesgue space Lp. Therefore,
sometimes Lp(·) are called generalized Lebesgue spaces with variable
exponent.

Lemma 2.3 (see, e.g., [12, Proposition 1.3]). Let p : Γ → [1,∞) be
a measurable function. The Nakano space Lp(·) is a Banach function
space.

It is not difficult to show that Lp(·) is not rearrangement-invariant,
in general.

The following result on the reflexivity and duality of Nakano spaces
was precisely stated in [32, Theorem 2.3 and Corollary 2.7], although
it can be obtained from more general results for Musielak-Orlicz spaces
[41, Chapters 1 2], see also [45].

Lemma 2.4. Let p : Γ → [1,∞) be a measurable function. If

1 < ess inf
t∈Γ

p(t) ≤ ess sup
t∈Γ

p(t) <∞,

then the Nakano space Lp(·) is reflexive. Its associate space coincides
(up to the equivalence of the norms) with the Nakano space Lp

′(·), where

p′(τ ) :=
p(τ )

p(τ ) − 1
.

Finally, Nakano spaces are important in applications to fluid dynam-
ics [48].

2.4 Weighted Banach function spaces. Let X be a Banach
function space generated by a Banach function norm ρ and let w : Γ →
[0,∞] be a weight. Define the mapping ρw : M+ → [0,∞] and the set
Xw by

ρw(f) := ρ(fw) (f ∈ M+), Xw :=
{
f ∈ M+ : fw ∈ X

}
.
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Lemma 2.5. (a) ρw satisfies Axioms (A1) (A3) in Definition 2.1
and Xw is a linear normed space with respect to the norm

‖f‖Xw
:= ρw(|f |) = ρ(|fw|) = ‖fw‖X ;

(b) if w ∈ X and 1/w ∈ X ′, then ρw is a Banach function norm and
Xw is a Banach function space generated by ρw. Moreover,

L∞ ⊂ Xw ⊂ L1;

(c) if w ∈ X and 1/w ∈ X ′, then X ′
1/w is the associate space for the

Banach function space Xw.

Proof. Part (a) follows from Axioms (A1) (A3) for the Banach
function norm ρ and the fact that 0 < w(τ ) < ∞ almost everywhere
on Γ.

(b) If w ∈ X, then by Axiom (A2) for ρ, we get wχE ∈ X for every
measurable set E of Γ. Therefore, ρw(χE) = ρ(wχE) < ∞. Thus,
ρw satisfies Axiom (A4). By Hölder’s inequality, see Lemma 2.2, and
Axiom (A2) for ρ, we have

(2.2)

∫
E

f(τ )|dτ | =
∫

Γ

(
f(τ )w(τ )χE(τ )

)χE(τ )
w(τ )

|dτ |
≤ ρ(fwχE)ρ′(χE/w) ≤ ρ(fw)ρ′(χE/w)
=: CEρw(f),

where CE := ρ′(χE/w) ∈ (0,∞). This constant, clearly, depends on
ρ, w, and E, but it is independent of f . Therefore, ρw satisfies Axiom
(A5). Thus, ρw is a Banach function norm and Xw is a Banach function
space.

From (2.2) and Axiom (A2) for X ′ it follows that

‖f‖L1 ≤ ‖f‖Xw
‖1/w‖X′ , f ∈ Xw.

Hence, Xw ⊂ L1, in view of 1/w ∈ X ′. On the other hand, for f ∈ L∞,

0 ≤ |f(τ )| ≤ ‖f‖∞ a.e. on Γ.
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By Axioms (A2) and (A1) for ρw, we have

‖f‖Xw
= ρw(|f |) ≤ ρw(‖f‖∞) = ‖f‖∞ρw(1) = ‖f‖∞‖w‖X .

Thus, L∞ ⊂ Xw, in view of w ∈ X. Part (b) is proved.

(c) For g ∈ M+, we have

(ρw)′(g) = sup
{ ∫

Γ

f(τ )g(τ )|dτ | : f ∈ M+, ρw(f) ≤ 1
}

= sup
{ ∫

Γ

(
f(τ )w(τ )

)(
g(τ )
w(τ )

)
|dτ | : f ∈ M+, ρ(fw) ≤ 1

}

= sup
{ ∫

Γ

h(τ )
(
g(τ )
w(τ )

)
|dτ | : h ∈ M+, ρ(h) ≤ 1

}
= ρ′(g/w).

Hence, (Xw)′ = X ′
1/w.

We will refer to the normed space Xw as a weighted Banach function
space generated by the Banach function space X and the weight w.
From Lemma 2.5(b) it follows that the weighted Banach function space
Xw is a Banach function space itself whenever w ∈ X and 1/w ∈ X ′.

For other definitions (different from ours) of weighted Banach func-
tion spaces, see, e.g., [34, 37].

2.5 Separability and reflexivity of weighted Banach function
spaces. A function f in a Banach function space X is said to have
absolutely continuous norm in X if ‖fχEn

‖X → 0 for every sequence
{En}∞n=1 of measurable sets on Γ satisfying χEn

→ 0 almost everywhere
on Γ as n → ∞. If all functions f ∈ X have this property, then
the space X itself is said to have absolutely continuous norm, see [1,
Chapter 1, Section 3].

In this subsection we assume that X is a Banach function space and
w is a weight such that w ∈ X and 1/w ∈ X ′. Then, by Lemma 2.5(b),
the weighted Banach function space Xw is itself a Banach function
space.

Proposition 2.6. If X has absolutely continuous norm, then Xw

has absolutely continuous norm too.
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Proof. If f ∈ Xw, then fw ∈ X has absolutely continuous norm in X.
Therefore, ‖fχEn

‖Xw
= ‖fwχEn

‖X → 0 for every sequence {En}∞n=1

of measurable sets on Γ satisfying χEn
→ 0 almost everywhere on Γ as

n→ ∞. Thus, f ∈ Xw has absolutely continuous norm in Xw.

From Lemma 2.5 and [1, Chapter 1, Corollaries 4.3, 4.4] we obtain
the following.

Lemma 2.7. (a) The Banach space dual (Xw)∗ of the weighted
Banach function space Xw is isometrically isomorphic to the associate
space X ′

1/w if and only if Xw has absolutely continuous norm. If Xw has
absolutely continuous norm, then the general form of a linear functional
on Xw is given by

G(f) :=
∫

Γ

f(τ )g(τ )|dτ |, g ∈ X ′
1/w, and ‖G‖(Xw)∗ = ‖g‖X′

1/w
.

(b) The weighted Banach function space Xw is reflexive if and only
if both Xw and X ′

1/w have absolutely continuous norm.

Corollary 2.8. If X is reflexive, then Xw is reflexive.

Proof. If X is reflexive, then, by [1, Chapter 1, Corollary 4.4], both
X and X ′ have absolutely continuous norm. In that case, due to
Proposition 2.6, both Xw and X ′

1/w have absolutely continuous norm.
By Lemma 2.7(b), Xw is reflexive.

Since Lebesgue length measure |dτ | is separable (for the definition of
a separable measure, see, e.g., [1, p. 27] or [20, Section 6.10]), from
Lemma 2.5 and [1, Chapter 1, Corollary 5.6] we immediately get the
following criterion.

Lemma 2.9. The weighted Banach function space Xw is separable
if and only if it has absolutely continuous norm.

We denote by C the set of all continuous functions on Γ and by R
the set of all rational functions without poles on the curve Γ. With
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the help of Lemmas 2.7 and 2.9, literally repeating the proof of [25,
Lemma 1.3], one can get the following.

Lemma 2.10. The weighted Banach function space Xw is separable
if and only if C is dense in Xw.

Corollary 2.11. If Xw (or X) is reflexive, then R is dense in Xw

and in its associate space X ′
1/w.

Proof. If Xw is reflexive, then by Lemmas 2.7(b) and 2.9, both Xw

and X ′
1/w are separable. This implies that C is dense in Xw and in

X ′
1/w, due to Lemma 2.10. In view of the Mergelyan theorem (see, e.g.,

[14, Chapter III, Section 2]), every function in C may uniformly be
approximated by functions in R. Thus, R is dense in Xw and in X ′

1/w.
If X is reflexive, we need first apply Corollary 2.8 and then repeat the
above arguments.

3. Analogs of the Muckenhoupt class.

3.1 Definitions. Let X be a Banach function space. Fix t ∈ Γ. For
a weight w : Γ → [0,∞], put

Bt,R(w) :=
1
R
‖wχΓ(t,R)‖X‖χΓ(t,R)/w‖X′ , R > 0,

where χΓ(t,R) is the characteristic function of the portion Γ(t, R).
Consider the following classes of weights:

AX(Γ, t) :=
{
w : sup

R>0
Bt,R(w) <∞

}
,

AX(Γ) :=
{
w : sup

t∈Γ
sup
R>0

Bt,R(w) <∞
}
.

Obviously, AX(Γ) ⊂ AX(Γ, t) for t ∈ Γ. If X is a Lebesgue space
Lp, p ∈ (1,∞), then AX(Γ) is the Muckenhoupt class Ap(Γ). For a
detailed discussion of Muckenhoupt weights on curves, see, e.g., [3].
The classes AX(Γ, t) and AX(Γ) were defined in [24] (see also [22,
25]) for rearrangement-invariant spaces X. Here we assume only that
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X is a Banach function space. Our definition is similar to a definition in
[2]. For other generalizations (different from ours) of the Muckenhoupt
class Ap(Γ) in the setting of Orlicz and Lorentz spaces, see, e.g., [15,
29] and in the setting of Banach function spaces, see [34].

With the help of Hölder’s inequality (see Lemma 2.2), it is easy to
show that w ∈ AX(Γ, t) implies

(3.1) CΓ,t := sup
R>0

|Γ(t, R)|
R

<∞.

We say that a rectifiable Jordan curve Γ is locally a Carleson curve
at the point t ∈ Γ if (3.1) is satisfied. In that case the constant
CΓ,t is referred to as the local Carleson constant at the point t ∈ Γ.
Analogously, if w ∈ AX(Γ), then

CΓ = sup
t∈Γ

CΓ,t <∞,

that is, Γ is a Carleson curve.

3.2 Bounded and vanishing mean oscillation. Let Γ be a
rectifiable Jordan curve. Let f : Γ → [−∞,∞] and f ∈ L1. Suppose
t ∈ Γ, δ ∈ (0,∞], and R ∈ (0,∞). Put

Ωt(f,R) :=
1

|Γ(t, R)|
∫

Γ(t,R)

f(τ )|dτ |,

Mδ,t(f) := sup
0<R<δ

1
|Γ(t, R)|

∫
Γ(t,R)

|f(τ ) − Ωt(f,R)||dτ |.

A function f is said to be of bounded mean oscillation at the point t ∈ Γ
if ‖f‖∗,t := M∞,t(f) < ∞. In this case we will write f ∈ BMO(Γ, t).
A function f ∈ BMO(Γ, t) has vanishing mean oscillation at the point
t ∈ Γ if

lim
δ→0

Mδ,t(f) = 0.

In that case we will write f ∈ VMO(Γ, t).

One says that a function f : Γ → [−∞,∞] is of bounded mean
oscillation on Γ if f ∈ BMO(Γ, t) for all t ∈ Γ and

‖f‖∗ := sup
t∈Γ

‖f‖∗,t < ∞.
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The class of functions of bounded mean oscillation on Γ is denoted by
BMO(Γ). A function f ∈ BMO(Γ) is said to be of vanishing mean
oscillation on Γ if

lim
δ→0

sup
t∈Γ

Mδ,t(f) = 0.

The class of functions of vanishing mean oscillation on Γ is denoted
by VMO(Γ). Clearly, BMO(Γ) ⊂ BMO(Γ, t) and VMO(Γ) ⊂
VMO(Γ, t) for every t ∈ Γ.

3.3 Bounded mean oscillation of logarithms of weights. Let

dt := max
τ∈Γ

|τ − t|.

For a weight w : Γ → [0,∞] such that w ∈ X and 1/w ∈ X ′, we
have w, 1/w ∈ L1. Then, taking into account the obvious inequality
| log x| ≤ x+ 1/x for x ∈ (0,∞), we deduce that logw ∈ L1. For t ∈ Γ
and R > 0, put

C(w, t, R) := exp(−Ωt(logw,R))
‖wχΓ(t,R)‖X‖χΓ(t,R)‖X′

|Γ(t, R)| ,

C ′(w, t, R) := exp(Ωt(logw,R))
‖χΓ(t,R)‖X‖χΓ(t,R)/w‖X′

|Γ(t, R)| .

Clearly, these quantities are well defined.

Lemma 3.1. (a) If w ∈ AX(Γ, t) and 1 ∈ AX(Γ, t), then

(3.2) 1 ≤ sup
R>0

C(w, t, R) <∞, 1 ≤ sup
R>0

C ′(w, t, R) <∞.

(b) If w ∈ AX(Γ) and 1 ∈ AX(Γ), then

(3.3) 1 ≤ sup
t∈Γ

sup
R>0

C(w, t, R) <∞, 1 ≤ sup
t∈Γ

sup
R>0

C ′(w, t, R) <∞.

Proof. The proof is developed by similarity to [25, Lemma 1.5]. Ap-
plying Jensen’s inequality (see, e.g., [33, p. 78]) and Hölder’s inequality
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(see Lemma 2.2), we obtain

exp(Ωt(logw,R)) ≤ 1
|Γ(t, R)|

∫
Γ(t,R)

w(τ )|dτ |

≤ ‖wχΓ(t,R)‖X‖χΓ(t,R)‖X′

|Γ(t, R)| .

Hence,

(3.4) 1 ≤ C(w, t, R), R > 0.

Analogously,

(3.5) 1 ≤ C ′(w, t, R), R > 0.

Inequalities (3.4) and (3.5) imply that (3.2) is equivalent to

(3.6) sup
R>0

(
C(w, t, R)C ′(w, t, R)

)
<∞

and (3.3) is equivalent to

(3.7) sup
t∈Γ

sup
R>0

(
C(w, t, R)C ′(w, t, R)

)
<∞.

Since Γ(t, R) = Γ for R > dt, we have for every t ∈ Γ,

(3.8)

sup
R>0

Bt,R(w) = sup
R∈(0,2dt]

Bt,R(w),

sup
R>0

Bt,R(1) = sup
R∈(0,2dt]

Bt,R(1),

(3.9) sup
R>0

(
C(w, t, R)C ′(w, t, R)

)
= sup

0<R≤2dt

(
C(w, t, R)C ′(w, t, R)

)
.

Evidently, R/2 ≤ |Γ(t, R)| for R ∈ (0, 2dt]. Taking into account the
latter inequality and the definitions of C(w, t, R), C ′(w, t, R), we get
for t ∈ Γ and R ∈ (0, 2dt],

C(w, t, R)C ′(w, t, R) ≤ ‖wχΓ(t,R)‖X‖χΓ(t,R)/w‖X′

|Γ(t, R)|
× ‖χΓ(t,R)‖X‖χΓ(t,R)‖X′

|Γ(t, R)|
≤ 4Bt,R(w)Bt,R(1).
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Therefore,

(3.10)

sup
R∈(0,2dt]

(
C(w, t,R)C ′(w, t, R)

)
≤ 4

(
sup

R∈(0,2dt]

Bt,R(w)
)(

sup
R∈(0,2dt]

Bt,R(1)
)
.

From (3.8) (3.10) it follows that

(3.11)
sup
R>0

(
C(w, t,R)C ′(w, t, R)

)
≤ 4

(
sup
R>0

Bt,R(w)
)(

sup
R>0

Bt,R(1)
)
,

(3.12)
sup
t∈Γ

sup
R>0

(
C(w, t,R)C ′(w, t, R)

)
≤ 4

(
sup
t∈Γ

sup
R>0

Bt,R(w)
)(

sup
t∈Γ

sup
R>0

Bt,R(1)
)
.

(a) If w ∈ AX(Γ, t) and 1 ∈ AX(Γ, t), then (3.11) implies (3.6), but
we have shown that (3.6) is equivalent to (3.2). Part (a) is proved. Part
(b) is proved similarly by using (3.12) and the equivalence of (3.7) and
(3.3).

Lemma 3.2. (a) If w ∈ AX(Γ, t) and 1 ∈ AX(Γ, t), then logw ∈
BMO(Γ, t).

(b) If w ∈ AX(Γ) and 1 ∈ AX(Γ), then logw ∈ BMO(Γ).

Proof. This statement is proved by analogy with [25, Lemma 1.6],
see also [3, Proposition 2.4]. Put Ωt(R) := Ωt(logw,R),

Γ+(t, R) :=
{
τ ∈ Γ(t, R) : logw(τ ) ≥ Ωt(R)

}
,

Γ−(t, R) :=
{
τ ∈ Γ(t, R) : logw(τ ) < Ωt(R)

}
.
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Due to Jensen’s inequality [33, p. 78],

(3.13) exp
(

1
|Γ(t, R)|

∫
Γ(t,R)

| logw(τ ) − Ωt(R)||dτ |
)

≤ 1
|Γ(t, R)|

∫
Γ+(t,R)

exp
(

logw(τ ) − Ωt(R)
)
|dτ |

+
1

|Γ(t, R)|
∫

Γ−(t,R)

exp
(
− (logw(τ ) − Ωt(R))

)
|dτ |

≤ 1
|Γ(t, R)|

∫
Γ

exp
(

logw(τ ) − Ωt(R)
)
χΓ(t,R)(τ )|dτ |

+
1

|Γ(t, R)|
∫

Γ

exp
(
− (logw(τ ) − Ωt(R))

)
χΓ(t,R)(τ )|dτ |.

Applying Hölder’s inequality (see Lemma 2.2) to the first term on the
right of (3.13), we get

(3.14)
1

|Γ(t, R)|
∫

Γ

exp
(

logw(τ ) − Ωt(R)
)
χΓ(t,R)(τ )|dτ |

≤
∥∥∥ exp

(
logw(·) − Ωt(R)

)
χΓ(t,R)(·)

∥∥∥
X

‖χΓ(t,R)‖X′

|Γ(t, R)|
= e−Ωt(R) ‖χΓ(t,R)‖X‖χΓ(t,R)‖X′

|Γ(t, R)| = C(w, t, R).

Analogously,
(3.15)

1
|Γ(t, R)|

∫
Γ

exp
(
− (logw(τ ) − Ωt(R))

)
χΓ(t,R)(τ )|dτ | ≤ C ′(w, t, R).

Combining (3.13) (3.15), we see that for every t ∈ Γ and R > 0,

exp
(

1
|Γ(t, R)|

∫
Γ(t,R)

| logw(τ )−Ωt(R)||dτ |
)

≤ C(w, t, R)+C ′(w, t, R).

Consequently,

(3.16) ‖ logw‖∗,t ≤ log
(

sup
R>0

C(w, t, R) + sup
R>0

C ′(w, t, R)
)
, t ∈ Γ,

(3.17) ‖ logw‖∗ ≤ log
(

sup
t∈Γ

sup
R>0

C(w, t, R) + sup
t∈Γ

sup
R>0

C ′(w, t, R)
)
.
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Statement (a) follows from Lemma 3.1(a) and (3.16). Statement (b)
follows from Lemma 3.1(b) and (3.17).

For rearrangement-invariant Banach function spaces X, by using
(2.1), we infer that w ∈ AX(Γ) implies 1 ∈ AX(Γ). In that case,
by Lemma 3.2(b), if w ∈ AX(Γ), then logw ∈ BMO(Γ). This result
was obtained in [25, Lemma 1.6]. Note that for Lebesgue spaces Lp,
1 < p < ∞, and Muckenhoupt classes Ap(Γ) this fact is well known,
see, e.g., [3, Proposition 2.4].

4. Indices of submultiplicative functions associated with
weighted Banach function spaces.

4.1 Submultiplicative functions and their indices. Following
[3, Section 1.4], we say a function Φ : (0,∞) → (0,∞] is regular if it is
bounded in an open neighborhood of 1. A function Φ : (0,∞) → (0,∞]
is said to be submultiplicative if

Φ(xy) ≤ Φ(x)Φ(y) for all x, y ∈ (0,∞).

It is easy to show that if Φ is regular and submultiplicative, then Φ is
bounded away from zero in some open neighborhood of 1. Moreover,
in this case Φ(x) is finite for all x ∈ (0,∞). Given a regular and
submultiplicative function Φ : (0,∞) → (0,∞), one defines

α(Φ) := sup
x∈(0,1)

log Φ(x)
log x

, β(Φ) := inf
x∈(1,∞)

log Φ(x)
log x

.

Clearly, −∞ < α(Φ) and β(Φ) <∞.

Theorem 4.1 (see [3, Theorem 1.13]). If Φ : (0,∞) → (0,∞) is
regular and submultiplicative, then

α(Φ) = lim
x→0

log Φ(x)
log x

, β(Φ) = lim
x→∞

log Φ(x)
log x

and −∞ < α(Φ) ≤ β(Φ) < +∞.
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The quantities α(Φ) and β(Φ) are called the lower and upper indices
of the regular and submultiplicative function Φ, respectively.

4.2 Spirality indices. In this subsection we mainly follow [3,
Chapter 1]. Fix t ∈ Γ. Suppose ψ : Γ \ {t} → (0,∞) is a continuous
function. Put

Fψ(R1, R2) := max
τ∈Γ,|τ−t|=R1

ψ(τ )
/

min
τ∈Γ,|τ−t|=R2

ψ(τ ), R1, R2 ∈ (0, dt].

By [3, Lemma 1.15], the function

(Wtψ)(x) :=




sup
0<R≤dt

Fψ(xR,R), x ∈ (0, 1],

sup
0<R≤dt

Fψ(R, x−1R), x ∈ (1,∞).

is submultiplicative. For t ∈ Γ, we have,

τ − t = |τ − t|ei arg(τ−t), τ ∈ Γ \ {t},
and the argument arg(τ− t) may be chosen to be a continuous function
of τ ∈ Γ \ {t}. Consider

ηt(τ ) := e− arg(τ−t).

Using the local Carleson constant CΓ,t instead of the global Carleson
constant CΓ, we can obtain the following local versions of [3, Theo-
rem 1.10 and Lemma 1.17].

Lemma 4.2. If Γ is locally a Carleson curve at t ∈ Γ, then

arg(τ − t) = O(− log |τ − t|) as τ → t.

Lemma 4.3. If Γ is locally a Carleson curve at t ∈ Γ, then the
submultiplicative function Wtηt is regular.

Under the assumptions of Lemma 4.3, by Theorem 4.1, there exist
the spirality indices

δ−t := α(Wtηt), δ+t := β(Wtηt)
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of the curve Γ at the point t, see [3, Chapter 1]. If, in addition,

arg(τ − t) = −δt log |τ − t| +O(1) as τ → t,

where δt ∈ R, then δ−t = δ+t = δt, see [3, Section 1.6]. Examples of
Carleson curves with distinct spirality indices are also given there.

On a rectifiable Jordan curve we have dτ = eiθΓ(τ)|dτ | where θΓ(τ )
is the angle between the positively oriented real axis and the naturally
oriented tangent of Γ at τ (which exists almost everywhere). A
rectifiable Jordan curve Γ is said to be a Lyapunov curve if

|θΓ(τ ) − θΓ(t)| ≤ c|τ − t|µ

for some constants c > 0, µ ∈ (0, 1) and all τ, t ∈ Γ. If θΓ is a function
of bounded variation on Γ, then the curve Γ is called a Radon curve
(or a curve of bounded rotation). It is very well known that Lyapunov
curves are smooth, but Radon curves may have at most countable set of
corner points (or even cusps). All Lyapunov curves and Radon curves
without cusps are Carleson curves, see, e.g., [28, Section 2.3]. The next
statement is well known.

Proposition 4.4. If Γ is either a Lyapunov Jordan curve or a Radon
Jordan curve, then for every t ∈ Γ,

arg(τ − t) = O(1) as τ → t,

and, therefore, δ−t = δ+t = 0.

4.3 Indices of powerlikeness. To investigate whether the weight
|(τ − t)γ |w(τ ) with arbitrary γ ∈ C belongs to the Muckenhoupt
class Ap(Γ), Böttcher and Yu. Karlovich introduced submultiplicative
functions Vtw and V 0

t w associated with local properties of the weight
w at the point t ∈ Γ, see [3, Chapter 3].

Let w be a weight on Γ such that logw ∈ L1(Γ(t, R)) for every
R ∈ (0, dt]. Put

Hw(R1, R2) := exp(Ωt(logw,R1))/ exp(Ωt(logw,R2)), R1, R2∈ (0, dt].
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Consider the functions

(Vtw)(x) :=




sup
0<R≤dt

Hw(xR,R), x ∈ (0, 1],

sup
0<R≤dt

Hw(R, x−1R), x ∈ (1,∞),

(V 0
t w)(x) := lim sup

R→0
Hw(xR,R), x ∈ (0,∞).

Lemma 4.5. The function Vtw is submultiplicative. If Vtw is
regular, then V 0

t w is regular and submultiplicative. Moreover,

α(V 0
t w) = α(Vtw), β(V 0

t w) = β(Vtw).

Lemma 4.6. If Γ is locally a Carleson curve at t ∈ Γ and
logw ∈ BMO(Γ, t), then Vtw and V 0

t w are regular.

Lemmas 4.5 and 4.6 are proved by analogy with [3, Lemma 3.5(a)]
and [3, Lemma 3.2(a)]. These statements are stated in [3] under
the assumption that Γ is a Carleson curve. But Lemma 4.5 is valid
for arbitrary rectifiable curves Γ. Since Lemma 4.6 has a “local
nature”, we may use the “local” Carleson constant CΓ,t instead of the
“global” Carleson constant CΓ in its proof. Under the assumptions of
Lemma 4.6, in view of Theorem 4.1, for the weight w, there exist the
indices of powerlikeness

(4.1) µt := α(V 0
t w) = α(Vtw), νt := β(V 0

t w) = β(Vtw)

at the point t ∈ Γ.

Obviously, for a power weight w(τ ) = |τ − t|λt , the indices of
powerlikeness equal µt = νt = λt. Nontrivial examples of weights with
distinct indices of powerlikeness are given in [3, Examples 3.24 3.28].

Lemma 4.7 (see [25, Lemma 2.4]). If Γ is locally a Carleson curve
at t ∈ Γ and logw ∈ VMO(Γ, t), then µt = νt = 0.

4.4 Submultiplicative functions associated with weighted
Banach function spaces. Let Γ be a rectifiable Jordan curve and let
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X be a Banach function space. Fix t ∈ Γ and consider the portion of
the curve Γ in the annulus

∆(t, R) := Γ(t, R) \ Γ(t, R/2), R > 0.

Clearly,

(4.2) R/2 ≤ |∆(t, R)|, R ∈ (0, dt].

On the other hand, if Γ is locally a Carleson curve at t ∈ Γ, then

(4.3) |∆(t, R)| ≤ |Γ(t, R)| ≤ CΓ,tR, R > 0.

Suppose w : Γ → [0,∞] is a weight such that wχ∆(t,R) ∈ X and
χ∆(t,R)/w ∈ X ′ for all R ∈ (0, dt]. We denote

Gw(R1, R2) :=
‖wχ∆(t,R1)‖X‖χ∆(t,R2)/w‖X′

|∆(t, R2)| , R1, R2 ∈ (0, dt].

Define the following functions, see [24, Section 5]:

(Qtw)(x) :=




sup
0<R≤dt

Gw(xR,R), x ∈ (0, 1],

sup
0<R≤dt

Gw(R, x−1R), x ∈ (1,∞),

(Q0
tw)(x) := lim sup

R→0
Gw(xR,R), x ∈ (0,∞).

Lemma 4.8. The function Qtw is submultiplicative. If Qtw is
regular, then Q0

tw is regular and submultiplicative. Moreover,

α(Q0
tw) = α(Qtw), β(Q0

tw) = β(Qtw).

Lemma 4.9. If w ∈ AX(Γ, t), then Qtw and Q0
tw are regular.

Moreover,

0 ≤ α(Qtw) = α(Q0
tw) ≤ β(Q0

tw) = β(Qtw) ≤ 1.
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These statements are proved in [24, Lemmas 5.1 5.2] and [24, Theo-
rem 5.3], respectively, under the assumption that X is rearrangement-
invariant. But, actually, we did not use this assumption in those proofs.
So we can literally repeat the proofs for arbitrary Banach function
spaces.

5. Relations between indices.

5.1 Case of general Banach function spaces. Let Γ be a
rectifiable Jordan curve, let X be a Banach function space, and let
t ∈ Γ.

Theorem 5.1. Suppose w : Γ → [0,∞] is a weight such that
logw ∈ L1(Γ(t, R)) for every R ∈ (0, dt] and ψ : Γ \ {t} → (0,∞)
is a continuous function. If the functions Vtw and Wtψ are regular,
then the function Vt(ψw) is regular too. Moreover,

α(Vtw) + α(Wtψ) ≤ α(Vt(ψw))

≤ min
{
α(Vtw) + β(Wtψ), β(Vtw) + α(Wtψ)

}
,

β(Vtw) + β(Wtψ) ≥ β(Vt(ψw))

≥ max
{
α(Vtw) + β(Wtψ), β(Vtw) + α(Wtψ)

}
.

This statement is proved similarly to [3, Lemma 3.17].

Theorem 5.2. Suppose w : Γ → [0,∞] is a weight such that
wχ∆(t,R) ∈ X and χ∆(t,R)/w ∈ X ′ for every R ∈ (0, dt] and ψ :
Γ \ {t} → (0,∞) is a continuous function. If the functions Qtw and
Wtψ are regular, then the function Qt(ψw) is regular too. Moreover,

α(Qtw) + α(Wtψ) ≤ α(Qt(ψw))

≤ min
{
α(Qtw) + β(Wtψ), β(Qtw) + α(Wtψ)

}
,

β(Qtw) + β(Wtψ) ≥ β(Qt(ψw))

≥ max
{
α(Qtw) + β(Wtψ), β(Qtw) + α(Wtψ)

}
.



FREDHOLMNESS OF SINGULAR INTEGRAL OPERATORS 287

This theorem is proved in [24, Theorem 5.8] for rearrangement-
invariant Banach function spaces. The proof given there does not use
the rearrangement-invariant property of the space, so it works for an
arbitrary Banach function space.

Lemma 5.3. If Γ is locally a Carleson curve at t ∈ Γ and
logw ∈ BMO(Γ, t), then for every R ∈ (0, dt],

exp(Ωt(logw,R)) ≤ Ct
|∆(t, R)|

∫
∆(t,R)

w(τ )|dτ |

where Ct := exp(2CΓ,t‖ logw‖∗,t) <∞.

The proof is actually given in [3, Lemma 3.2(b)].

Theorem 5.4. Let Γ be locally a Carleson curve at t ∈ Γ and let
w : Γ → [0,∞] be a weight such that wχ∆(t,R) ∈ X,χ∆(t,R)/w ∈ X ′ for
every R ∈ (0, dt] and logw ∈ BMO(Γ, t). If Qtw and Qt1 are regular,
then

(5.1) α(Qtw) ≤ µt + β(Qt1), νt + α(Qt1) ≤ β(Qtw).

Proof. The proof is developed by analogy with [25, Theorem 2.6].
From Lemma 5.3 and Hölder’s inequality (see Lemma 2.2) we see that
for every R ∈ (0, dt],

(5.2) exp(Ωt(logw,R)) ≤ Ct
‖wχ∆(t,R)‖X‖χ∆(t,R)‖X′

|∆(t, R)| ,

(5.3) exp(−Ωt(logw,R)) ≤ Ct
‖χ∆(t,R)‖X‖χ∆(t,R)/w‖X′

|∆(t, R)| .

From (5.2) and (5.3) it follows that for x ∈ (0, 1] and R ∈ (0, dt],

(5.4)

Hw(xR,R) = exp(Ωt(logw, xR)) exp(−Ωt(logw,R))

≤ C2
t

‖wχ∆(t,xR)‖X‖χ∆(t,R)/w‖X′

|∆(t, R)|
× ‖χ∆(t,R)‖X‖χ∆(t,xR)‖X′

|∆(t, xR)|
= C2

tGw(xR,R)G1(R, xR).
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Then, taking the supremum over all R ∈ (0, dt], we obtain for x ∈ (0, 1],

(5.5) (Vtw)(x) ≤ Ct(Qtw)(x)(Qt1)(x−1).

Analogously, for x ∈ (1,∞) and R ∈ (0, dt],

(5.6) Hw(R, x−1R) ≤ C2
tGw(R, x−1R)G1(x−1R,R).

Taking the supremum over all R ∈ (0, dt], we arrive at (5.5) for
x ∈ (1,∞). By Lemmas 4.5 4.6, the function Vtw is regular and sub-
multiplicative. By Lemma 4.8, the functions Qtw and Qt1 are sub-
multiplicative, they are regular, due to the assumption of the theo-
rem. Therefore, in view of Theorem 4.1, the indices α(Qtw), β(Qtw);
α(Qt1), β(Qt1); and α(Vtw), β(Vtw) exist and are well defined.

From (5.5) it follows that

log(Vtw)(x)
log x

≥ logC2
t

log x
+

log(Qtw)(x)
log x

− log(Qt1)(x−1)
log x−1

, x ∈ (0, 1],

log(Vtw)(x)
log x

≤ logC2
t

log x
+

log(Qtw)(x)
log x

− log(Qt1)(x−1)
log x−1

, x ∈ (1,∞).

Passing to the limit in the latter inequalities as x → 0, respectively as
x→ ∞, we obtain, respectively,

µt = α(Vtw) ≥ α(Qtw) − β(Qt1), νt = β(Vtw) ≤ β(Qtw) − α(Qt1).

So, we arrive at (5.1).

Theorem 5.5. If w ∈ AX(Γ, t) and 1 ∈ AX(Γ, t), then

α(Qt1) + µt ≤ α(Qtw) ≤ min
{
α(Qt1) + νt, β(Qt1) + µt

}
,(5.7)

β(Qt1) + νt ≥ β(Qtw) ≥ max
{
α(Qt1) + νt, β(Qt1) + µt

}
.(5.8)

Proof. The idea of the proof is borrowed from [25, Theorems 2.6
and 2.7]. From Lemmas 4.8 4.9 it follows that the functions Qtw
and Qt1 are regular and submultiplicative. On the other hand, by
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Lemma 3.2(a), logw ∈ BMO(Γ, t). Therefore, by Lemmas 4.5 4.6, the
function Vtw is regular and submultiplicative. Thus, all the indices

α(Qt1), β(Qt1), α(Qtw), β(Qtw), µt = α(Vtw), νt = β(Vtw)

are well defined. By Theorem 5.4,

(5.9) α(Qtw) ≤ µt + β(Qt1), νt + α(Qt1) ≤ β(Qtw).

If 1 ∈ AX(Γ, t), then from the lattice property it follows that for
every R > 0,

(5.10)

1
R
‖χ∆(t,R)‖X‖χ∆(t,R)‖X′ ≤ 1

R
‖χΓ(t,R)‖X‖χΓ(t,R)‖X′

≤ sup
R>0

Bt,R(1) =: Bt(1).

Combining (5.10) and (4.2), we arrive at

‖χ∆(t,R)‖X‖χ∆(t,R)‖X′ ≤ 2Bt(1)|∆(t, R)|, R ∈ (0, dt].

Then we have for x ∈ (0, 1],

(5.11)

1
G1(R, xR)

=
|∆(t, xR)|

‖χ∆(t,R)‖X‖χ∆(t,xR)‖X′
≥ ‖χ∆(t,xR)‖X‖χ∆(t,R)‖X′

(2Bt(1))2|∆(t, R)|
= (2Bt(1))−2G1(xR,R).

Analogously, we deduce that for x ∈ (1,∞),

(5.12)
1

G1(x−1R,R)
≥ (2Bt(1))−2G1(R, x−1R).

From (5.4) and (5.11) we obtain for x ∈ (0, 1],

(5.13)
(2Bt(1))−2G1(xR,R) ≤ 1

G1(R, xR)
≤ C2

t

Gw(xR,R)
Hw(xR,R)

= C2
tGw(xR,R)Hw(R, xR).

Similarly, from (5.6) and (5.11) we obtain for x ∈ (1,∞),

(2Bt(1))−2G1(R, x−1R) ≤ C2
tGw(xR,R)Hw(x−1R,R).
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Taking the supremum over R ∈ (0, dt] in (5.13) and (5.14), we get

(Qt1)(x) ≤ (2CtBt(1))2(Qtw)(x)(Vtw)(x−1), x ∈ (0,∞).

From this inequality it follows that for x ∈ (0, 1],

(5.15)
log(Qt1)(x)

log x
≥ log(2CtBt(1))2

log x
+

log(Qtw)(x)
log x

− log(Vtw)(x−1)
log x−1

and, analogously, for x ∈ (1,∞),

(5.16)
log(Qt1)(x)

log x
≤ log(2CtBt(1))2

log x
+

log(Qtw)(x)
log x

− log(Vtw)(x−1)
log x−1

.

Passing to the limit in (5.15) as x → 0 and in (5.16) as x → ∞, we
obtain, respectively,

(5.17) α(Qt1) ≥ α(Qtw) − β(Vtw), β(Qt1) ≤ β(Qtw) − α(Vtw).

By Lemma 3.1(a), there exist constants C1(t), C2(t) > 0 such that
for every R > 0,

exp(−Ωt(logw,R))
‖wχΓ(t,R)‖X‖χΓ(t,R)‖X′

|Γ(t, R)| ≤ C1(t),(5.18)

exp(Ωt(logw,R))
‖χΓ(t,R)‖X‖χΓ(t,R)/w‖X′

|Γ(t, R)| ≤ C2(t).(5.19)

On the other hand, from the lattice property, the Hölder inequality (see
Lemma 2.2), (3.1) and (4.2) it follows that for R ∈ (0, dt],

(5.20)

|Γ(t, R)|
‖χΓ(t,R)‖X′

≤ |Γ(t, R)|
‖χ∆(t,R)‖X′

=
|Γ(t, R)| · ‖χ∆(t,R)‖X
‖χ∆(t,R)‖X‖χ∆(t,R)‖X′

≤ |Γ(t, R)|
|∆(t, R)| ‖χ∆(t,R)‖X ≤ CΓ,tR

R/2
‖χ∆(t,R)‖X

= 2CΓ,t‖χ∆(t,R)‖X .

Analogously, for R ∈ (0, dt],

(5.21)
|Γ(t, R)|

‖χΓ(t,R)‖X ≤ 2CΓ,t‖χ∆(t,R)‖X′ .
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From (5.18) (5.21) and the lattice property it follows that for R ∈
(0, dt] and x ∈ (0, 1],

Gw(xR,R) =
‖wχ∆(t,xR)‖X‖χ∆(t,R)/w‖X′

|∆(t, R)|
≤ ‖wχΓ(t,xR)‖X‖χΓ(t,R)/w‖X′

|∆(t, R)|
≤ C1(t)C2(t)

|∆(t, R)| exp(Ωt(logw, xR)) exp(−Ωt(logw,R))

× |Γ(t, xR)|
‖χΓ(t,xR)‖X′

· |Γ(t, R)|
‖χΓ(t,R)‖X(5.22)

≤ (2CΓ,t)2C1(t)C2(t)Hw(xR,R)
‖χ∆(t,xR)‖X‖χ∆(t,R)‖X′

|∆(t, R)|
= (2CΓ,t)2C1(t)C2(t)Hw(xR,R)G1(xR,R)

and, similarly, for R ∈ (0, dt] and x ∈ (1,∞),

(5.23) Gw(R, x−1R) ≤ (2CΓ,t)2C1(t)C2(t)Hw(R, x−1R)G1(R, x−1R).

Taking the supremum over all R ∈ (0, dt] in (5.22) and (5.23), we obtain

(Qtw)(x) ≤ (2CΓ,t)2C1(t)C2(t)(Vtw)(x)(Qt1)(x), x ∈ (0,∞).

Therefore,

(5.24) α(Qtw) ≥ α(Vtw) + α(Qt1), β(Qtw) ≤ β(Vtw) + β(Qt1).

Combining (5.9), (5.17), and (5.24), we arrive at (5.7) (5.8).

If X is a rearrangement-invariant Banach function space, then from
(2.1) it follows that the conditions 1 ∈ AX(Γ, t) and 1 ∈ AX(Γ) are
equivalent to (3.1) and (1.1), respectively. Hence, w ∈ AX(Γ, t) implies
1 ∈ AX(Γ, t) whenever X is rearrangement-invariant. This property
allows us to simplify the formulation of Theorem 5.5 for rearrangement-
invariant Banach function spaces, see [25, Theorems 2.6 and 2.7].

Note that α(Qt1) and β(Qt1) can be considered as a generalization
of the Zippin (fundamental) indices pX and qX of a rearrangement-
invariant Banach function space X [53]. If X is rearrangement-
invariant, then α(Qt1) = pX and β(Qt1) = qX , see [24, Theorem 5.4].



292 A.YU. KARLOVICH

On the other hand, the Zippin indices for an Orlicz space Lϕ coincide
with the reciprocals of the Matuszewska-Orlicz indices, which control
the growth of the Young function ϕ, see, e.g., [39] and the references
given there. The notion of Matuszewska-Orlicz indices of Orlicz spaces
was extended to the case of Musielak-Orlicz spaces in [18, 19]. Recall
that Orlicz spaces are always rearrangement-invariant, but Musielak-
Orlicz spaces are not rearrangement-invariant, in general.

5.2 Case of Nakano spaces. Suppose Γ is a rectifiable Jordan
curve. Assume that p : Γ → (1,∞) is a continuous function. Then

(5.25) 1 < p∗ := min
t∈Γ

p(t) ≤ max
t∈Γ

p(t) := p∗ <∞,

due to the compactness of Γ. We will say that a continuous function
p : Γ → (1,∞) belongs to the class Pt if there is a constant At > 0
such that

(5.26) |p(τ ) − p(t)| ≤ At

− log |τ − t| for all τ ∈ Γ(t, 1/2).

The class of all continuous functions p : Γ → (1,∞) such that p ∈ Pt
for every t ∈ Γ and

sup
t∈Γ

At =: A <∞

is denoted by P. Clearly, P ⊂ Pt for every t ∈ Γ.

The class P plays a very important role in questions on the bounded-
ness of maximal functions and singular integrals on (weighted) Nakano
spaces, see [10, 30, 46], the references therein, and also Theorem 6.2.

Proposition 5.6. A function p belongs to Pt (respectively, to P)
if and only if the function p′(τ ) := p(τ )/(p(τ ) − 1) belongs to Pt
(respectively, to P).

Proof. The statement immediately follows from the obvious inequal-
ity

|p′(τ ) − p′(t)| =
∣∣∣∣ p(τ ) − p(t)
(p(τ ) − 1)(p(t) − 1)

∣∣∣∣ ≤ |p(τ ) − p(t)|
(p∗ − 1)2

, τ, t ∈ Γ,
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and the reflexive relation (p′)′ = p.

Lemma 5.7. Let Γ be locally a Carleson curve at t ∈ Γ and p ∈ Pt.
Then there exist constants M1(t),M2(t), C1(t), C2(t) ∈ (0,∞) such that

(5.27) ‖χ∆(t,R)‖Lp(·) ≥ M1(t)R1/p(t) for all R ∈ (0, C1(t)),

(5.28) ‖χΓ(t,R)‖Lp(·) ≤ M2(t)R1/p(t) for all R ∈ (0, C2(t)).

Proof. From (5.26) it follows that for τ ∈ Γ(t, 1/2),

(5.29) −p(t) − At

− log |τ − t| ≤ −p(τ ) ≤ −p(t) +
At

− log |τ − t| .

Since |τ − t| ≤ R for τ ∈ Γ(t, R), we have

(5.30)
At

− log |τ − t| ≤
At

− logR
, τ ∈ Γ(t, R), R ∈ (0, 1/2).

From (5.29) and (5.30) we get for τ ∈ Γ(t, R) and R ∈ (0, 1/2),

(5.31) −p(t) +
At

logR
≤ −p(τ ) ≤ −p(t) − At

logR
.

For R ∈ (0, e−At), taking into account that p(t) ∈ (1,∞), we obtain

(5.32) p(t) +
At

logR
= (p(t) − 1) +

(
1 +

At

logR

)
> p(t) − 1 > 0.

From (5.31) we get for λ ∈ (0, 1] and R ∈ (0,min{1/2, e−At}),

(5.33)
exp

(
−

[
p(t) +

At

logR

]
log λ

)
≤ exp(−p(τ ) logλ)

≤ exp
(
−

[
p(t) − At

logR

]
log λ

)
.

Analogously, for λ ∈ (1,∞) and R ∈ (0,min{1/2, e−At}),

(5.34)
exp

(
−

[
p(t) − At

logR

]
log λ

)
≤ exp(−p(τ ) logλ)

≤ exp
(
−

[
p(t) +

At

logR

]
log λ

)
.
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Let us prove (5.27). From the first inequality in (5.33) and (4.2) it
follows that for λ ∈ (0, 1] and R ∈ (0,min{1/2, e−At , dt}),

m(χ∆(t,R)/λ, p) =
∫

∆(t,R)

exp(−p(τ ) logλ)|dτ |

≥ exp
(
−

[
p(t) +

At

logR

]
log λ

)
|∆(t, R)|

≥ exp
(

log
R

2
−

[
p(t) +

At

logR

]
log λ

)
.

Put C1(t) := min{1/2, e−At , dt}. Therefore, taking into account (5.32),
we obtain for R ∈ (0, C1(t)),

{
λ ∈ (0, 1] : m(χ∆(t,R)/λ, p) ≤ 1

}
⊂

{
λ ∈ (0, 1] : log

R

2
−

[
p(t) +

At

logR

]
log λ ≤ 0

}

=
{
λ : exp

(
log(R/2)

p(t) +At/ logR

)
≤ λ ≤ 1

}
.

Thus, for R ∈ (0, C1(t)),

(5.35)

N1 := inf
{
λ ∈ (0, 1] : m(χ∆(t,R)/λ, p) ≤ 1

}
≥ exp

(
log(R/2)

p(t)+At/ logR

)
.

Analogously, from the first inequality in (5.34) we obtain

{
λ ∈ (1,∞) : m(χ∆(t,R)/λ, p) ≤ 1

}
⊂ (1,∞)

because

(5.36) exp
(

log(R/2)
p(t) −At/ logR

)
< 1 for R ∈ (0, C1(t)).

Thus, for R ∈ (0, C1(t)),

(5.37) N2 := inf
{
λ ∈ (1,∞) : m(χ∆(t,R)/λ, p) ≤ 1

}
≥ 1.



FREDHOLMNESS OF SINGULAR INTEGRAL OPERATORS 295

From (5.35) (5.37) we obtain for R ∈ (0, C1(t)),

(5.38)

‖χ∆(t,R)‖Lp(·) = inf
{
λ > 0 : m(χ∆(t,R)/λ, p) ≤ 1

}
= min{N1, N2} ≥ min

{
1, exp

(
log(R/2)

p(t) +At/ logR

)}

= exp
(

log(R/2)
p(t) +At/ logR

)
.

From (5.32) it follows that for R ∈ (0, C1(t)),

log(R/2)
p(t) +At/logR

− log(R/2)
p(t)

=
−At +Atlog 2/logR
(p(t) +At/logR)p(t)

≥ −At +Atlog 2/logR
(p(t) − 1)p(t)

≥ At + log 2
(1 − p(t))p(t)

.

From the latter inequality we deduce that

(5.39) exp
(

log(R/2)
p(t) +At/ logR

)

= exp
(

log(R/2)
p(t) +At/ logR

− log(R/2)
p(t)

)(
R

2

)1/p(t)

≥ exp
(

At + log 2
(1 − p(t))p(t)

− log 2
p(t)

)
R1/p(t).

Combining (5.38) and (5.39), we arrive at (5.27) with

C1(t) := min{1/2, e−At , dt}, M1(t) := exp
(

At + log 2
(1 − p(t))p(t)

− log 2
p(t)

)
.

Taking into account (3.1), one can prove that (5.28) is valid with

C2(t) := min{1/2, 1/CΓ,t, e
−At , dt},

M2(t) := exp
(

At

(p(t))2
+

logCΓ,t

p(t)

)
.
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The proof of (5.28) is similar to the proof of (5.27) and it is omitted.

Lemma 5.8. Suppose Γ is locally a Carleson curve at t ∈ Γ and
p ∈ Pt. Then 1 ∈ ALp(·)(Γ, t) and

(5.40) α(Qt1) = β(Qt1) = 1/p(t).

Proof. From Lemma 5.7 we deduce that there exist constants
Ci(t), Mi(t) (i = 1, 2) such that

(5.41) ‖χ∆(t,R)‖Lp(·) ≥M1(t)R1/p(t) for all R ∈ (0, C1(t)),

(5.42) ‖χΓ(t,R)‖Lp(·) ≤M2(t)R1/p(t) for all R ∈ (0, C2(t)).

By Proposition 5.6, p′ ∈ Pt. Analogously, applying Lemma 5.7 to Lp
′(·)

and taking into account that the latter space coincide with (Lp(·))′ up
to the equivalence of the norms (see Lemma 2.4), we infer that there
exist constants C ′

i(t),M
′
i(t), i = 1, 2, such that

(5.43) ‖χ∆(t,R)‖(Lp(·))′ ≥M ′
1(t)R1/p′(t) for all R ∈ (0, C ′

1(t)),

(5.44) ‖χΓ(t,R)‖(Lp(·))′ ≤M ′
2(t)R1/p′(t) for all R ∈ (0, C ′

2(t)).

From (5.42), (5.44) it follows that for R ∈ (0,min{C2(t), C ′
2(t)}),

(5.45)
Bt,R(1) =

1
R
‖χΓ(t,R)‖Lp(·)‖χΓ(t,R)‖(Lp(·))′

≤ 1
R
M2(t)M ′

2(t)R1/p(t)R1/p′(t) = M2(t)M ′
2(t).

On the other hand, for R ≥ min{C2(t), C ′
2(t)},

(5.46)

Bt,R(1) =
1
R
‖χΓ(t,R)‖Lp(·)‖χΓ(t,R)‖(Lp(·))′ ≤

‖1‖Lp(·)‖1‖(Lp(·))′

min{C2(t), C ′
2(t)} .

From (5.45) and (5.46) it follows that

sup
R>0

Bt,R(1) ≤ max
{
M2(t)M ′

2(t),
‖1‖Lp(·)‖1‖(Lp(·))′

min{C2(t), C ′
2(t)}

}
< ∞.
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Thus, 1 ∈ ALp(·)(Γ, t).

Put C(t) := min{C1(t), C2(t), C ′
1(t), C ′

2(t)}. From (5.42), (5.44),
(4.2), and the lattice property we obtain for x ∈ (0,∞) and R ∈
(0, C(t) min{1, 1/x}),

(5.47)

G1(xR,R) :=
‖χ∆(t,xR)‖Lp(·)‖χ∆(t,R)‖(Lp(·))′

|∆(t, R)|

≤M2(t)M ′
2(t)

(xR)1/p(t)R1/p′(t)

|∆(t, R)|

≤M2(t)M ′
2(t)

x1/p(t)R

R/2
= 2M2(t)M ′

2(t)x1/p(t).

Combining (5.43), (5.45), and (4.3), we get for the same x and R,

(5.48)
G1(xR,R) ≥M1(t)M ′

1(t)
(xR)1/p(t)R1/p′(t)

|∆(t, R)|

≥M1(t)M ′
1(t)

x1/p(t)R

CΓ,tR
=
M1(t)M ′

1(t)
CΓ,t

x1/p(t).

From (5.47) and (5.48) it follows that

M1(t)M ′
1(t)

CΓ,t
x1/p(t) ≤ (Q0

t1)(x) ≤ 2M2(t)M ′
2(t)x1/p(t), x ∈ (0,∞).

Since 1 ∈ ALp(·)(Γ), the function Q0
t1 is regular and submultiplicative,

see Lemmas 4.8 and 4.9. From the latter inequality it follows that

α(Q0
t1) = β(Q0

t1) = 1/p(t).

Combining the latter equalities with Lemma 4.8, we arrive at (5.40).

Theorem 5.9. Let Γ be locally a Carleson curve at t ∈ Γ, let
w : Γ → [0,∞] be a weight, and let p ∈ Pt. If w ∈ ALp(·)(Γ, t),
then logw ∈ BMO(Γ, t) and

(5.49) α(Qtw) = 1/p(t) + α(Vtw), β(Qtw) = 1/p(t) + β(Vtw).
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Proof. Since p ∈ Pt and Γ is locally a Carleson curve at t, in view
of Lemma 5.8, 1 ∈ ALp(·)(Γ, t). By Lemma 3.2(a), logw ∈ BMO(Γ, t).
From Theorem 5.5 and (5.40) we get

1/p(t) + α(Vtw) ≤ α(Qtw) ≤ min{1/p(t) + α(Vtw), 1/p(t) + β(Vtw)}
= 1/p(t) + α(Vtw),

1/p(t) + β(Vtw) ≥ β(Qtw) ≥ max{1/p(t) + α(Vtw), 1/p(t) + β(Vtw)}
= 1/p(t) + β(Vtw),

that is, equalities (5.49) hold.

Lemma 5.10. Let Γ be a Carleson curve, let w : Γ → [0,∞] be a
weight, and let p ∈ P. If w ∈ ALp(·)(Γ), then logw ∈ BMO(Γ).

Proof. By analogy with Lemma 5.7 one can show that there exist
constants C > 0 and M,M ′ ∈ (0,∞) such that

‖χΓ(t,R)‖Lp(·) ≤MR1/p(t), ‖χΓ(t,R)‖Lp′(·) ≤M ′R1/p′(t)

for all R ∈ (0, C) and all t ∈ Γ. Taking into account Lemma 2.4,
as in Lemma 5.8 from the latter inequalities we obtain 1 ∈ ALp(·)(Γ).
Therefore, logw ∈ BMO(Γ), due to Lemma 3.2(b).

5.3 Indicator functions. In this subsection we generalize the notion
of indicator functions (see [3, Chapter 3] and also [24, Section 7.2], [25,
Section 2.5], [26, Section 3.3]) to the case of weighted Banach function
spaces.

Suppose Γ is a rectifiable Jordan curve, w : Γ → [0,∞] is a weight,
X is a Banach function space.

Lemma 5.11. Let Γ be locally a Carleson curve at t ∈ Γ. For every
x ∈ R, the function Wtη

x
t is regular, submultiplicative, and

α0
t (x) := α(Wtη

x
t ) = min{δ−t x, δ+t x},

β0
t (x) := β(Wtη

x
t ) = max{δ−t x, δ+t x}.

This statement follows from local analogs of [3, Lemmas 1.15, 1.16,
and Proposition 3.1].
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For a complex number γ ∈ C, we define a continuous function ϕt,γ
on Γ \ {t} by

(5.50)
ϕt,γ(τ ) := |(τ − t)γ | = |τ − t|Re γe− Im γ arg(τ−t)

= |τ − t|Re γ(ηt(τ ))Im γ .

Lemma 5.12. If w ∈ AX(Γ, t), then for every γ ∈ C, the function
Qt(ϕt,γw) is regular, submultiplicative, and

α(Qt(ϕt,γw)) = Re γ + α(Qt(η
Im γ
t w)),(5.51)

β(Qt(ϕt,γw)) = Re γ + β(Qt(η
Im γ
t w)).(5.52)

Proof. This statement is proved similarly to [24, Lemma 7.2]. By
a local analog of [3, Proposition 3.1], the function Wtϕt,Re γ is regular
and submultiplicative for every γ ∈ C and

(5.53) α(Wtϕt,Re γ) = β(Wtϕt,Re γ) = Re γ.

On the other hand, by Lemmas 4.8 4.9, the function Qtw is regular
and submultiplicative. Then, by Theorem 5.2, the function Qt(ϕt,γw)
is regular and submultiplicative for every γ ∈ C. In particular, the
function Qt(η

Im γ
t w) is regular and submultiplicative for every γ ∈ C.

From Theorem 5.2 and (5.53) it follows that

α(Qt(η
Im γ
t w)) + Re γ ≤ α(Qt(ϕt,γw))

≤ min{α(Qt(η
Im γ
t w)) + Re γ, β(Qt(η

Im γ
t w)) + Re γ},

β(Qt(η
Im γ
t w)) + Re γ ≥ β(Qt(ϕt,γw))

≥ max{α(Qt(η
Im γ
t w)) + Re γ, β(Qt(η

Im γ
t w)) + Re γ}.

From the latter inequalities we immediately obtain (5.51) (5.52).

Lemma 5.13. If w ∈ AX(Γ, t) and 1 ∈ AX(Γ, t), then for every
γ ∈ C, the function Vt(ϕt,γw) is regular, submultiplicative, and

α(Vt(ϕt,γw)) = Re γ + α(Vt(η
Im γ
t w)),(5.54)

β(Vt(ϕt,γw)) = Re γ + β(Vt(η
Im γ
t w)).(5.55)
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Proof. By Lemma 3.2(a), logw ∈ BMO(Γ, t). Then by Lemma 4.6,
the function Vtw is regular. The rest is proved by analogy with
Lemma 5.12 with the help of Theorem 5.1.

If w ∈ AX(Γ, t), then for every x ∈ R, the function Qt(ηxt w) is regular
and submultiplicative, in view of Lemma 5.12. From Theorem 4.1 and
Lemma 4.9 we deduce that the following functions are well defined for
x ∈ R:

α∗
t (x) := α(Qt(ηxt w)) = α(Q0

t (η
x
t w)),

β∗
t (x) := β(Qt(ηxt w)) = β(Q0

t (η
x
t w)).

If, in addition, 1 ∈ AX(Γ, t), then the function Vt(ηxt w) is regular
and submultiplicative for each x ∈ R, due to Lemma 5.13. Then
Theorem 4.1 and Lemma 4.5 imply that the functions

αt(x) := α(Vt(ηxt w)) = α(V 0
t (ηxt w)),

βt(x) := β(Vt(ηxt w)) = β(V 0
t (ηxt w))

are well defined for all x ∈ R.

The functions α∗
t , β

∗
t are called the indicator functions of the triple

(Γ, X,w) at t ∈ Γ. The functions αt, βt are referred to as the indicator
functions of the pair (Γ, w) at t ∈ Γ. The functions α∗

t , β
∗
t were

introduced in [25] (see also [24, 26]) for rearrangement-invariant
Banach function spaces. The functions αt, βt were defined in [3,
Chapter 3] in the context of Lebesgue spaces and Muckenhoupt weights.

Lemma 5.14. The functions αt, α∗
t are concave, the functions βt, β∗

t

are convex. In particular, αt, α∗
t and βt, β

∗
t are continuous on R.

Proof. By [35, Section 2.2, Property 6],∥∥∥|f |θ|g|1−θ∥∥∥
X

≤ ‖f‖θX‖g‖1−θ
X , θ ∈ [0, 1],

for every f, g ∈ X. With the help of this property, one can prove
concavity of α∗

t and convexity of β∗
t similarly to [3, Proposition 3.20].

Concavity of αt and convexity of βt are already proved there.
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The following statement generalizes [26, Lemma 3.5].

Lemma 5.15. (a) If w ∈ AX(Γ, t), then for x, y ∈ R,

α∗
t (x) + α0

t (y) ≤ α∗
t (x+ y) ≤ min{α∗

t (x) + β0
t (y), β∗

t (x) + α0
t (y)},

β∗
t (x) + β0

t (y) ≥ β∗
t (x+ y) ≥ max{α∗

t (x) + β0
t (y), β∗

t (x) + α0
t (y)}.

(b) If w ∈ AX(Γ, t) and 1 ∈ AX(Γ, t), then for x, y ∈ R,

αt(x) + α0
t (y) ≤ αt(x+ y) ≤ min{αt(x) + β0

t (y), βt(x) + α0
t (y)},

βt(x) + β0
t (y) ≥ βt(x+ y) ≥ max{αt(x) + β0

t (y), βt(x) + α0
t (y)}.

Proof. (a) From Lemmas 5.11 and 5.13 it follows that the functions
α∗
t , β

∗
t and α0

t , β
0
t are well defined. Applying Theorem 5.2 to the weights

w := ηxt w and ψ := ηyt , we get Part (a). Part (b) is proved analogously
with the help of Theorem 5.1 and Lemma 5.13.

Corollary 5.16. Let Γ be locally a Carleson curve at t ∈ Γ such that
δ−t = δ+t =: δt.

(a) If w ∈ AX(Γ, t), then

(5.56) α∗
t (x) = α(Qtw) + δtx, β∗

t (x) = β(Qtw) + δtx (x ∈ R).

(b) If w ∈ AX(Γ, t) and 1 ∈ AX(Γ, t), then

(5.57) αt(x) = µt + δtx, βt(x) = νt + δtx (x ∈ R).

Proof. (a) Since δ−t = δ+t = δt, we have α0
t (x) = β0

t (x) = δtx. In that
case from Lemma 5.15(a) we deduce that

(5.58) α∗
t (y) + δtx = α∗

t (x+ y), β∗
t (y) + δtx = β∗

t (x+ y)

for every x, y ∈ R. Setting y = 0 in (5.58), we arrive at (5.56). Part
(b) is proved similarly.
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5.4 Indicator functions for Nakano spaces. Let Γ be a rectifiable
Jordan curve, let Lp(·) be a Nakano space. Fix t ∈ Γ. For a weight
w ∈ ALp(·)(Γ, t), put

Nt :=
{
γ ∈ C : ϕt,γw ∈ ALp(·)(Γ, t)

}
.

Lemma 5.17. Let Γ be locally a Carleson curve at t ∈ Γ, let p ∈ Pt,
and let w ∈ ALp(·)(Γ, t). Then for every γ ∈ Nt,

(5.59) α∗
t (Im γ) = 1/p(t) + αt(Im γ), β∗

t (Im γ) = 1/p(t) + βt(Im γ).

Proof. Let γ ∈ Nt. By Theorem 5.9,

α(Qt(ϕt,γw)) = 1/p(t) + α(Vt(ϕt,γw)),(5.60)
β(Qt(ϕt,γw)) = 1/p(t) + β(Vt(ϕt,γw)).(5.61)

Note that by Lemma 5.8, 1 ∈ ALp(·)(Γ, t). Therefore, we can apply
Lemma 5.13. From (5.60) (5.61), (5.51) (5.52) and (5.54) (5.55) it
follows that

α(Qt(η
Im γ
t w)) = 1/p(t) + α(Vt(η

Im γ
t w)),

β(Qt(η
Im γ
t w)) = 1/p(t) + β(Vt(η

Im γ
t w)),

that is, equalities (5.59) hold.

Lemma 5.18. Let Γ be locally a Carleson curve at t ∈ Γ such that
δ−t = δ+t = 0, let p ∈ Pt, and let w ∈ ALp(·)(Γ, t). Then for every
x ∈ R,

(5.62)
αt(x) = µt, α∗

t (x) = 1/p(t) + µt,

βt(x) = νt, β∗
t (x) = 1/p(t) + νt,

where µt, νt are the indices of powerlikeness of the weight w at t defined
by (4.1).
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Proof. By Lemma 5.8, 1 ∈ ALp(·)(Γ, t). From Corollary 5.16 we get
for every x ∈ R,

(5.63)
α∗
t (x) = α(Qtw), αt(x) = µt,

β∗
t (x) = βt(Qtw), βt(x) = νt.

On the other hand, by Theorem 5.9,

(5.64) α(Qtw) = 1/p(t) + µt, β(Qtw) = 1/p(t) + νt.

Combining (5.63) and (5.64), we arrive at (5.62).

6. Fredholm theory for singular integral operators with
bounded measurable coefficients.

6.1 The Cauchy singular integral operator. Let Γ be a rec-
tifiable Jordan curve. We provide Γ with the counter-clockwise ori-
entation. The curve Γ divides the complex plane C into a bounded
connected component D+ and an unbounded connected component
D−. Without loss of generality we suppose that 0 ∈ D+. Let X be
a Banach function space and w : Γ → [0,∞] be a weight. Then the
weighted Banach function space Xw is a linear normed space which
becomes a Banach function space whenever w ∈ X and 1/w ∈ X ′, see
Lemma 2.5.

Theorem 6.1. Let Γ be a rectifiable Jordan curve, let w : Γ → [0,∞]
be a weight, and let X be a Banach function space. If the Cauchy
singular integral operator S is bounded on the weighted Banach function
space Xw, then w ∈ AX(Γ).

This theorem was proved for weighted rearrangement-invariant Ba-
nach function spaces in a slightly different form in [24, Theorem 3.2],
see also [22, Theorem 4.3] and [3, Theorem 4.8]. First, as in [24,
Lemma 3.3], by using the Landau lemma for the Banach function space
X (see [1, Chapter 1, Lemma 2.7]), we show that w ∈ X and 1/w ∈ X ′.
Then, by Lemma 2.5(b), the weighted Banach function space Xw is it-
self a Banach function space. The proof of [24, Theorem 3.2], see also
[23, Section 3], does not use the rearrangement-invariant property of
the space X, so it works for arbitrary weighted Banach function spaces.
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The question about the sufficiency of the condition w ∈ AX(Γ)
for the boundedness of the Cauchy singular integral operator S on
weighted Banach function spaces Xw is open. We know only that this
condition is sufficient for the boundedness in the case of Lebesgue spaces
X = Lp, 1 < p <∞, that is, when AX(Γ) = Ap(Γ) is the Muckenhoupt
class, see, e.g., [3, Theorem 4.15].

However, criteria for the boundedness of S on Nakano spaces with
Khvedelidze weights L

p(·)
� were recently proved by Kokilashvili and

Samko [30] under the condition that the contour Γ is sufficiently nice.

Theorem 6.2 (see [30, Theorem 2]). Let Γ be either a Lyapunov
Jordan curve or a Radon Jordan curve without cusps, let � be a
Khvedelidze weight (1.2), and let p ∈ P. The Cauchy singular integral
operator S is bounded on the weighted Nakano space Lp(·)� if and only
if

(6.1) 0 <
1

p(τk)
+ λk < 1 for all k ∈ {1, . . . , n}.

For weighted Lebesgue spaces Lp� this result is classic, for Lyapunov
curves it was proved by Khvedelidze [27] and for Radon curves without
cusps by Danilyuk and Shelepov [9, Theorem 2]. The proofs and history
can be found in [8, 16, 28, 40].

6.2 Singular integral operators. In the following we will assume
that Γ is a rectifiable Jordan curve, X is a Banach function space,
w : Γ → [0,∞] is a weight such that

(B) the Cauchy singular integral operator S is bounded on the
weighted Banach function space Xw;

(R) the weighted Banach function space Xw is reflexive.

Axiom (B) guarantees that, by Theorem 6.1, w ∈ AX(Γ). Therefore,
w ∈ X and 1/w ∈ X ′. Hence, Xw is a Banach function space with the
associate space X ′

1/w and

L∞ ⊂ Xw ⊂ L1.
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On the other hand, if w ∈ AX(Γ), then Γ is a Carleson curve. Axiom
(R) implies that the Banach dual (Xw)∗ of Xw coincides with its asso-
ciate space X ′

1/w and the set R of all rational functions without poles
on Γ is dense in both Xw and X ′

1/w (for details, see Subsection 2.4).

The above mentioned properties of weighted Banach functions spaces
satisfying axioms (B) and (R) allow us to prove the following statements
as in the case of weighted Lebsegue spaces, see, e.g., [16, Chapter 1] and
[3, Chapter 6]. Detailed proofs can be found in [23, Chapter 2] (see also
[24, 25]) for weighted rearrangement-invariant Banach function spaces
Xw. Note that the assumption that X is rearrangement-invariant is
not essential and can be omitted there.

We denote by K(Xw) the closed two-sided ideal of all compact
operators on Xw in the Banach algebra B(Xw) of all bounded linear
operators on Xw. As usual, I is the identity operator on Xw and
aI denotes the operator of multiplication by a measurable function
a : Γ → C.

Lemma 6.3. If a ∈ L∞, then aI ∈ B(Xw) and ‖aI‖B(Xw) ≤ ‖a‖∞.

Lemma 6.4. The operators

P+ := (I + S)/2, P− := (I − S)/2

are bounded projections on both Xw and X ′
1/w.

Lemma 6.5. If a ∈ C, then aS − SaI ∈ K(Xw).

On the weighted Banach function space Xw, or on its dual (Xw)∗ =
X ′

1/w, define the operator HΓ by (HΓϕ)(τ ) := e−iθΓ(τ)ϕ(τ ). Note that
the operatorHΓ is additive but HΓ(αϕ) = α·HΓϕ for α ∈ C. Evidently,
H2

Γ = I.

Lemma 6.6. The adjoint of S ∈ B(Xw) is

S∗ = −HΓSHΓ ∈ B(X ′
1/w).
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For a ∈ L∞, put

Ta := P+aP+ + P−, Ra := aP+ + P−.

Lemma 6.7. Let a ∈ L∞. If one of the operators Ta, Ra is semi-
Fredholm, Fredholm, left-invertible, right-invertible, invertible, then the
second operator has the same property. If the operators Ta and Ra are
semi-Fredholm, then

n(Ta) = n(Ra), d(Ta) = d(Ra).

Proof. By Lemmas 6.3 6.4, the operators aI and P± are bounded on
Xw. The rest follows from [21, Lemma 1.21].

So, it is sufficient to study only one of the operators Ta, Ra. We will
formulate our main results for the operator Ra. This operator is usually
called a singular integral operator with the coefficient a. It is well known
that Fredholm properties of this operator are closely connected with the
solvability of the Riemann-Hilbert boundary value problem, see, e.g.,
[6, 16, 38].

6.3 Hardy type subspaces. In view of Lemma 6.4, one can define
the following subspaces of Xw:

(Xw)+ := P+Xw, (Xw)0− := P−Xw, (Xw)− := (Xw)0−+̇C;

the corresponding subspaces (X ′
1/w)+, (X ′

1/w)0−, (X
′
1/w)− of X ′

1/w are
defined analogously. Also put

L1
+ :=

{
f ∈ L1 :

∫
Γ

f(τ )τndτ = 0 for n ≥ 0
}
,

(L1)0− :=
{
f ∈ L1 :

∫
Γ

f(τ )τndτ = 0 for n < 0
}
,

L1
− := (L1)0−+̇C.

Lemma 6.8. (see [47, pp. 202 206]). We have L1
+ ∩ (L1)0− = {0}

and L1
+ ∩ L1

− = C.
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Lemma 6.9. (a) If f ∈ (Xw)± and g ∈ (X ′
1/w)±, then fg ∈ L1

±. If,
in addition, f ∈ (Xw)0− or g ∈ (X ′

1/w)0−, then fg ∈ (L1)0−.

(b) We have

(Xw)+ = L1
+ ∩Xw, (Xw)0− = (L1)0− ∩Xw, (Xw)− = L1

− ∩Xw.

This lemma is proved by analogy with [3, Corollary 6.8] and [3,
Lemma 6.11]. Here we essentially use Cauchy’s theorem, Hölder’s
inequality for the weighted Banach function space Xw, and the density
of R in Xw and in X ′

1/w, see Corollary 2.11.

Lemma 6.10. Suppose f± is analytic in D± and continuous on
D±∪Γ with the possible exception of finitely many points t1, . . . , tm ∈ Γ.
Suppose that f±|Γ ∈ Xw and that f± admits the estimate

|f±(z)| ≤M |z − tk|−µ, k = 1, . . . ,m,

with some M > 0, µ > 0 for all z ∈ D± sufficiently close to tk. Then
f± ∈ (Xw)±.

This result goes back to Grudsky [17, Proposition 1.5] for Lebesgue
spaces. To prove this statement, we should repeat the proof of [3,
Lemma 6.10], replacing Lp(Γ, w) by Xw and using Lemma 6.9. For
µ ∈ (0, 1] and Lebesgue spaces this result was known for a long time
[16, Chapter 2, Theorem 4.8]. We remark that for our purposes (see
Lemma 7.1) we really need this analog of Grudsky’s lemma allowing
also the case µ > 1.

6.4 Two basic theorems. Let GL∞ denote the set of all functions
in L∞ which are invertible in L∞, that is, the set of functions a ∈ L∞

such that
ess inf
τ∈Γ

|a(τ )| > 0.

Theorem 6.11. Let a, b ∈ L∞. If the operator aP+ + bP− is semi-
Fredholm in Xw, then a, b ∈ GL∞.
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Theorem 6.12. If a ∈ GL∞, then min{n(Ra), d(Ra)} = 0.

Theorem 6.12 was proved by Coburn [7] for Toeplitz operators on
L2(T). In the form presented here Theorems 6.11 and 6.12 were proved
by Simonenko in [51] for Lebesgue spaces with Khvedelidze weights
over Lyapunov curves. For a detailed discussion of these theorems for
weighted Lebesgue spaces, see [3, Section 6.6] and [16, Sections 7.4 and
7.5]. In our case the proofs are developed analogously on the basis of
the results of subsections 6.2 6.3 and the Lusin-Privalov theorem, see,
e.g., [47, p. 292].

6.5 The local principle of Simonenko type. Two functions
a, b ∈ L∞ are said to be locally equivalent at a point t ∈ Γ if

inf
{
‖(a− b)c‖∞ : c ∈ C, c(t) = 1

}
= 0.

Theorem 6.13. Let a ∈ L∞. Suppose for each t ∈ Γ we are given a
function at ∈ L∞ which is locally equivalent to a at t. If the operators
Rat

are Fredholm in Xw for all t ∈ Γ, then Ra is Fredholm in Xw.

For weighted Lebesgue spaces, this theorem is known as Simonenko’s
local principle [50]. More information about localization techniques
can be found, e.g., in [3, 5, 16, 36]. Theorem 6.13 can be proved
similarly to [3, Theorem 6.30] with the help of Lemmas 6.5 and 6.7.

6.6 Wiener-Hopf factorization. We say that a function a ∈ L∞

admits a Wiener-Hopf factorization in the weighted Banach function
space Xw if 1/a ∈ L∞ and a can be written in the form

(6.2) a(t) = a−(t)tκa+(t) a.e. on Γ,

where κ ∈ Z, and the factors a± enjoy the following properties:

(i) a− ∈ (Xw)−, 1/a− ∈ (X ′
1/w)−, a+ ∈ (X ′

1/w)+, 1/a+ ∈ (Xw)+,

(ii) the operator (1/a+)Sa+I is bounded on Xw.

One can prove that the number κ is uniquely determined.
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Theorem 6.14. A function a ∈ L∞ admits a Wiener-Hopf factor-
ization (6.2) in the reflexive weighted Banach function space Xw if and
only if the operator Ra is Fredholm in Xw. If Ra is Fredholm, then its
index is equal to −κ.

This theorem goes back to Simonenko [49, 51]. For more about this
topic we refer to [3, Section 6.12], [5, Section 5.5], [16, Section 8.3] and
also to [6, 38] in the case of weighted Lebesgue spaces. Simonenko’s
result was generalized by the author to the case of reflexive Orlicz
spaces [22, Theorem 5.6] and to the case of reflexive rearrangement-
invariant spaces [24, Theorem 6.10]. In the case of reflexive weighted
Banach function spaces the proof is developed by analogy. The proof
is essentially based on the density of R in Xw and in X ′

1/w, Lemmas
6.8 6.9 and Theorems 6.11 6.12. Detailed proofs for the results of this
section can be found in [23, Chapter 2] for weighted Banach function
spaces Xw provided X is rearrangement-invariant. We remind the
reader that this assumption can be simply omitted.

7. Fredholmness of singular integral operators in weighted
Banach function spaces.

7.1 Local representatives. Fix t ∈ Γ. For a function a ∈
PC ∩ GL∞ we construct a “canonical” function gt,γ which is locally
equivalent to a at the point t ∈ Γ. The interior and the exterior of
the unit circle can be conformally mapped onto D+ and D− of Γ,
respectively, so that the point 1 is mapped to t, and the points 0 ∈ D+

and ∞ ∈ D− remain fixed. Let Λ0 and Λ∞ denote the images of [0, 1]
and [1,∞) ∪ {∞} under this map. The curve Λ0 ∪ Λ∞ joins 0 to ∞
and meets Γ at exactly one point, namely t. Let arg z be a continuous
branch of argument in C \ (Λ0 ∪ Λ∞). For γ ∈ C, define the function
zγ := |z|γeiγ arg z, where z ∈ C \ (Λ0 ∪ Λ∞). Clearly, zγ is an analytic
function in C \ (Λ0 ∪ Λ∞). The restriction of zγ to Γ \ {t} will be
denoted by gt,γ . Obviously, gt,γ is continuous and nonzero on Γ \ {t}.

Since a(t± 0) �= 0, we can define γt = γ ∈ C by the formulas

(7.1) Re γt :=
1

2π
arg

a(t− 0)
a(t+ 0)

, Im γt := − 1
2π

log
∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣ ,
where we can take any value of arg(a(t − 0)/a(t + 0)), which implies
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that any two choices of Re γt differ by an integer only. Clearly, there is
a constant ct ∈ C \ {0} such that a(t± 0) = ctgt,γt

(t± 0), which means
that a is locally equivalent to ctgt,γt

at the point t ∈ Γ.

7.2 Sufficient conditions for factorability of the local repre-
sentative.

Lemma 7.1. If, for some k ∈ Z and γ ∈ C, the operator
ϕt,k−γSϕt,γ−kI is bounded on the weighted Banach function space Xw,
then

(7.2) gt,γ(τ ) = (1 − t/τ )k−γτk(τ − t)γ−k, τ ∈ Γ \ {t}

is a Wiener-Hopf factorization of the function gt,γ in Xw.

Proof. Since the operator ϕt,k−γSϕ−1
t,k−γI is bounded on Xw, the

operator S is bounded on the weighted Banach function space Xϕt,k−γw.
By Theorem 6.1, ϕt,k−γw ∈ AX(Γ). In that case Γ is a Carleson curve
and ϕt,k−γw ∈ X, whence ϕt,k−γ ∈ Xw.

Let us show that (τ−t)k−γ ∈ (Xw)+. The function f(z) := (z−t)k−γ
is analytic in D+ and continuous on D+ ∪ (Γ \ {t}). For z ∈ D+,

|f(z)| = |(z − t)k−γ | = |z − t|k−Re γ−Θt(z) Im γ ,

where Θτ (z) := arg(z − t)/(− log |z − t|). As in [24, Theorem 7.7] and
[3, Lemma 7.1] with the help of Lemma 4.9 one can show that there is
a constant Mt ∈ (0,∞) such that

|f(z)| ≤ |z − t|k−Re γeMt| Im γ|(− log |z−t|) = |z − t|k−Re γ−Mt| Im γ|

for all z in a small neighborhood of t. By Lemma 6.10, (τ − t)k−γ ∈
(Xw)+. Analogously one can prove that

(τ−t)γ−k ∈ (X ′
1/w)+, (1−t/τ )k−γ ∈ (Xw)−, (1−t/τ )γ−k ∈ (X ′

1/w)−.

These facts together with the boundedness of ϕt,k−γSϕt,γ−kI on the
space Xw show that (7.2) is indeed a Wiener-Hopf factorization of the
function gt,γ .
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7.3 Necessary conditions for factorability of the local repre-
sentative.

Theorem 7.2. If the function gt,γ admits a Wiener-Hopf factoriza-
tion in the weighted Banach function space Xw, then

(7.3) −Re γ + θα∗
t (− Im γ) + (1 − θ)β∗

t (− Im γ) /∈ Z

for all θ ∈ [0, 1]. Moreover, there exists an l ∈ Z such that ϕt,l−γw
belongs to AX(Γ).

Proof. The idea of the proof (in the case of weighted Lebesgue spaces)
goes back to Spitkovsky [52] and it was further developed by Böttcher
and Yu. Karlovich [3, Proposition 7.2]. This idea was applied to the
proof in the case of reflexive rearrangement-invariant Banach function
spaces (with weights) in [24, Theorem 7.6] and [25, Theorem 4.1].
Since, for our (more general) case, the arguments are the same, we
point out only the main steps.

By Theorem 6.14, the operator gt,γP+ +P− is Fredholm. Then there
exists a c > 0 such that the operators gt,γ−εP+ + P− are Fredholm
for all ε ∈ (−c, c). Applying Theorem 6.14 again, we infer that all
functions gt,γ−ε admit a Wiener-Hopf factorization in Xw. By using
its definition, one can show that there exists an l ∈ Z such that the
operators ϕt,l−γ+εSϕ

−1
t,l−γ+εI are bounded on Xw for all ε ∈ (−c, c).

In that case, by Theorem 6.1, ϕt,l−γ+εw ∈ AX(Γ) ⊂ AX(Γ, t). By
Lemma 4.9,

(7.4) 0 ≤ (Qt(ϕt,l−γ+εw)) ≤ β(Qt(ϕt,l−γ+εw)) ≤ 1.

From Lemma 5.12 and (7.4) it follows that

0 ≤ l + ε− Re γ + α∗
t (− Im γ) ≤ l + ε− Re γ + β∗

t (− Im γ) ≤ 1

for all ε ∈ (−c, c). Hence,

−l < −Re γ + θα∗
t (− Im γ) + (1 − θ)β∗

t (− Im γ) < l − 1

for every θ ∈ [0, 1]. Thus, (7.3) holds for every θ ∈ [0, 1].
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7.4 Necessary conditions for Fredholmness. Now we are in a
position to state the main result of this paper.

Theorem 7.3. Let Γ be a rectifiable Jordan curve, let w : Γ → [0,∞]
be a weight, and let X be a Banach function space. Suppose the Cauchy
singular integral operator S is bounded on the weighted Banach function
space Xw and Xw is reflexive. If the operator aP++P−, where a ∈ PC,
is Fredholm in Xw, then a ∈ GL∞ and

(7.5) − 1
2π

arg
a(t− 0)
a(t+ 0)

+ θα∗
t

(
1

2π
log

∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣
)

+ (1 − θ)β∗
t

(
1

2π
log

∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣
)
/∈ Z

for all t ∈ Γ and all θ ∈ [0, 1].

Proof. The proof is developed by analogy with the proof of necessity
part of [24, Theorem 7.8], see also [3, Proposition 7.3].

If Ra is Fredholm, then, by Theorem 6.11, a ∈ GL∞. Fix an arbitrary
t ∈ Γ. Choose γ = γt ∈ C as in (7.1). Then the function a is
locally equivalent to ctgt,γt

at the point t, where ct ∈ C \ {0} is
some constant. If τ ∈ Γ \ {t}, then gt,γt

is continuous and nonzero
at τ . Hence, it is locally equivalent to the nonzero constant bτ :=
gt,γt

(τ ) at τ . Clearly, the operator Rbτ
:= bτP+ + P− is invertible,

(bτP++P−)−1 = b−1
τ P++P−. Therefore, the operator Rbτ

is Fredholm
for every τ ∈ Γ\{t}. Remind that the function gt,γt

is locally equivalent
to the function c−1

t a. Since

(7.6) Rc−1
t
Ra = P+c

−1
t aP+ + P− = Tc−1

t a

and the operator Rc−1
t

is invertible, from Lemma 6.7 and (7.6) it follows
that Ra is Fredholm if and only if Rc−1

t a is Fredholm. Therefore,
applying Theorem 6.14, we infer that the operator Rgt,γt

is Fredholm.
By Theorem 6.14, the function gt,γt

admits a Wiener-Hopf factorization
in Xw. From Theorem 7.2 it follows that

(7.7) −Re γt + θα∗
t (− Im γt) + (1 − θ)β∗

t (− Im γt) /∈ Z
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for all θ ∈ [0, 1]. Since t ∈ Γ is arbitrary, from (7.1) and (7.7) we
conclude that (7.5) holds for every t ∈ Γ and every θ ∈ [0, 1].

7.5 Lower estimates for essential norms. For an operator
A ∈ B(Xw), let

|A|Xw
:= inf

K∈K(Xw)
‖A+K‖B(Xw)

be its essential norm in Xw.

Theorem 7.4. Let Γ be a rectifiable Jordan curve, let w : Γ → [0,∞]
be a weight, and let X be a Banach function space. If the Cauchy
singular integral operator S is bounded on the weighted Banach function
space Xw and Xw is reflexive, then

|S|Xw
≥ cot

(
πΛΓ,X,w/2

)
, |P±|Xw

≥ 1/ sin(πΛΓ,X,w),

where
ΛΓ,X,w := inf

t∈Γ
min

{
α(Qtw), 1 − β(Qtw)

}
.

This statement is proved by a literal repetition of the proof of [25,
Theorem 4.5] using the scheme of [16, Chapter 9, Theorem 9.1]. One
can find more information about estimates of (essential) norms on
weighted Lebesgue spaces in [16, Chapter 13] and [36, Chapter 2].

8. Fredholmness of singular integral operators in weighted
Nakano spaces.

8.1 Necessary conditions for Fredholmness. The necessary
conditions for the Fredholmness of Ra in weighted Nakano spaces have
a simpler form than in the general case because we can replace the
indicator functions α∗

t and β∗
t by the indicator functions 1/p(t) + αt

and 1/p(t) + βt, respectively. More precisely, the next theorem is true.

Theorem 8.1. Let Γ be a rectifiable Jordan curve, let w : Γ → [0,∞]
be a weight, and let p ∈ P. Suppose the Cauchy singular integral
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operator is bounded on the weighted Nakano space Lp(·)w . If the operator
aP+ + P−, where a ∈ PC, is Fredholm in L

p(·)
w , then a ∈ GL∞ and

(8.1) − 1
2π

arg
a(t− 0)
a(t+ 0)

+
1
p(t)

+ θαt

(
1

2π
log

∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣
)

+ (1 − θ)βt

(
1

2π
log

∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣
)
/∈ Z

for all t ∈ Γ and all θ ∈ [0, 1].

Proof. Since p ∈ P, inequalities (5.25) are satisfied. In that case,
by Lemma 2.4, the nonweighted Nakano space Lp(·) is reflexive. On
the other hand, by Theorem 6.1, w ∈ Lp(·) and 1/w ∈ (Lp(·))′. Then
the weighted Nakano space Lp(·)w is also reflexive, due to Corollary 2.8.
Thus, all assumptions of Theorem 7.3 are satisfied and we can repeat
its proof. In view of Theorem 7.2, there exists an l ∈ Z such that
ϕt,l−γt

w ∈ ALp(·)(Γ), where γt is given by (7.1). In that case, by
Lemma 5.17,

− Re γt + θα∗
t (− Im γt) + (1 − θ)β∗

t (− Im γt)
= −Re γt + 1/p(t) + θαt(− Im γt) + (1 − θ)βt(− Im γt).

Therefore, we can replace condition (7.5) by condition (8.1) in the case
of weighted Nakano spaces.

For Lebesgue spaces Lpw with Muckenhoupt weights w (that is, in the
case when p(·) is constant), condition (8.1) becomes also sufficient for
the Fredholmness of Ra, see [3, Proposition 7.3].

8.2 Lower estimates for essential norms.

Theorem 8.2. Let Γ be a rectifiable Jordan curve, let w : Γ → [0,∞]
be a weight, and let p ∈ P. If the Cauchy singular integral operator is
bounded on the weighted Nakano space Lp(·)w , then

|S|
L

p(·)
w

≥ cot
(
πΛΓ,p,w/2

)
, |P±|Lp(·)

w
≥ 1/ sin(πΛΓ,p,w),
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where

ΛΓ,p,w := inf
t∈Γ

min
{

1
p(t)

+ µt, 1 − 1
p(t)

− νt

}
.

By Theorem 6.1, w ∈ ALp(·)(Γ). Therefore, the latter theorem
immediately follows from Theorem 7.4 and Theorem 5.9.

If logw ∈ VMO(Γ) (in particular, if w = 1), then from Lemma 4.7
and (5.25) it follows that

ΛΓ,p,w = inf
t∈Γ

min
{

1
p(t)

, 1 − 1
p(t)

}
= min

{
inf
t∈Γ

1
p(t)

, 1 − sup
t∈Γ

1
p(t)

}

= min
{

1/p∗, 1 − 1/p∗
}
.

8.3 Fredholm criterion.

Theorem 8.3. Let Γ be either a Lyapunov Jordan curve or a Radon
Jordan curve without cusps, let p ∈ P, and let � be a Khvedelidze weight
(1.2) satisfying (6.1). Then the operator aP+ + P−, where a ∈ PC, is
Fredholm in the weighted Nakano space Lp(·)� if and only if

(8.2) a(t± 0) �= 0, − 1
2π

arg
a(t− 0)
a(t+ 0)

+
1
p(t)

+ λ(t) /∈ Z

for all t ∈ Γ, where

(8.3) λ(t) =
{
λk, if t = τk, k ∈ {1, . . . , n},
0, if t /∈ Γ \ {τ1, . . . , τn}.

Proof. By Theorem 6.2, the operator S is bounded on the (reflexive)
weighted Nakano space Lp(·)� .

Necessity. By Proposition 4.4, for Lyapunov curves and Radon
curves without cusps, we have δ−t = δ+t = 0 whenever t ∈ Γ. By
Lemma 5.18, the indicator functions of the pair (Γ, �) are constants
αt(x) = µt, βt(x) = νt for x ∈ R, where the indices of powerlikeness
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µt, νt of the Khvedelidze weight (1.2) coincide with λ(t) given by (8.3).
Thus,

θαt

(
1

2π
log

∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣
)

+ (1 − θ)βt

(
1

2π
log

∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣
)

= λ(t)

for every θ ∈ [0, 1] and every t ∈ Γ. Therefore, the necessity of
conditions (8.2) follows from Theorem 8.1. The necessity part is proved.

Sufficiency. From (8.2) it follows that for every t ∈ Γ, there exists an
mt ∈ Z such that

0 < mt − Re γt +
1
p(t)

+ λ(t) < 1,

where γt is given by (7.1). By Theorem 6.2, the operator S is bounded
on the weighted Nakano space Lp(·)

�̃t

, where

�̃t(τ ) := |τ − t|mt−Re γt�(τ ), τ ∈ Γ.

In view of (5.50) and Proposition 4.4, there exist constants C1(t), C2(t)∈
(0,∞) such that

C1(t)�̃t(τ ) ≤ ϕt,mt−γt
(τ ) ≤ C2(t)�̃t(τ ), τ ∈ Γ \ {t}.

Therefore, S ∈ B(Lp(·)
�̃t

) if and only if ϕt,mt−γt
Sϕt,γt−mt

I ∈ B(Lp(·)� ).
By Lemma 7.1, the function gt,γt

admits a Wiener-Hopf factorization in
the weighted Nakano space Lp(·)� . Due to Theorem 6.14, for every t ∈ Γ,
the operator gt,γt

P++P− is Fredholm. Then the operator cgt,γt
P++P−

is Fredholm for c ∈ C \ {0} (see the proof of Theorem 7.3).

Since the function ctgt,γt
with a specially chosen constant ct ∈ C\{0}

is locally equivalent to the function a ∈ PC at every point t ∈ Γ, in
view of Theorem 6.13, the operator Ra = aP+ +P− is Fredholm in the
weighted Nakano space Lp(·)� .

In Theorem 8.3 the coefficient a can have a countable set of jumps.
If a has only a finite number of jumps and � = 1, this result was
obtained in [31, Theorem A] (as well as a formula for the index of
the operator Ra). Note that the transition from finitely many to
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infinitely many jumps is more or less standard (see [16, Section 9.8]
for Lebesgue spaces with Khvedelidze weights over Lyapunov curves),
using the stability of Fredholm operators and localization techniques,
see Section 6.5. We give the proof of Theorem 8.3 here for completeness.
For Lebesgue spaces with Khvedelidze weights over Lyapunov curves
the corresponding result was obtained in the late sixties by Gohberg
and Krupnik [16, Chapter 9].
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