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FREDHOLMNESS OF SINGULAR INTEGRAL
OPERATORS WITH PIECEWISE CONTINUOUS
COEFFICIENTS ON WEIGHTED
BANACH FUNCTION SPACES

ALEXEI YU. KARLOVICH

ABSTRACT. We prove necessary conditions for the Fred-
holmness of singular integral operators with piecewise contin-
uous coefficients on weighted Banach function spaces. These
conditions are formulated in terms of indices of submultiplica-
tive functions associated with local properties of the space,
of the curve, and of the weight. As an example, we con-

sider weighted Nakano spaces Lﬁ,(') (weighted Lebesgue spaces
with variable exponent). Moreover, our necessary conditions
become also sufficient for weighted Nakano spaces over nice
curves whenever w is a Khvedelidze weight, and the variable
exponent p(t) satisfies the estimate

Ip(7) = p(t)] < A/(—log|r —t]).

1. Introduction. Let I' be a Jordan curve, that is, a curve that
homeomorphic to a circle. We suppose that I' is rectifiable. We
equip I' with Lebesgue length measure |d7| and the counter-clockwise
orientation. The Cauchy singular integral of a measurable function
f: T — C is defined by

(Sf)(t) == lim i/ MdT, tel,
R—0 1 I\I'(+,R) T—1

where the “portion” I'(t, R) is

I't,R):={rel:|r—t| <R}, R>0.
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It is well known that (Sf)(t) exists almost everywhere on I' whenever
f is integrable, see [11, Theorem 2.22]. A measurable function w : T' —
[0, 0] is referred to as a weight if 0 < w(t) < oo almost everywhere on
I'. The Cauchy singular integral generates a bounded linear operator
S on the weighted Lebesgue space L2, 1 < p < oo, with the norm

£z = (/F f(7)|pwp(r)|d7|>1/p

if and only if w is a Muckenhoupt weight, w € A,(T"), that is,

1 1/p 1 , 1/17/
sup sup (—/ ’u}p(T)|dT|> (—/ w™P (7')|d7'|) < 00,
te R>0 \ R Jr,r) R Jr,r)
1
p P
see, e.g., [3, Theorem 4.15]. By Holder’s inequality, if w € A,(T'), then
I" is a Carleson, or Ahlfors-David regular, curve, that is,

I'(t
(1.1) Cr := sup sup L@ R

< 00,
tel R>0 I

where || denotes the measure of a measurable set Q@ C I'. The
constant Cr is said to be the Carleson constant. We denote by PC
the Banach algebra of all piecewise continuous functions on the curve
I': by definition, a is in PC' if and only if a is in L* and the one-sided
limits

a(t £0) := Tll»ItIlO a(T)

exist for every t € I

A bounded linear operator A on a Banach space is said to be semi-
Fredholm if its image is closed and at least one of the so-called defect
numbers

n(A) :=dimker A, d(A) := dimker A*

is finite. A semi-Fredholm operator A is called Fredholm if both n(A)
and d(A) are finite. In this case the difference n(A) — d(A) is referred
to as the index of the operator A. Basic properties of (semi)-Fredholm
operators are discussed in [5, 16, 40] and in many other monographs.
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The study of Fredholmness of one-dimensional singular integral op-
erators of the form

R,:=aP,+P_, a€PC, P.:=(I+85)/2

on Lebesgue spaces with power (Khvedelidze) weights
(12) o) = [[lt—ml™, mel, kefl,....n}, neN,
k=1

over Lyapunov curves started in the fifties with Khvedelidze [27] and
was continued in the sixties by Widom, Simonenko, Gohberg and
Krupnik, and others. The history and corresponding references can
be found, e.g., in [3, 16, 21, 28, 40]. In the beginning of the nineties,
Spitkovsky proved Fredholm criteria for singular integral operators with
piecewise continuous coeflicients on Lebesgue spaces with Muckenhoupt
weights over smooth curves [52]. In the middle of nineties, Bottcher
and Yu. Karlovich accomplished the Fredholm theory for the algebra
of singular integral operators with piecewise continuous coefficients
on Lebesgue spaces with Muckenhoupt weights over general Carleson
curves. These results are documented in [3]; see also the brief but nice
presentation in [4].

Lebesgue spaces LP;1 < p < oo, are the simplest examples of so-
called Banach function spaces introduced by Luxemburg in 1955. This
scale of spaces includes Orlicz, Lorentz, and all other rearrangement-
imwvariant spaces. By analogy with weighted Lebesgue spaces, for a
Banach function space X and a weight w, it is possible to define the
weighted Banach function space

Xy = {f is measurable on I and fw € X}.

Under some restrictions on the weight w, the space X, is itself a
Banach function space, although if X is a rearrangement-invariant
Banach function space, then X, is not necessarily rearrangement-
invariant (even if X is a Lebesgue space). Another interesting class
of Banach function spaces which are not rearrangement-invariant are
constituted by Nakano spaces LP() (generalized Lebesgue spaces with
variable exponent). For details and references, see Section 2.
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Unfortunately, little known about the boundedness of S on general
weighted Banach function spaces X,,. As far as we know, even a
criterion for the boundedness of S on Orlicz spaces LY with general
weights w over general Carleson curves is unknown at the moment
(February, 2003). We proved necessary conditions for the boundedness
of S on weighted rearrangement-invariant Banach function spaces [24,
Theorem 3.2] in terms of an analog of the Muckenhoupt class. On
the other hand, if a weight w belongs to the Muckenhoupt classes
Ai/ay () and Ay /5, (T') where ax, Bx € (0, 1) are the Boyd indices of a
rearrangement-invariant Banach function space X, then S is bounded
on the weighted rearrangement-invariant Banach function space X,,,
see [26, Theorem 4.5].

On the basis of these boundedness results, following the approach
of Bottcher, Yu. Karlovich, and Spitkovsky, the author proved sepa-
rately necessary and sufficient conditions for Fredholmness of singular
integral operators with piecewise continuous coefficients on weighted
rearrangement-invariant Banach function spaces [25, 26]. Under some
restrictions on spaces, curves, and weights, these conditions coincide,
that is, become criteria. In those cases, the Banach algebra of singular
integral operators with piecewise continuous coefficients is also studied
[26].

Very recently Kokilashvili and Samko have proved criteria for the
boundedness of S on Nakano spaces LZ(') with Khvedelidze weights

o over Lyapunov curves or Radon curves without cusps provided the
variable exponent p satisfies the estimate

(1.3)  p(7) —p()] < A/(=log|r —t]), mtel, [r—t[<1/2

see [30, Theorem 2] or Theorem 6.2. With the help of this key result,
they have proved Fredholm criteria for the operator a P, + bP_ with
piecewise continuous functions a, b having finite numbers of jumps on
(non-weighted) Nakano spaces LP(), see [31, Theorem A].

For an arbitrary weight w and an arbitrary Banach function space
X, we define the weighted Banach function space X,,. Assume that

(B) the Cauchy singular integral operator S is bounded on X,;
(R) X, is reflexive.

We show that property (B) implies the condition Ax(T") of Mucken-
houpt type. In that case X,, is itself a Banach function space. Under
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the assumptions (B) and (R) we prove necessary conditions for Fred-
holmness of singular integral operators R, with piecewise continuous
coefficients a in the weighted Banach function spaces X,,. This result
generalizes corresponding necessary conditions in [25, Theorem 4.2]. As
an example, we consider these necessary conditions in Nakano spaces
Lﬁ(') with general weights w. They have almost the same form as in the
case of Lebesgue spaces LP with Muckenhoupt weights over Carleson
curves, see [3, Proposition 7.3]. We need only replace the constant
p (for weighted Lebesgue spaces LP) by the value p(t) of the vari-
able exponent p(-) at each point ¢t € I' (for weighted Nakano spaces

Lﬁ(')). Our approach is based on a local principle of Simonenko type,
the Wiener-Hopf factorization of local representatives, and the theory
of submultiplicative functions associated with local properties of the
curve, of the weight, and of the space. Using the local principle allows
us to consider coefficients a having a countable number of jumps (in
contrast to [31], where only a finite number of jumps is allowed).

The paper is organized as follows. In Section 2 we collect necessary
preliminaries on weighted Banach function spaces X, and Nakano
spaces LP(). In Section 3 we define an analog of the Muckenhoupt class
A, (T), replacing the norm in L? by the norm in a Banach function space
X. We denote this class by Ax(I'). We show that if w € Ax(T") and
1 € Ax(T), then log w has bounded mean oscillation. In Section 4 we
recall the definitions and some properties of submultiplicative functions
associated with the local behavior of the curve, of the weight, and of
the space. In Section 5 we study inequalities between the indices of
submultiplicative functions defined in Section 4. We investigate so-
called indicator functions of, 5; and a4, B; of the triple (T', X, w) and
of the pair (T',w), respectively. In particular, we show that if X is a
Nakano space LP(") with a variable exponent p(+) satisfying (1.3), then
we can separate the influence of the space from the influence of the
weight and the curve, that is,

1 PRSI S
S T B = )

aj(z) =
for x € R such that |(7 — ¢)¥T|w(r) € Ay, (T, t), where Ay, (T, t)
is the local analog of A, (). So, weighted Nakano spaces satisfy the
“disintegration condition” in the terminology of [24, 26].
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In Section 6 we prove that the condition w € Ax(T") is necessary
for the boundedness of the Cauchy singular integral operator S on the
weighted Banach function spaces X,,. Further we extend basic results
on the Fredholmness of singular integral operators with bounded mea-
surable coefficients (the local principle, the theorem about a Wiener-
Hopf factorization, etc.) to weighted Banach function spaces satisfying
Axioms (B) and (R). These results are natural extensions of the classi-
cal theory for Lebesgue spaces with Khvedelidze weights over Lyapunov
curves, see, e.g., [16, Chapters 7-8] or [40, Chapter 4]. A canonical lo-
cal representative g, ., for a piecewise continuous function is constructed
in Section 7. We prove separately necessary and sufficient conditions
for factorability of g; , in the weighted Banach function space X,. On
the basis of our necessary conditions for factorability, with the help of
the results of Section 6, we prove necessary conditions for Fredholmness
of the singular integral operator R, = aP} + P_ with a € PC in X,,.
These conditions are formulated in terms of the indicator functions o
and 37 defined in Section 5. In Section 8 we reformulate these neces-
sary conditions for weighted Nakano spaces qu(') with general weights
w and variable exponents satisfying (1.3) in terms of simpler indicator
functions a; and (;. With the help of the boundedness criteria by Kok-
ilashvili and Samko [30, Theorem 2], we prove that the latter necessary
conditions become also sufficient if w = p is a Khvedelidze weight and
I is either a Lyapunov Jordan curve or a Radon Jordan curve without
cusps.

2. Weighted Banach function spaces.

2.1 Banach function spaces. Let I' be a rectifiable Jordan
(i.e., homeomorphic to a circle) curve equipped with Lebesgue length
measure |d7|. The set of all measurable complex-valued functions on
' is denoted by M. Let M™ be the subset of functions in M whose
values lie in [0,00]. The characteristic function of a measurable set
E C T is denoted by Xg.

Definition 2.1 (Luxemburg, 1955, see [1, Chapter 1, Definition 1.1]).
A mapping p : M+ — [0,00] is called a Banach function norm if, for
all functions f,g, fn (n € N) in M™, for all constants a > 0, and for
all measurable subsets E of ', the following properties hold:
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Al
A2

p(f) =0 f=0ae, plaf) =ap(f), p(f+g) < p(f) + p(9),
0<g<fae =p(g) <p(f) [(the lattice property),

A3)0< fr T fae = p(fn) T p(f) (the Fatou property),
Ad) p(Xg) < o0,

(A5) fE 7)|d7| < Crp(f)
with Cg € (0,00) may depend on E and p but is independent of f.

(A1)
(A2)
(A3)
(A4)

When functions differing only on a set of measure zero are identified,
the set X of all functions f € M for which p(|f]) < oo is called a
Banach function space. For each f € X, the norm of f is defined by

I1fllx == p(f])-

The set X under the natural linear space operations and under this
norm becomes a Banach space [1, Chapter 1, Theorems 1.4 and 1.6].

If p is a Banach function norm, its associate norm p’ is defined on
MT by

—Sup{/f T)|dr| : feMT, p(f)<1}, ge Mt

It is a Banach function norm itself [1, Chapter 1, Theorem 2.2]. The
Banach function space X’ determined by the Banach function norm p’ is
called the associate space (Kdthe dual) of X. The associate space X' is a
subspace of the dual space X*. The construction of the associate space
implies the following Holder inequality for Banach function spaces.

Lemma 2.2 (see [1, Chapter 1, Theorem 2.4]). Let X be a Banach
function space and X' be its associate space. If f € X and g € X',
then fg is integrable and || fgllr < |Ifllx|lgllx’-

2.2 Rearrangement-invariant Banach function spaces. Let
Mo and M be the classes of almost everywhere finite functions in
M and MT, respectively. Two functions f,g € Mj are said to be
equimeasurable if

(rel:|f(r) >)\}‘ - ‘{Ter;\g(7)| > A} forall A > 0.
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A Banach function norm p : M* — [0,00] is called rearrangement-
invariant if for every pair of equimeasurable functions f,g € M the
equality p(f) = p(g) holds. In that case, the Banach function space X
generated by p is said to be a rearrangement-invariant Banach function
space (or simply rearrangement-invariant space). Lebesgue, Orlicz,
Lorentz, and Lorentz-Orlicz spaces are classical examples of rearrange-
ment-invariant Banach function spaces, see, e.g., [1] and the references
therein.

If X is an arbitrary rearrangement-invariant Banach function space
and X’ is its associate space, then for a measurable set £ C T,

(2.1) IXelxXelx = |E],

see, e.g., [1, Chapter 2, Theorem 5.2].

2.3 Nakano spaces LP(). Function spaces LP() of Lebesgue type
with variable exponent p were studied for the first time probably by
Orlicz [45] in 1931. Inspired by the successful theory of Orlicz spaces,
Nakano defined in the late forties [43, 44] so-called modular spaces. He
considered the space LP() as an example of modular spaces. Musielak
and Orlicz [42] extended Nakano’s definition of modular spaces in 1959.
Actually, that paper was the starting point for the theory of Musielak-
Orlicz spaces (generalized Orlicz spaces generated by Young functions
with a parameter), see [41].

Let p : T' — [1,00) be a measurable function. Consider the convex
modular (see [41, Chapter 1] for definitions and properties)

m(f,p) == / ()P dr].

Denote by LP() the set of all measurable complex-valued functions f
on I" such that m(\f, p) < oo for some A = A(f) > 0. This set becomes
a Banach space with respect to the Luxemburg-Nakano norm

1llzor = inf {A >0 m(f/Ap) <1},

see, e.g., [41, Chapter 2]. So, the spaces LP() are a special case of
Musielak-Orlicz spaces. Sometimes the spaces LP() are referred to as
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Nakano spaces, see, e.g., [13, p. 151], [19, p. 179]. We will follow
this tradition. Clearly, if p(-) = p is constant, then the Nakano space
LP() is isometrically isomorphic to the Lebesgue space LP. Therefore,
sometimes LP() are called generalized Lebesgue spaces with variable
exponent.

Lemma 2.3 (see, e.g., [12, Proposition 1.3]). Let p: ' — [1,00) be
a measurable function. The Nakano space LP\) is a Banach function
space.

It is not difficult to show that LP() is not rearrangement-invariant,
in general.

The following result on the reflexivity and duality of Nakano spaces
was precisely stated in [32, Theorem 2.3 and Corollary 2.7], although
it can be obtained from more general results for Musielak-Orlicz spaces
[41, Chapters 1-2], see also [45].

Lemma 2.4. Let p:T' — [1,00) be a measurable function. If

1 < essinf p(t) < esssupp(t) < oo,
tel tel

then the Nakano space L) is reflexive. Its associate space coincides
(up to the equivalence of the norms) with the Nakano space LP (), where

p(7)

pir) = p(r) -1

Finally, Nakano spaces are important in applications to fluid dynam-
ics [48].

2.4 Weighted Banach function spaces. Let X be a Banach
function space generated by a Banach function norm p and let w : I' —
[0, 00] be a weight. Define the mapping p,, : M — [0, 00] and the set
X by

pulf)i=p(fw) (FeMT),  Xy:={feM": fuex}.
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Lemma 2.5. (a) p,, satisfies Azioms (A1)—(A3) in Definition 2.1
and X, s a linear normed space with respect to the norm

[fllx. = puw((f]) = p(Ifw]) = [ fwllx;

(b) if w € X and 1/w € X', then py is a Banach function norm and
X 1s a Banach function space generated by p,,. Moreover,

L*c X, cL

(c) ifw e X and 1/w € X', then X{/w is the associate space for the
Banach function space X,,.

Proof. Part (a) follows from Axioms (A1)-(A3) for the Banach
function norm p and the fact that 0 < w(7) < oo almost everywhere
onT.

(b) If w € X, then by Axiom (A2) for p, we get wXg € X for every
measurable set E of I'. Therefore, p,(Xg) = p(wXg) < oo. Thus,
pw satisfies Axiom (A4). By Holder’s inequality, see Lemma 2.2, and
Axiom (A2) for p, we have

sl = [ () 2D jar)
(2.2) /E /F( X i

< p(fwxe)p (Xe/w)
= CEpw(f)a

where Cg := p'(Xg/w) € (0,00). This constant, clearly, depends on
p,w, and E, but it is independent of f. Therefore, p,, satisfies Axiom
(A5). Thus, p,, is a Banach function norm and X,, is a Banach function
space.

From (2.2) and Axiom (A2) for X’ it follows that
[l < Ifllx, 1L/ wlx f € Xo.
Hence, X,, C L', in view of 1/w € X’. On the other hand, for f € L>,

0<|f(D)| <Ifllo a.e. on T.
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By Axioms (A2) and (Al) for p,, we have

[flx0 = Pu(f]) < pull[fllsc) = [ flloopuw (1) = [ fllocllw]x-
Thus, L™ C X, in view of w € X. Part (b) is proved.
(c) For g € M™, we have

@ww»ww{ﬂﬂﬂmmmwfeMﬂpaﬂs§

—sup{ [ (s (L2 Yarl - e, p(fw) <1
i (55

:sup{/rh(T)(g(T)>|dT|: he M, p(h)gl}

We will refer to the normed space X,, as a weighted Banach function
space generated by the Banach function space X and the weight w.
From Lemma 2.5(b) it follows that the weighted Banach function space
X, is a Banach function space itself whenever w € X and 1/w € X'.

For other definitions (different from ours) of weighted Banach func-
tion spaces, see, e.g., [34, 37].

2.5 Separability and reflexivity of weighted Banach function
spaces. A function f in a Banach function space X is said to have
absolutely continuous norm in X if | fXg, ||x — 0 for every sequence
{E,}22, of measurable sets on T satisfying X, — 0 almost everywhere
on I' as n — oo. If all functions f € X have this property, then
the space X itself is said to have absolutely continuous norm, see [1,
Chapter 1, Section 3].

In this subsection we assume that X is a Banach function space and
w is a weight such that w € X and 1/w € X’. Then, by Lemma 2.5(b),
the weighted Banach function space X,, is itself a Banach function
space.

Proposition 2.6. If X has absolutely continuous norm, then X,
has absolutely continuous norm too.



274 A.YU. KARLOVICH

Proof. If f € X, then fw € X has absolutely continuous norm in X.
Therefore, ||fXE, | x, = [[fwXEg, ||x — 0 for every sequence {F,}>2
of measurable sets on I' satisfying Xg, — 0 almost everywhere on I' as
n — oco. Thus, f € X, has absolutely continuous norm in X,. o

From Lemma 2.5 and [1, Chapter 1, Corollaries 4.3, 4.4] we obtain
the following.

Lemma 2.7. (a) The Banach space dual (X,)* of the weighted
Banach function space X, is isometrically isomorphic to the associate
space X{/w if and only if X, has absolutely continuous norm. If X,, has
absolutely continuous norm, then the general form of a linear functional
on Xy, is given by

G(f) ::/Ff(’r)ﬁw’ﬂv 9€ X1 and [IGllx,)- = llgllx;

1w

(b) The weighted Banach function space X,, is reflexive if and only
if both X, and X{/w have absolutely continuous norm.

Corollary 2.8. If X is reflexive, then X, is reflexive.

Proof. If X is reflexive, then, by [1, Chapter 1, Corollary 4.4], both
X and X' have absolutely continuous norm. In that case, due to
Proposition 2.6, both X,, and X7 Jw have absolutely continuous norm.

By Lemma 2.7(b), X,, is reflexive. O

Since Lebesgue length measure |dr| is separable (for the definition of
a separable measure, see, e.g., [1, p. 27] or [20, Section 6.10]), from
Lemma 2.5 and [1, Chapter 1, Corollary 5.6] we immediately get the
following criterion.

Lemma 2.9. The weighted Banach function space X,, is separable
if and only if it has absolutely continuous norm.

We denote by C the set of all continuous functions on I' and by R
the set of all rational functions without poles on the curve I'.  With
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the help of Lemmas 2.7 and 2.9, literally repeating the proof of [25,
Lemma 1.3], one can get the following.

Lemma 2.10. The weighted Banach function space X,, is separable
if and only if C is dense in X,,.

Corollary 2.11. If X, (or X) is reflexive, then R is dense in X,
and in its associate space Xi/w.

Proof. If X, is reflexive, then by Lemmas 2.7(b) and 2.9, both X,
and X Jw are separable. This implies that C' is dense in X,, and in
X{/w, due to Lemma 2.10. In view of the Mergelyan theorem (see, e.g.,
[14, Chapter III, Section 2]), every function in C' may uniformly be
approximated by functions in R. Thus, R is dense in X, and in X7 Juw
If X is reflexive, we need first apply Corollary 2.8 and then repeat the
above arguments. O

3. Analogs of the Muckenhoupt class.

3.1 Definitions. Let X be a Banach function space. Fix t € I'. For
a weight w : I' — [0, oo], put

1
B r(w) := E”wxl“(t,R)||X||XF(t,R)/wHX’a R >0,

where Xp(; gy is the characteristic function of the portion I'(t, R).
Consider the following classes of weights:

Ax(T,t) := {w : JS%Ii%Bt’R(w) < OO}7

Ax(T) := {w : sup sup B, g(w) < oo}
tel’ R>0
Obviously, Ax(T') € Ax(T',t) for t € I'. If X is a Lebesgue space
LP,p € (1,00), then Ax(I") is the Muckenhoupt class A,(I'). For a
detailed discussion of Muckenhoupt weights on curves, see, e.g., [3].
The classes Ax(T',t) and Ax(T") were defined in [24] (see also [22,
25]) for rearrangement-invariant spaces X. Here we assume only that
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X is a Banach function space. Our definition is similar to a definition in
[2]. For other generalizations (different from ours) of the Muckenhoupt
class A,(I") in the setting of Orlicz and Lorentz spaces, see, e.g., [15,
29] and in the setting of Banach function spaces, see [34].

With the help of Hélder’s inequality (see Lemma 2.2), it is easy to

show that w € Ax(T',t) implies
I'(t, R
(3.1) Cr, = sup I, R)| < o0.
r>0 It

We say that a rectifiable Jordan curve I' is locally a Carleson curve
at the point t € T if (3.1) is satisfied. In that case the constant
Cr, is referred to as the local Carleson constant at the point t € T.
Analogously, if w € Ax(T"), then

Cr =supCry < 00,
tel

that is, I' is a Carleson curve.

3.2 Bounded and vanishing mean oscillation. Let I' be a
rectifiable Jordan curve. Let f : ' — [—o0,00] and f € L'. Suppose
teT,§e (0,00], and R € (0,00). Put

1
Q(f,R) = ————— 7)|dT|,
(. ) IT(t, R)| F(t,R)f( Jlar
Ms(f) == sup 1 |f() = Qu(f, R)||dr].

o<r<s [Tt R)| Jrw,r)

A function f is said to be of bounded mean oscillation at the point t € I'
if |[fllet = Moos(f) < co. In this case we will write f € BMO(T, ).
A function f € BMO(T,t) has vanishing mean oscillation at the point
telif

lim M, =0.

512(1) 5(f)

In that case we will write f € VMO(T, ).

One says that a function f : I' — [—o00,00] is of bounded mean
oscillation on T if f € BMO(T,t) for all t € T and

Hf”* ‘= sup ||f |*,t < 00.
tel
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The class of functions of bounded mean oscillation on I' is denoted by
BMO(T'). A function f € BMO(T) is said to be of vanishing mean
oscillation on T if

lim sup Ms(f) = 0.

6—0 ¢er

The class of functions of vanishing mean oscillation on I' is denoted
by VMO(T). Clearly, BMO(T') ¢ BMO(,t) and VMO(T) C
VMO(T,t) for every t € T

3.3 Bounded mean oscillation of logarithms of weights. Let

dy := max |t —t|.
el

For a weight w : I' — [0,00] such that w € X and 1/w € X', we
have w,1/w € L'. Then, taking into account the obvious inequality
|logz| <z + 1/z for x € (0,00), we deduce that logw € L!. Fort € T
and R > 0, put

lwXre,ryllx IXre,r)ll X

T(t, R)| ’
||Xr(t,R) | x ||XF(t,R)/wHX’
IT'(t, R)|

C(w,t, R) := exp(—(logw, R))

C'(w,t, R) := exp((logw, R))
Clearly, these quantities are well defined.

Lemma 3.1. (a) If w e Ax(T',t) and 1 € Ax(T,t), then

(3.2) 1 < sup C(w,t,R) < oo, 1< supC'(w,t,R) < oco.
R>0 R>0

(b) If we Ax(T') and 1 € Ax(T), then
(3.3)  1<supsup C(w,t,R) <oo, 1<supsupC’(w,t,R)< oo.

tel’ R>0 tel’ R>0

Proof. The proof is developed by similarity to [25, Lemma 1.5]. Ap-
plying Jensen’s inequality (see, e.g., [33, p. 78]) and Holder’s inequality
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(see Lemma 2.2), we obtain

1
exp(Q(logw, R)) < ———— w(T)|dT
( t( )) ‘P(t,R” I(t.R) ( )‘ ‘

lwXre,r)llx IXr@,r) | x7

- I0(t, R)|
Hence,
(3.4) 1< C(w,t,R), R>0.
Analogously,
(3.5) 1<C'(w,t,R), R>0.

Inequalities (3.4) and (3.5) imply that (3.2) is equivalent to

(3.6) sup (C(w,t,R)C'(w,t,R)) < 00

R>0

and (3.3) is equivalent to

(3.7) sup sup (C’(w,t,R)C'(w,t,R)) < 00.
tel R>0

Since I'(¢, R) =T for R > d;, we have for every t € T,

sup By g(w) = sup By r(w),
(3.8) R>0 RE(0,2d]
' sup B, g(1) = sup By g(l),
R>0 Re(0,2d¢]

(3.9) sup (C(w,t,R)C/(w,t,R)) = sup (C(w,t,R)C'(w,t,R)).
R>0 0<R<2d,
Evidently, R/2 < |['(t,R)| for R € (0,2d;]. Taking into account the
latter inequality and the definitions of C(w,t, R),C'(w,t, R), we get

for t € T and R € (0, 2dy],

llwXre,r)ll x X, Ry /W] x
T(t, R)|
IXree, m)llx X, r) | x7
T'(t, R)|
< 4By r(w)Bt,r(1).

C(w,t, R)C'(w,t, R) <




FREDHOLMNESS OF SINGULAR INTEGRAL OPERATORS 279

Therefore,

sup (C(w,t,R)O'(w,t,R))
Re(0,2d,]
(3.10)

§4( sup Bt,R(W))( sup Bt,R(l))-
RE(0,2d,] RE(0,2d,]

From (3.8)—(3.10) it follows that

sup (C’(w,t,R)C’(w,t, R))

(3.11) fi=0
< 4( sup Bt,R(w)) ( sup Bt,R(l)),
R>0 R>0
sup sup (C(w, t,R)C'(w,t, R))
(3.12) 'L R0

< 4( sup sup Bt,R(w)) (sup sup Bt’R(1)>.
tel’ R>0 tel’ R>0

(a) If w e Ax(T,¢) and 1 € Ax(T,t), then (3.11) implies (3.6), but
we have shown that (3.6) is equivalent to (3.2). Part (a) is proved. Part
(b) is proved similarly by using (3.12) and the equivalence of (3.7) and
(3.3). o

Lemma 3.2. (a) If w € Ax(T',t) and 1 € Ax(T,t), then logw €
BMO(T,t).

(b) If we Ax(T') and 1 € Ax(T'), then logw € BMO(T).

Proof. This statement is proved by analogy with [25, Lemma 1.6],
see also [3, Proposition 2.4]. Put Q(R) := Q;(logw, R),

I (t,R) = {T e T(t,R) : logw(r) > Qt(R)},

I_(t,R) = {T eT(t,R) : logw(r) < Qt(R)}.



280 A.YU. KARLOVICH

Due to Jensen’s inequality [33, p. 78],

(3.13) exp <|I‘(t14Rm ) [logw(T) — Qt(R)||d7'|>
1
< —|1"(t, B e exp (1og w(T) — Qt(R)) |dT|
1
T e m (~ (oguw(r) — u(R)))dr]

1
< m/rexp (logw(r) - Qt(R))XF(t7R)(7')|dT|

1
TR - - U(R))) drl.
TR /reXp( (logw(r) = () )Xre.r)(7)ld7]
Applying Holder’s inequality (see Lemma 2.2) to the first term on the
right of (3.13), we get

1
G149 o /F exp (logw(r) = Q(R) ) Xrie,m) (7)dr]

< H exp (10g w(-) — Qt(R))XF(t’m(')HX%

_ o IXrer)lxXeem x
IT(t, R)|

= C(w,t, R).

Analogously,
(3.15)

1
_ - < :
g e (— Gozulr) = () e (ldr] < 't )
Combining (3.13)—(3.15), we see that for every t € T and R > 0,
1 / ,
exp | =——— logw(7)—Q(R)| dT) < C(w,t, R)+C"(w,t, R).
(7o fen il : :
Consequently,

(3.16) ||logw|l.+ <log (sup C(w,t,R) + sup C'(w, t, R)) , terl,
R>0 R>0

(3.17)  ||logwl|« < log (sup sup C(w, t, R) + sup sup C’ (w, t, R)) .
tel’ R>0 tel R>0
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Statement (a) follows from Lemma 3.1(a) and (3.16). Statement (b)
follows from Lemma 3.1(b) and (3.17). O

For rearrangement-invariant Banach function spaces X, by using
(2.1), we infer that w € Ax(T') implies 1 € Ax(T'). In that case,
by Lemma 3.2(b), if w € Ax(T'), then logw € BMO(T"). This result
was obtained in [25, Lemma 1.6]. Note that for Lebesgue spaces L7,
1 < p < o0, and Muckenhoupt classes A,(T") this fact is well known,
see, e.g., [3, Proposition 2.4].

4. Indices of submultiplicative functions associated with
weighted Banach function spaces.

4.1 Submultiplicative functions and their indices. Following
[3, Section 1.4], we say a function ® : (0, 00) — (0, 00| is regular if it is
bounded in an open neighborhood of 1. A function @ : (0,00) — (0, 00]
is said to be submultiplicative if

O(zy) < O(x)@(y) for all z,y € (0,00).

It is easy to show that if ® is regular and submultiplicative, then ® is
bounded away from zero in some open neighborhood of 1. Moreover,
in this case ®(x) is finite for all z € (0,00). Given a regular and
submultiplicative function @ : (0,00) — (0, 00), one defines

a(®) = sup log ®(x) B(®):= inf log ®(x)
' z€(0,1) logz " ze(loo) logz

Clearly, —oco < a(®) and 3(P) < oo.

Theorem 4.1 (see [3, Theorem 1.13]). If ® : (0,00) — (0,00) is
reqular and submultiplicative, then

. log ®(x) . log®(x)
3) = lim 2 (@) = lim 22/
o(®) Fay logz ’ A2 e log x

and —oo < a(®) < B(P) < +o0.
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The quantities a(®) and 3(®) are called the lower and upper indices
of the regular and submultiplicative function ®, respectively.

4.2 Spirality indices. In this subsection we mainly follow [3,
Chapter 1]. Fix t € I. Suppose ¢ : '\ {t} — (0,00) is a continuous
function. Put

Fy(Ry, Ry) = / i Ry, Ry € (0,d,].
vl ) = S Y e P, VT R R € (0

By [3, Lemma 1.15], the function

sup Fy(zR,R), z € (0,1],
0<R<d;

sup Fy(R,z7'R), z € (1,00).
0<R<d;

(Wi)() =

is submultiplicative. For ¢t € I', we have,
T—t=|r =t e\ {t},

and the argument arg(7 —t) may be chosen to be a continuous function
of 7 € T'\ {t}. Consider

ne(7) i= e~ 2r8(T=Y),

Using the local Carleson constant Cr; instead of the global Carleson
constant Cr, we can obtain the following local versions of [3, Theo-
rem 1.10 and Lemma 1.17].

Lemma 4.2. IfT is locally a Carleson curve att € I', then

arg(t —t) = O(=log|r —t|) as T—t

Lemma 4.3. IfT is locally a Carleson curve at t € T', then the
submultiplicative function Wyn; is regular.

Under the assumptions of Lemma 4.3, by Theorem 4.1, there exist
the spirality indices

6 = a(Wny), 6 = B(Wyny)
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of the curve T at the point t, see [3, Chapter 1]. If, in addition,
arg(t —t) = =dilog |t —t|+ O(1) asT —t,

where 6; € R, then §; = 6,7 = d;, see [3, Section 1.6]. Examples of
Carleson curves with distinct spirality indices are also given there.

On a rectifiable Jordan curve we have dr = ¢r(")|dr| where 0p(7)
is the angle between the positively oriented real axis and the naturally
oriented tangent of I' at 7 (which exists almost everywhere). A
rectifiable Jordan curve I is said to be a Lyapunov curve if

|0r(r) = Or(t)] < |7 — ¢

for some constants ¢ > 0, p € (0,1) and all 7,¢ € T'. If 6r is a function
of bounded variation on T', then the curve T is called a Radon curve
(or a curve of bounded rotation). It is very well known that Lyapunov
curves are smooth, but Radon curves may have at most countable set of
corner points (or even cusps). All Lyapunov curves and Radon curves
without cusps are Carleson curves, see, e.g., [28, Section 2.3]. The next
statement is well known.

Proposition 4.4. IfT is either a Lyapunov Jordan curve or a Radon
Jordan curve, then for everyt e T,

arg(t —t) =0O(1) asT —t,

and, therefore, §,; =, = 0.

4.3 Indices of powerlikeness. To investigate whether the weight
|(7 — t)"|w(r) with arbitrary v € C belongs to the Muckenhoupt
class A,(I"), Bottcher and Yu. Karlovich introduced submultiplicative
functions V;w and V,°w associated with local properties of the weight
w at the point t € T', see [3, Chapter 3].

Let w be a weight on I' such that logw € L'(T'(t,R)) for every
R € (0,d;]. Put

H,(R1, R2):= exp(Q(logw, Ry))/ exp(Q:(logw, Ra)), Ry, Ra€ (0,d:].
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Consider the functions

sup H,(zR,R), z € (0,1],

(Viaw) (2) 0<R<d,

w)(z) =

! sup Hy,(R,z 'R), z¢€(1,00),
0<R<d;

(V2w)(z) := limsup H, (zR, R), x € (0,00).
R—0

Lemma 4.5. The function Vyw is submultiplicative. If Viw is
regular, then V2w is reqular and submultiplicative. Moreover,

a(Viw) = a(Vaw), BV w) = B(Viw).

Lemma 4.6. If T' is locally a Carleson curve at t € T' and
logw € BMO(T,t), then Vaw and V2w are regular.

Lemmas 4.5 and 4.6 are proved by analogy with [3, Lemma 3.5(a)]
and [3, Lemma 3.2(a)]. These statements are stated in [3] under
the assumption that I" is a Carleson curve. But Lemma 4.5 is valid
for arbitrary rectifiable curves I'.  Since Lemma 4.6 has a “local
nature”, we may use the “local” Carleson constant Cr, instead of the
“global” Carleson constant Cr in its proof. Under the assumptions of
Lemma 4.6, in view of Theorem 4.1, for the weight w, there exist the
indices of powerlikeness

41) = a(Vow) = a(Viw), v = B(Vow) = B(Vw)

at the point t € T.

Obviously, for a power weight w(r) = |r — t|, the indices of

powerlikeness equal pu; = v, = A;. Nontrivial examples of weights with
distinct indices of powerlikeness are given in [3, Examples 3.24-3.28].

Lemma 4.7 (see [25, Lemma 2.4]). If T is locally a Carleson curve
att €T andlogw € VMO(T,t), then uy = vy = 0.

4.4 Submultiplicative functions associated with weighted
Banach function spaces. Let I' be a rectifiable Jordan curve and let
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X be a Banach function space. Fix ¢ € I' and consider the portion of
the curve I' in the annulus

A(t,R):=T(t,R)\T'(¢t,R/2), R>0.
Clearly,
(4.2) R/2 <|A(t,R)|, R € (0,dy].
On the other hand, if T is locally a Carleson curve at ¢ € I", then
(4.3) |A(t, R)| < |T'(t,R)| < Cr R, R>0.

Suppose w : I' — [0,00] is a weight such that wXa,r) € X and
Xa(t,r)/w € X' for all R € (0,d,;]. We denote

X X ’
G Ry) = 1 A(t’leAl)({tHRAQ;’R”/W”X . Ri,Roe(0,dy).

Define the following functions, see [24, Section 5]:

sup Gu(zR, R), x € (0,1],

(Q )( ) 0<R<d:

w)(z) =

! sup Gu(R,2 'R), =€ (1,00),
0<R<d,

(QYw)(x) := limsup Gy (xR, R), z € (0,00).
R—0

Lemma 4.8. The function Qiw is submultiplicative. If Quw is
regular, then QYw is regular and submultiplicative. Moreover,

a(Qfw) = a(Qw),  B(Qw) = B(Quw).

Lemma 4.9. If w € Ax(T,t), then Quw and Q%w are regular.
Moreover,

0 < a(Qw) = a(Qlw) < B(Qw) = B(Qsw) < 1.
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These statements are proved in [24, Lemmas 5.1-5.2] and [24, Theo-
rem 5.3], respectively, under the assumption that X is rearrangement-
invariant. But, actually, we did not use this assumption in those proofs.
So we can literally repeat the proofs for arbitrary Banach function
spaces.

5. Relations between indices.

5.1 Case of general Banach function spaces. Let I' be a
rectifiable Jordan curve, let X be a Banach function space, and let
tel.

Theorem 5.1. Suppose w : T' — [0,00] is a weight such that
logw € LY(T'(t,R)) for every R € (0,d:] and ¢ : T\ {t} — (0,00)
is a continuous function. If the functions Viw and Wyp are regular,
then the function Vi(vw) is regular too. Moreover,

a(Viw) + a(Wy) < a(V(yYw))
a(Viw) + BWe), B(Vew) + a(Weh) |,
w))

a(Viw) + BWe), B(Viw) + a(Wi) }.

—N—

< min

BViw) + B(Wip) = B(V;

> max

<

—

This statement is proved similarly to [3, Lemma 3.17].

Theorem 5.2. Suppose w : T' — [0,00] is a weight such that
wXaw,r) € X and Xaw,r)/w € X' for every R € (0,d;] and 1 :
'\ {t} — (0,00) is a continuous function. If the functions Qiw and
Wi are regular, then the function Qi(yw) is regular too. Moreover,

a(Qiw) + a(Wih) < a(Qi(Yw))

< min {a(Quw) + BIW), B(Quw) + a(Wet) },
B(Qiw) + BW) > B(Qr(w))

> max {a(Quw) + B(Wiw), B(Quw) + a(Wi) }.
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This theorem is proved in [24, Theorem 5.8] for rearrangement-
invariant Banach function spaces. The proof given there does not use
the rearrangement-invariant property of the space, so it works for an
arbitrary Banach function space.

Lemma 5.3. If T' is locally a Carleson curve at t € T and
logw € BMO(T,t), then for every R € (0,d,],
Cy
exp(@(logw, B)) < o [ w(r)dr
' A, R)| Jaq,r)

where Cy := exp(2CT 4| log wl|«,1) < oc.
The proof is actually given in [3, Lemma 3.2(b)].

Theorem 5.4. Let I' be locally a Carleson curve att € T' and let
w: T — [0,00] be a weight such that wXa,r)y € X, Xa,r)/w € X' for
every R € (0,d;] and logw € BMO(T,t). If Quw and Q1 are regular,
then

(5.1) a(Quw) < py + B(Qel), v+ a(Qil) < B(Quw).

Proof. The proof is developed by analogy with [25, Theorem 2.6].
From Lemma 5.3 and Hoélder’s inequality (see Lemma 2.2) we see that
for every R € (0, dy],

lwXa,ryllxXawr)llx

5.2 Q. (1 R)) < C,
( ) GXp( t( ogw, )) = Yt |A(t,R)| ’
XA r)llx XA, r) /Wl x
. —Q(1 < ’ J
(5.3) exp(—Q(logw, R)) < C ACR)

From (5.2) and (5.3) it follows that for z € (0,1] and R € (0,dy],
Hy,(zR, R) = exp(Q(logw, zR)) exp(—€2(log w, R))
<c? lwXa,zrllx Xawr) /wlx
|A(t, R)|
IXaer)lx IXa,2r)llx/
|A(t,zR)|
= C?Gy(2R, R)G1 (R, zR).

(5.4)
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Then, taking the supremum over all R € (0, d;], we obtain for z € (0, 1],
(5.5) (Viw)(z) < Co(Quw)(x)(Q:1)(z™1).

Analogously, for z € (1,00) and R € (0, d¢],

(5.6) H,(R,z7'R) < C?G (R, 'R)G1(z 'R, R).

Taking the supremum over all R € (0,d;], we arrive at (5.5) for
x € (1,00). By Lemmas 4.5-4.6, the function V,w is regular and sub-
multiplicative. By Lemma 4.8, the functions Q;w and @;1 are sub-
multiplicative, they are regular, due to the assumption of the theo-
rem. Therefore, in view of Theorem 4.1, the indices a(Qw), B(Qiw);
a(Q:1), B(Q:1); and a(Viw), B(Viw) exist and are well defined.

From (5.5) it follows that

log(Viw)(x)  log G} log(Quw)(z) _ log(Q:1)(z™")

€ (0,1},
log = =~ logx log = logz—1 z€ (.1
log(Vew)(z) _ logC7  log(Qrw)(w) _ log(Qtl)(:v‘l)’ v e (1,00).

log x log x log x logxz—1

Passing to the limit in the latter inequalities as * — 0, respectively as
T — 00, we obtain, respectively,

e = o(Vaw) > a(Quw) — B(Qe1), v = B(Viw) < B(Quw) — a(Qy1).

So, we arrive at (5.1). u]
Theorem 5.5. Ifw e Ax(T',t) and 1 € Ax(T,t), then

(5:7) a(Qi1) + pu < a(Qw) < min {a(Qel) + v, QL) + pu |,
(5:8) B(Q:i1) + v > A(Quw) > max {a(Qi1) +vi. AQeL) + e .

Proof. The idea of the proof is borrowed from [25, Theorems 2.6
and 2.7]. From Lemmas 4.8-4.9 it follows that the functions Qw
and Q:1 are regular and submultiplicative. On the other hand, by
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Lemma 3.2(a), logw € BMO(T',t). Therefore, by Lemmas 4.5-4.6, the
function Viw is regular and submultiplicative. Thus, all the indices

O‘(Qtl)a 6(Qt1)7 a(Qtw)7 B(Qtw)v Ht = o‘(‘/tUJ)v vy = 6(%10)
are well defined. By Theorem 5.4,

(5.9) a(Quw) < p + B(Qel), v+ a(Ql) < B(Qrw).

If 1 € Ax(T,t), then from the lattice property it follows that for
every R > 0,

1 1
E”XA(t,R)HX”XA(t,R)”X’ < _||XF(t,R)||X||XF(t,R)||X/

< sup By gr(1) =: Bi(1).
R>0

(5.10)

Combining (5.10) and (4.2), we arrive at
IXaer) lxXa@mllx < 2B(D]AE R), R € (0,d:].
Then we have for z € (0, 1],

(5.11)

1 _ At zR)| o Xager Ix[Xagr llx
Gi(R,zR)  [XaemlxXagerllxr = (2B:(1))?|A(t, R)|
= (2B4(1)) 2G4 (xR, R).

Analogously, we deduce that for x € (1, 00),

(5.12) > (2B;(1))"2G1(R, " 'R).

G:(z—'R, R)

From (5.4) and (5.11) we obtain for x € (0, 1],

5 Guw(@R, R)
2B Gi(zR,R) €
(5.13) @B "Gk R) < o s SO GR R)
= C?Gyw(rR,R)H, (R, zR).
Similarly, from (5.6) and (5.11) we obtain for = € (1, c0),

(2B:(1))2G1(R,z 'R) < C?Gy (xR, R)H,(z 'R, R).
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Taking the supremum over R € (0,d,] in (5.13) and (5.14), we get

(Q:1)(2) < (2C,B:(1))*(Quw)(z)(Vew) (2 ™"), € (0,00).

From this inequality it follows that for x € (0, 1],

log(@:1)(x) _ log(2C;B,(1))? | log(Quw)(x) _log(Vew)(x™")

5.15
(5.15) log x - log x log x logxz—1

and, analogously, for « € (1, 00),

log(@:1)(x) _ log(2C;Bi(1))? | log(Quw)(x) log(Viw)(z™")
logz  — log x log = logz—t

(5.16)

Passing to the limit in (5.15) as z — 0 and in (5.16) as * — oo, we
obtain, respectively,

(5.17) (@) = a(Quw) — B(Viw),  B(Q:1) < B(Quw) — a(Viw).

By Lemma 3.1(a), there exist constants C1(¢), Co(t) > 0 such that
for every R > 0,

lwXre,r)llx IXre,m)ll x7

(5.18) exp(—(logw, R)) TR < Cy(t),
(5.19)  exp((logw, R)) ||Xr(t’R)|||§(|2<;;iR)/w|X' < Oy(t).

On the other hand, from the lattice property, the Holder inequality (see
Lemma 2.2), (3.1) and (4.2) it follows that for R € (0, d;],

reR)| _ TR _ PGB [Xawrlx
IXreryllxr — IXawr)llx IXaer)llxIXa@,r)llx
(5.20) IT(t, R)]| Cr.R

2AB YL < 5
S AGR) IXaer)llx < R IXar)llx
=2Cr il Xawr)llx-
Analogously, for R € (0, d],

L@, )|

(5.21)
I Xree,m)llx

< 2Cr¢|IXaw,r)llx-
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From (5.18)—(5.21) and the lattice property it follows that for R €
(0,d,] and z € (0, 1],

lwXa,zrllx 1 Xawr) /wlx
|A(t, R)|
lwXrer)ll x| Xre,r) /Wl x/
- |A(t, R)|
<C1(t)02(t)
|A(L, R)|
It zR)| I R)
IXremyllx: I Xee,mllx

Gy(zR,R) =

exp(Q(logw, xR)) exp(—Q:(logw, R))

(5.22)

IXa(,2r) I x XA, r)llx
|A(t, R)|

)20 (t)Cy(t)Hy(zR, R)
= (2Cr+)?Cy1(t)Ca(t) Hy (o R, R)G1 (2R, R)

< (2Cr:

and, similarly, for R € (0, d;] and z € (1, 00),

(5.23) Guw(R,27'R) < (201 ,)*C1(t)Co(t) Hy(R, 2 *R)G1 (R, 2 ' R).
Taking the supremum over all R € (0, d,] in (5.22) and (5.23), we obtain
(Qiw)(x) < (2Cr,)*Ci(1)Ca(t) (Vaw) (2)(Q:1)(x),  a € (0,00).

Therefore,

(5.24)  a(Quw) =2 a(Viw) + a(Q¢l),  B(Qiw) < B(Viw) + B(Q:1).
Combining (5.9), (5.17), and (5.24), we arrive at (5.7)—(5.8). o

If X is a rearrangement-invariant Banach function space, then from
(2.1) it follows that the conditions 1 € Ax(I',¢) and 1 € Ax(T") are
equivalent to (3.1) and (1.1), respectively. Hence, w € Ax (T, t) implies
1 € Ax(T,t) whenever X is rearrangement-invariant. This property
allows us to simplify the formulation of Theorem 5.5 for rearrangement-
invariant Banach function spaces, see [25, Theorems 2.6 and 2.7].

Note that a(Q:1) and 5(Q:1) can be considered as a generalization
of the Zippin (fundamental) indices px and ¢x of a rearrangement-
invariant Banach function space X [53]. If X is rearrangement-
invariant, then a(Q:1) = px and B(Q:1) = ¢x, see [24, Theorem 5.4].
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On the other hand, the Zippin indices for an Orlicz space L¥ coincide
with the reciprocals of the Matuszewska-Orlicz indices, which control
the growth of the Young function ¢, see, e.g., [39] and the references
given there. The notion of Matuszewska-Orlicz indices of Orlicz spaces
was extended to the case of Musielak-Orlicz spaces in [18, 19]. Recall
that Orlicz spaces are always rearrangement-invariant, but Musielak-
Orlicz spaces are not rearrangement-invariant, in general.

5.2 Case of Nakano spaces. Suppose I' is a rectifiable Jordan
curve. Assume that p: T' — (1,00) is a continuous function. Then

5.25 1 < ps:=minp(t) < t):=p' <

(5.25) ps = minp(t) < maxp(t) := p" < o,

due to the compactness of I'. We will say that a continuous function
p: ' — (1,00) belongs to the class P; if there is a constant A; > 0
such that

Ay
(5.26) () =p)l = ==

for all 7 € T'(¢,1/2).
The class of all continuous functions p : I' — (1, 00) such that p € P
for every t € I and
supA; = A< 0
teT
is denoted by P. Clearly, P C P; for every ¢t € I.

The class P plays a very important role in questions on the bounded-
ness of maximal functions and singular integrals on (weighted) Nakano
spaces, see [10, 30, 46], the references therein, and also Theorem 6.2.

Proposition 5.6. A function p belongs to Py (respectively, to P)
if and only if the function p'(1) = p(7)/(p(T) — 1) belongs to Py
(respectively, to P).

Proof. The statement immediately follows from the obvious inequal-
ity

T,tel,
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and the reflexive relation (p') = p. O

Lemma 5.7. Let I be locally a Carleson curve att € I' and p € Py.
Then there exist constants My (t), Ma(t), C1(t), C2(t) € (0, 00) such that
(527)  |Xawrllro = Mi(t)RYPD  for all R € (0,C1(t)),

(528)  IXrmllLro < Ma(t)RYPD  for all R € (0,Cs(t)).

Proof. From (5.26) it follows that for 7 € T'(¢,1/2),

Ay

Ay
[ S G
—log|r —t| —

(5.29)  —p(t) Pt

p(1) < —p(t) +

Since |7 —t| < R for 7 € I'(t, R), we have

Ay Ay

5.30 <
(5:30) —log|r—t| = —log R’

reT(t,R), Re(0,1/2).

From (5.29) and (5.30) we get for 7 € I'(t, R) and R € (0,1/2),

Ay
log R’

B30 b0+ g <P < ()

For R € (0,e~"*), taking into account that p(t) € (1,00), we obtain

Ay

(5.32)  p(t)+ gl = (p(t) — 1) + (1 + 10?3,) > p(t) — 1> 0.

From (5.31) we get for A € (0,1] and R € (0, min{1/2,e~4¢}),
Ay
_ ot < _
exp ( [p(t) + logR] log )\) < exp(—p(7)log\)
Ay
< - -t .
< exp ( {p(t) 1OgR] log /\>

Analogously, for A € (1,00) and R € (0, min{1/2,e~4¢}),

(5.33)

ex (= [0~ (25 1081 ) < exp-p(roe

(5.34) < exp (— {p(t) + 10?3] log /\>'
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Let us prove (5.27). From the first inequality in (5.33) and (4.2) it
follows that for A € (0,1] and R € (0, min{1/2,e~4¢ d;}),

m(Xam /A p) = / exp(—p(r) log )|dr]
A(L,R)

> exp (- o0+ 55 1owr) 1A, )

R A
> exp (log 3 {p(t) + logtR} log /\>.

Put Oy (t) := min{1/2,e~4¢ d;}. Therefore, taking into account (5.32),
we obtain for R € (0, C1(t)),

{)\ € (0,1]: m(Xa@,r) /A p) < 1}

R At
: log = — <
C {)\ € (0,1] : log 5 [p(t) + logR] log A < O}

Thus, for R € (0,C(¢)),
(5.35)

Ny = inf{/\ € (0,1] : m(XA(t,R)/)\’p) < 1} = exp <%)'

Analogously, from the first inequality in (5.34) we obtain
{re00): mxaem/Ap) <1} € (1,50)

because

(5.36) exp (1%) <1 for R e (0,C1(t)).
Thus, for R € (0,C1(t)),

(5.37) Ny = inf{)\ € (1,00) : m(Xa(.m)/\p) < 1} > 1.
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From (5.35)—(5.37) we obtain for R € (0, Cy(¢)),
(5.38)

inf {/\ >0: m(Xaw,r) /M p) < 1}
= min{Ny, No} > min {1,exp <M)}
p

(t)+ Ai/logR
B log(R/2)
-oP (p(t) + A, 10gR>'

IXae,r)llLee)

From (5.32) it follows that for R € (0,C1(t)),

log(R/2)  log(R/2) = —Ai+ Aldog2/log R
p(t) +A/logR p(t)  (p(t) + Ar/log R)p(t)
—As+ Aidog2/log R
(p(t) = )p(t)
A; +log 2

~ (I=p®)p(t)
From the latter inequality we deduce that
log(R/2)
5.39 _
(5:39) - exp <p<t) +4,/log R

o) 1)

2

ox Ay +log?2 _10g2 1/p(t)
= p((l—pu))p(t) p<t>)R |

Combining (5.38) and (5.39), we arrive at (5.27) with

C1(t) := min{1/2,e~4 d,}, M;(t) :=exp ( Ay +log2 10g2>

(1 =p@®)p(t)  p(*)
Taking into account (3.1), one can prove that (5.28) is valid with

Cy(t) := min{1/2,1/Cr s, e~ d;},

. A log Cr
My(t) := exp (<p<t>>2 o) >
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The proof of (5.28) is similar to the proof of (5.27) and it is omitted.
]

Lemma 5.8. Suppose I' is locally a Carleson curve att € T' and
pEPr. Thenl e Ay (T,t) and

(5.40) a(Ql) = B(Qe1) = 1/p(2).

Proof. From Lemma 5.7 we deduce that there exist constants
C;(t), M;(t) (i =1,2) such that

(541)  [Xa@mllzeo = Mi(@)RYPD for all R € (0,Ci (1)),

(542) (X m)llzeo < Ma(RYPY for all R € (0, Ca(t)).

By Proposition 5.6, p’ € P,. Analogously, applying Lemma 5.7 to L¥'0)
and taking into account that the latter space coincide with (LP()) up
to the equivalence of the norms (see Lemma 2.4), we infer that there
exist constants C(t), M/(t), ¢ = 1,2, such that

(5.43)  IXa@mllzeory = M (t)RY?'®)  for all R € (0,C}(t)),
(544)  [IXrer)ll ooy < MRERYP® for all R € (0,C4(t)).
From (5.42), (5.44) it follows that for R € (0, min{Ca(¢), C5(¢)}),

)
)

1
B r(1) = ﬁ||Xr(t,R)||Lp<-> Xt )l (Lrery

]. /
< EMa(t) M () RYPO RYP O = My (6) My(1).

(5.45)

On the other hand, for R > min{Cs(t), C4(t)},
(5.46)

1 Il oo 1Ll zecry
B == P p()) = B .
t.r(1) R”XF(t,R)”L o lIXre,r lleey SN CROROAD)

From (5.45) and (5.46) it follows that

sup By gr(1) < max {Mg(t)Mé(t),

Lo Il zrery }
R>0

min{Cs(t), C4(t)}
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Thus, 1e ALp(-)(F,t).

Put C(t) := min{C4(t),Cs(t),Ci(t),C4(t)}. From (5.42), (5.44),
(4.2), and the lattice property we obtain for z € (0,00) and R €
(0,C(t) min{1,1/x}),

G1 (xR, R) = ||Xa(t,zR)||TZ~(>IJ|>;A)?t,R)||(Lp<,)),
(xRSl/p(t)Rl/p’(t)
At R)|
L/ R
" R/2

(5.47) < Mo (t)Mi(t)

< Mo(t) M) (t) = QM (t) M (t) /PO,

Combining (5.43), (5.45), and (4.3), we get for the same x and R,

(R PO RO
|A(t, R)|
2P R _ My (t)M(t) 21/p(®)
Cr.R Cr .

G1(zR, R) > M;(t)M;(t)

(5.48)

> M (t) M (t)

From (5.47) and (5.48) it follows that

M (8) My (1)

c :El/p(t) < (Q?l)(:ﬂ) < 2M2(t)Mé(t)iE1/p(t)7 xT € (0, OO)
It

Since 1 € Ay, (T), the function Q91 is regular and submultiplicative,
see Lemmas 4.8 and 4.9. From the latter inequality it follows that

a(Qy1) = B(Q¢1) = 1/p(t).

Combining the latter equalities with Lemma 4.8, we arrive at (5.40).
[}

Theorem 5.9. Let I' be locally a Carleson curve at t € T, let
w: ' — [0,00] be a weight, and let p € Pr. If w € App)(T,t),
then logw € BMO(T,t) and

(549)  a(Quw) =1/p(t) + a(Viw), B(Qiw) = 1/p(t) + B(Viw).
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Proof. Since p € Py and I' is locally a Carleson curve at ¢, in view
of Lemma 5.8, 1 € A;,)(T,t). By Lemma 3.2(a), logw € BMO(T,t).
From Theorem 5.5 and (5.40) we get

1/p(t) + a(Viw) < o(Qrw) < min{1/p(t) + a(Viw), 1/p(t) + B(Viw)}
=1/p(t) + a(Viw),

1/p(t) + B(Viw) = B(Quw) = max{1/p(t) + a(Viw), 1/p(t) + B(Viw)}
= 1/p(t) + 6(Viw),
that is, equalities (5.49) hold. o

Lemma 5.10. Let IT' be a Carleson curve, let w : T' — [0,00] be a
weight, and let p € P. If w € A (T), then logw € BMO(T).

Proof. By analogy with Lemma 5.7 one can show that there exist
constants C' > 0 and M, M’ € (0, 00) such that

Xt m)ll oo < MRYPD L IxXpg gyl ey < M/RMP'®

for all R € (0,C) and all ¢ € I'. Taking into account Lemma 2.4,
as in Lemma 5.8 from the latter inequalities we obtain 1 € Ay, (T).
Therefore, logw € BMO(T'), due to Lemma 3.2(b). O

5.3 Indicator functions. In this subsection we generalize the notion
of indicator functions (see [3, Chapter 3] and also [24, Section 7.2], [25,
Section 2.5], [26, Section 3.3]) to the case of weighted Banach function
spaces.

Suppose I is a rectifiable Jordan curve, w : I' — [0, 00] is a weight,
X is a Banach function space.

Lemma 5.11. Let ' be locally a Carleson curve att € I'. For every
x € R, the function Wi is reqular, submultiplicative, and

00(2) = a(Wif) = min{d; , 57 o),
5?(:17) = B(Wny) = max{d, =, 5:'3:}

This statement follows from local analogs of [3, Lemmas 1.15, 1.16,
and Proposition 3.1].
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For a complex number v € C, we define a continuous function ¢ -
on I'\ {t} by
O (T) = (1 =t)| = |1 — t|R07€71m7arg(T,t)

5.50
(>0 = Ir — t T ().

Lemma 5.12. Ifw € Ax(T,t), then for every v € C, the function
Q+ (@t yw) is regqular, submultiplicative, and

(5.51) a(Q¢(pr,,w)) = Rey + Qe (1™ w)),
(5.52) B(Qi(pr,w)) = Rey + B(Qe (™ "w)).

Proof. This statement is proved similarly to [24, Lemma 7.2]. By
a local analog of [3, Proposition 3.1}, the function Wit Re~ 1s Tegular
and submultiplicative for every v € C and

(553) a(Wt(pt,Re'y) = ﬁ(WtSDt,ReA/) = Re/y

On the other hand, by Lemmas 4.8-4.9, the function Q;w is regular
and submultiplicative. Then, by Theorem 5.2, the function Q;(p;w)
is regular and submultiplicative for every v € C. In particular, the

function Qy(n;™w) is regular and submultiplicative for every v € C.

From Theorem 5.2 and (5.53) it follows that
A(Qe(m™ "w)) + Rey < a(Qi(rw))
< min{a(Q(n™ "w)) + Re v, B(Qu(1,™ "w)) + Re},
BQi(nt™ Yw)) + Rey = B(Qu(r,5w))
> max{a(Q: (1™ ")) + Re, B(Qu(™ "w)) + Ren}.

From the latter inequalities we immediately obtain (5.51)—(5.52). O

Lemma 5.13. Ifw € Ax(T,t) and 1 € Ax(T,t), then for every
v € C, the function Vi(ps w) is regular, submultiplicative, and

(5.54) a(Vi(prw)) = Rey + a(Vi(ni™ Tw)),
(5.55) B(Vi(prrw)) = Rey + B(Vi(ni™ Tw)).
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Proof. By Lemma 3.2(a), logw € BMO(T',t). Then by Lemma 4.6,
the function Viw is regular. The rest is proved by analogy with
Lemma 5.12 with the help of Theorem 5.1. u]

Ifw e Ax(T,t), then for every z € R, the function Q:(nfw) is regular
and submultiplicative, in view of Lemma 5.12. From Theorem 4.1 and
Lemma 4.9 we deduce that the following functions are well defined for
e R:

If, in addition, 1 € Ax(T,t), then the function Vi(nfw) is regular
and submultiplicative for each z € R, due to Lemma 5.13. Then
Theorem 4.1 and Lemma 4.5 imply that the functions

a(z) == a(Vi(nfw)) = a(V (nf w)),
Bi(x) := B(Va(nfw)) = BV (nfw))

are well defined for all z € R.

The functions «f, 8; are called the indicator functions of the triple
(T, X,w) at t € T. The functions «y, B; are referred to as the indicator
functions of the pair (I',w) at t € T. The functions o}, were
introduced in [25] (see also [24, 26]) for rearrangement-invariant
Banach function spaces. The functions «,3; were defined in [3,
Chapter 3] in the context of Lebesgue spaces and Muckenhoupt weights.

Lemma 5.14. The functions oy, af are concave, the functions B, 5
are convex. In particular, oq, of and By, Bf are continuous on R.

Proof. By [35, Section 2.2, Property 6],

112091 < 1715 Ilgll i ?, 0 € [0, 1],

for every f,g € X. With the help of this property, one can prove
concavity of af and convexity of 3} similarly to [3, Proposition 3.20].
Concavity of a; and convexity of §; are already proved there. |
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The following statement generalizes [26, Lemma 3.5].

Lemma 5.15. (a) If w € Ax(T,t), then for x,y € R,

a; () + o (y) < af (@ +y) < minfog (z) + 6/ (y), 5 (=) + o ()},
B (@) + 87 (y) = B (x +y) = max{ag (x) + 87 (1), B () + o ()}

(b) If w e Ax(T',t) and 1 € Ax(T,t), then for z,y € R,

(@) + 0 (y) < ae(z +y) < minfae (@) + 5 (), Be(@) + o (1)},
Bi() + 37 (y) = il +y) = max{on(z) + 57 (), Be(2) + 0 () }-

Proof. (a) From Lemmas 5.11 and 5.13 it follows that the functions
af, Bf and o, 37 are well defined. Applying Theorem 5.2 to the weights
w = n¥w and 1 := 7, we get Part (a). Part (b) is proved analogously
with the help of Theorem 5.1 and Lemma 5.13. o

Corollary 5.16. Let " be locally a Carleson curve att € I' such that
5, =6 =:6;.
(a) If w e Ax (T, t), then
(5.56) af(x) = a(Quw) + oz, B (z) = B(Qiw) + 6z (x € R).
(b) If w e Ax(T',t) and 1 € Ax(T,t), then
(5.57) ap(x) = p + 6z, Be(x) =+ 6z (z € R).

Proof. (a) Since 6, = ;" = &;, we have a?(x) = 8?(x) = §;x. In that

case from Lemma 5.15(a) we deduce that

(5.58) i (y) + o = af(x+y), B (y)+dx =06 (r+y)

for every z,y € R. Setting y = 0 in (5.58), we arrive at (5.56). Part
(b) is proved similarly. o
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5.4 Indicator functions for Nakano spaces. Let I' be a rectifiable
Jordan curve, let LP() be a Nakano space. Fix t € I'. For a weight
w € Appy (T, t), put

Ny = {’y €eC: ¢ we ALp<.)(I‘,t)}.

Lemma 5.17. Let T" be locally a Carleson curve att € T', let p € Py,
and let w € App) (T, t). Then for every v € Ny,

(5.59) of (Imvy) = 1/p(t) + a;(Im~), Bf(Im~y) = 1/p(t) + B¢ (Im~).

Proof. Let v € N;. By Theorem 5.9,

(5.60) (Qi(pryw)) = 1/p(t) + a(Vi(prw)),
(5.61) B(Qt(prw)) = 1/p(t) + B(Vi(prw)).

Note that by Lemma 5.8, 1 € A (T, t). Therefore, we can apply
Lemma 5.13. From (5.60)~(5.61), (5.51)~(5.52) and (5.54)—(5.55) it
follows that

a(Qu (™ w)) = 1/p(t) + a(V, (™ Tw)),
B(Qe(m™ Tw)) = 1/p(t) + B(Vi (1™ "w)),

that is, equalities (5.59) hold. O

Lemma 5.18. Let I' be locally a Carleson curve att € I' such that
8 =67 =0, letp € Py, and let w € Appy(T,t). Then for every
zeR,

(5.62)

where pt, vy are the indices of powerlikeness of the weight w at t defined
by (4.1).
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Proof. By Lemma 5.8, 1 € A;,)(I',t). From Corollary 5.16 we get
for every z € R,

o (7) = a(Quw), oy(z)
Bi (z) = B (Qiw), Bi(z)
On the other hand, by Theorem 5.9,

(5.64) a(Quw) = 1/p(t) + py,  B(Quw) = 1/p(t) + vy
Combining (5.63) and (5.64), we arrive at (5.62). O

(5.63) He:
1%

6. Fredholm theory for singular integral operators with
bounded measurable coeflicients.

6.1 The Cauchy singular integral operator. Let I' be a rec-
tifiable Jordan curve. We provide I' with the counter-clockwise ori-
entation. The curve I' divides the complex plane C into a bounded
connected component DT and an unbounded connected component
D~. Without loss of generality we suppose that 0 € DT. Let X be
a Banach function space and w : I' — [0,00] be a weight. Then the
weighted Banach function space X, is a linear normed space which
becomes a Banach function space whenever w € X and 1/w € X', see
Lemma 2.5.

Theorem 6.1. Let I' be a rectifiable Jordan curve, let w : T' — [0, 00|
be a weight, and let X be a Banach function space. If the Cauchy
singular integral operator S is bounded on the weighted Banach function
space X, then w € Ax(T).

This theorem was proved for weighted rearrangement-invariant Ba-
nach function spaces in a slightly different form in [24, Theorem 3.2],
see also [22, Theorem 4.3] and [3, Theorem 4.8]. First, as in [24,
Lemma 3.3], by using the Landau lemma for the Banach function space
X (see [1, Chapter 1, Lemma 2.7]), we show that w € X and 1/w € X'.
Then, by Lemma 2.5(b), the weighted Banach function space X,, is it-
self a Banach function space. The proof of [24, Theorem 3.2], see also
[23, Section 3], does not use the rearrangement-invariant property of
the space X, so it works for arbitrary weighted Banach function spaces.
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The question about the sufficiency of the condition w € Ax(T)
for the boundedness of the Cauchy singular integral operator S on
weighted Banach function spaces X,, is open. We know only that this
condition is sufficient for the boundedness in the case of Lebesgue spaces
X =LP,1 < p < o0, that is, when Ax(T') = A,(T") is the Muckenhoupt
class, see, e.g., [3, Theorem 4.15].

However, criteria for the boundedness of S on Nakano spaces with

Khvedelidze weights Lg(') were recently proved by Kokilashvili and
Samko [30] under the condition that the contour T is sufficiently nice.

Theorem 6.2 (see [30, Theorem 2]). Let T' be either a Lyapunov
Jordan curve or a Radon Jordan curve without cusps, let o be a
Khvedelidze weight (1.2), and let p € P. The Cauchy singular integral

operator S is bounded on the weighted Nakano space Lg(') if and only
if

1
6.1 0< ——4+ <1 foralke{l,...,n}.
(6.1 <l (Lowom)

For weighted Lebesgue spaces L? this result is classic, for Lyapunov
curves it was proved by Khvedelidze [27] and for Radon curves without
cusps by Danilyuk and Shelepov [9, Theorem 2]. The proofs and history
can be found in [8, 16, 28, 40].

6.2 Singular integral operators. In the following we will assume
that I' is a rectifiable Jordan curve, X is a Banach function space,
w: ' — [0,00] is a weight such that

(B) the Cauchy singular integral operator S is bounded on the
weighted Banach function space X,,;

(R) the weighted Banach function space X,, is reflexive.

Axiom (B) guarantees that, by Theorem 6.1, w € Ax(T'). Therefore,
w € X and 1/w € X’'. Hence, X,, is a Banach function space with the
associate space X Jw and

L*® c X, c L.
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On the other hand, if w € Ax(T'), then I' is a Carleson curve. Axiom
(R) implies that the Banach dual (X,,)* of X,, coincides with its asso-
ciate space X Jw and the set R of all rational functions without poles
on I' is dense in both X, and X, (for details, see Subsection 2.4).

The above mentioned properties of weighted Banach functions spaces
satisfying axioms (B) and (R) allow us to prove the following statements
as in the case of weighted Lebsegue spaces, see, e.g., [16, Chapter 1] and
[3, Chapter 6]. Detailed proofs can be found in [23, Chapter 2] (see also
[24, 25]) for weighted rearrangement-invariant Banach function spaces
Xw. Note that the assumption that X is rearrangement-invariant is
not essential and can be omitted there.

We denote by K(X,) the closed two-sided ideal of all compact
operators on X,, in the Banach algebra B(X,,) of all bounded linear
operators on X,,. As usual, I is the identity operator on X, and
al denotes the operator of multiplication by a measurable function
a:I'— C.

Lemma 6.3. Ifa € L™, then al € B(Xy) and ||al||gx,) < ||lal/so-
Lemma 6.4. The operators
P, :=(1+Y5)/2, P_.:={I-5)/2
are bounded projections on both X, and X{/w.
Lemma 6.5. Ifa € C, then aS — Sal € K(X,).

On the weighted Banach function space X, or on its dual (X,,)* =
X{/w, define the operator Hr by (Hrg)(7) := e~*r(M (7). Note that
the operator Hr is additive but Hr(ap) = @-Hpy for o € C. Evidently,
HZ=1.

Lemma 6.6. The adjoint of S € B(X,,) is

S*=—HrSHr € B( {/w)'
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For a € L*°, put

T,:=PyaP. +P_, R,:=aP+P_.

Lemma 6.7. Let a € L*™. If one of the operators Ty, R, is semi-
Fredholm, Fredholm, left-invertible, right-invertible, invertible, then the
second operator has the same property. If the operators T, and R, are
semi-Fredholm, then

Proof. By Lemmas 6.3-6.4, the operators al and PL are bounded on
Xw. The rest follows from [21, Lemma 1.21]. O

So, it is sufficient to study only one of the operators T, R,. We will
formulate our main results for the operator R,. This operator is usually
called a singular integral operator with the coefficient a. It is well known
that Fredholm properties of this operator are closely connected with the
solvability of the Riemann-Hilbert boundary value problem, see, e.g.,
(6, 16, 38].

6.3 Hardy type subspaces. In view of Lemma 6.4, one can define
the following subspaces of X,,:

(Xu)y =P Xy, (X)) =P X,, (Xu)_:=(X,)"+C;

the corresponding subspaces (X7 )+, (X{/w)(i, (X1/y)- of X7, are
defined analogously. Also put

L}r = {f eL': /f(T)T"dT:O for n > O},
r

(LHY? = {f eL: /f(’T)’TndT =0 forn< O},
r

Lt = (1Y) fC.

Lemma 6.8. (see [47, pp. 202-206]). We have L} N (L')Y = {0}
and L NL! =C.
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Lemma 6.9. (a) If f € (Xu)+ and g € (X[, )+, then fg € LY. If,
in addition, f € (X,)? orge (X{/w)o , then fg € (LY)°.

(b) We have

(Xuw)+ =L N Xy, (Xo)? =LY NXy, (Xu)-=L'NX,.

This lemma is proved by analogy with [3, Corollary 6.8] and [3,
Lemma 6.11]. Here we essentially use Cauchy’s theorem, Holder’s
inequality for the weighted Banach function space X,,, and the density
of R in X, and in X{/w, see Corollary 2.11.

Lemma 6.10. Suppose fi is analytic in D and continuous on
D*UT with the possible exception of finitely many pointsty, ... t, € T.
Suppose that f1|T' € X, and that f+ admits the estimate

|fe(2)] < M|z —tg| ™", k=1,...,m,

with some M > 0, > 0 for all z € D* sufficiently close to t,. Then
fi € (Xw)i-

This result goes back to Grudsky [17, Proposition 1.5] for Lebesgue
spaces. To prove this statement, we should repeat the proof of [3,
Lemma 6.10], replacing LP(T',w) by X,, and using Lemma 6.9. For
p € (0,1] and Lebesgue spaces this result was known for a long time
[16, Chapter 2, Theorem 4.8]. We remark that for our purposes (see
Lemma 7.1) we really need this analog of Grudsky’s lemma allowing
also the case p > 1.

6.4 Two basic theorems. Let GL* denote the set of all functions
in L*° which are invertible in L*°, that is, the set of functions a € L
such that

esTsellpf la(T)| > 0.

Theorem 6.11. Let a,b € L. If the operator aP + bP_ is semi-
Fredholm in X,,, then a,b € GL*.
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Theorem 6.12. If a € GL*°, then min{n(R,),d(R,)} = 0.

Theorem 6.12 was proved by Coburn [7] for Toeplitz operators on
L?(T). In the form presented here Theorems 6.11 and 6.12 were proved
by Simonenko in [51] for Lebesgue spaces with Khvedelidze weights
over Lyapunov curves. For a detailed discussion of these theorems for
weighted Lebesgue spaces, see [3, Section 6.6] and [16, Sections 7.4 and
7.5]. In our case the proofs are developed analogously on the basis of
the results of subsections 6.2—6.3 and the Lusin-Privalov theorem, see,
e.g., [47, p. 292].

6.5 The local principle of Simonenko type. Two functions
a,b € L are said to be locally equivalent at a point t € T if

inf{||(a —b)elloo: cEC, cft) = 1} —0.

Theorem 6.13. Let a € L. Suppose for each t € I' we are given a
function ay € L which is locally equivalent to a at t. If the operators
R,, are Fredholm in X, for allt € T, then R, is Fredholm in X,,.

For weighted Lebesgue spaces, this theorem is known as Simonenko’s
local principle [50]. More information about localization techniques
can be found, e.g., in [3, 5, 16, 36]. Theorem 6.13 can be proved
similarly to [3, Theorem 6.30] with the help of Lemmas 6.5 and 6.7.

6.6 Wiener-Hopf factorization. We say that a function a € L*®
admits a Wiener-Hopf factorization in the weighted Banach function
space X, if 1/a € L and a can be written in the form

(6.2) a(t) = a_(t)t"as(t) ae. onT,

where k € Z, and the factors at enjoy the following properties:
() a- € (Xu)o, Var € (X)), ay € (X]0)4, Tag € (Xu)s,
(ii) the operator (1/ay)Sa4 [ is bounded on X,,.

One can prove that the number & is uniquely determined.
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Theorem 6.14. A function a € L*° admits a Wiener-Hopf factor-
ization (6.2) in the reflexive weighted Banach function space X,, if and
only if the operator R, is Fredholm in X,,. If R, is Fredholm, then its
index is equal to —k.

This theorem goes back to Simonenko [49, 51]. For more about this
topic we refer to [3, Section 6.12], [5, Section 5.5], [16, Section 8.3] and
also to [6, 38] in the case of weighted Lebesgue spaces. Simonenko’s
result was generalized by the author to the case of reflexive Orlicz
spaces [22, Theorem 5.6] and to the case of reflexive rearrangement-
invariant spaces [24, Theorem 6.10]. In the case of reflexive weighted
Banach function spaces the proof is developed by analogy. The proof
is essentially based on the density of R in X, and in X7, , Lemmas
6.8-6.9 and Theorems 6.11-6.12. Detailed proofs for the results of this
section can be found in [23, Chapter 2] for weighted Banach function
spaces X,, provided X is rearrangement-invariant. We remind the
reader that this assumption can be simply omitted.

7. Fredholmness of singular integral operators in weighted
Banach function spaces.

7.1 Local representatives. Fix t € I'. For a function a €
PC N GL*> we construct a “canonical” function g;, which is locally
equivalent to a at the point ¢ € I'. The interior and the exterior of
the unit circle can be conformally mapped onto D and D~ of T,
respectively, so that the point 1 is mapped to ¢, and the points 0 € DT
and co € D~ remain fixed. Let Ay and A, denote the images of [0, 1]
and [1,00) U {oo} under this map. The curve Ag U A, joins 0 to oo
and meets I' at exactly one point, namely ¢. Let arg z be a continuous
branch of argument in C\ (Ag U A). For v € C, define the function
27 = |z|Yeta8 2 where 2z € C \ (Ag U Ay). Clearly, 27 is an analytic
function in C\ (Ag U Aw). The restriction of 27 to '\ {t} will be
denoted by g 5. Obviously, g; . is continuous and nonzero on I' \ {t}.

Since a(t £ 0) # 0, we can define 7, = v € C by the formulas

1 a(t —0) 1 a(t —0)
D T R FICE) ‘ ’

where we can take any value of arg(a(t — 0)/a(t + 0)), which implies

(7.1) Re~y; :=
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that any two choices of Re~, differ by an integer only. Clearly, there is
a constant ¢; € C\ {0} such that a(t+£0) = ¢;g¢,4, (t £0), which means
that a is locally equivalent to c;g; , at the point ¢t € I.

7.2 Sufficient conditions for factorability of the local repre-
sentative.

Lemma 7.1. If, for some k € Z and v € C, the operator
Ot k—~yS0ty—11 is bounded on the weighted Banach function space X,
then

(7.2) Gey(T) = (1 — t/r)k”YTk(T -tk rerl)\ {t}

is a Wiener-Hopf factorization of the function g, , in X..

Proof. Since the operator <pt7k_7530t_’;7w1 is bounded on X,,, the
operator S is bounded on the weighted Banach function space X, , _ w-
By Theorem 6.1, ¢y —rw € Ax(I"). In that case I' is a Carleson curve
and ¢; p—w € X, whence g ;—y € Xy

Let us show that (71—%)*~7 € (X,,)1. The function f(z) := (z—t)*~
is analytic in D" and continuous on DT U (T'\ {¢}). For z € D*,

[f(&)] = 1(z = )77 = |z — |t Rer- S,
where O, (z) := arg(z —t)/(—log|z — t|). As in [24, Theorem 7.7] and
[3, Lemma 7.1] with the help of Lemma 4.9 one can show that there is
a constant M; € (0, 00) such that

|f(Z)| < |Z _ t‘szRe'yeMﬂImw\(flog\zfﬂ) — |Z _ t‘szRewat\ Im |

for all z in a small neighborhood of t. By Lemma 6.10, (1 — t)¥=7 €
(Xw)+- Analogously one can prove that

(r=t)"" € (X])0)4s  (=t/T)F 77 € (Xu)-, (1t/7)7F € (X7 ) -

These facts together with the boundedness of ¢y Sy ~—rI on the
space X, show that (7.2) is indeed a Wiener-Hopf factorization of the
function g . n]
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7.3 Necessary conditions for factorability of the local repre-
sentative.

Theorem 7.2. If the function g. ., admits a Wiener-Hopf factoriza-
tion in the weighted Banach function space X,,, then

(7.3) —Rev 4 0af(—Tmy) + (1 — 6)3(—Im~) ¢ Z

for all 0 € [0,1]. Moreover, there exists an | € Z such that o w
belongs to Ax(T).

Proof. The idea of the proof (in the case of weighted Lebesgue spaces)
goes back to Spitkovsky [52] and it was further developed by Béttcher
and Yu. Karlovich [3, Proposition 7.2]. This idea was applied to the
proof in the case of reflexive rearrangement-invariant Banach function
spaces (with weights) in [24, Theorem 7.6] and [25, Theorem 4.1].
Since, for our (more general) case, the arguments are the same, we
point out only the main steps.

By Theorem 6.14, the operator g; 4Py + P_ is Fredholm. Then there
exists a ¢ > 0 such that the operators g;,—.Py + P_ are Fredholm
for all € € (—¢,c¢). Applying Theorem 6.14 again, we infer that all
functions g;~y—. admit a Wiener-Hopf factorization in X,,. By using
its definition, one can show that there exists an [ € Z such that the
operators SDt,lvareS‘P;zlgHgI are bounded on X,, for all € € (—¢,c).
In that case, by Theorem 6.1, ;4w € Ax(I') € Ax(T',t). By
Lemma 4.9,

(7.4) 0 < (Qe(pri—v+ew)) < B(Qe(pri—rtew)) < 1.
From Lemma 5.12 and (7.4) it follows that
0<i+e—Rey+a;(—Imy)<l+e—Rey+6/(—Imvy) <1
for all € € (—c¢,c). Hence,
-l < —=Rey+fbof(—Imvy)+ (1 -0);(—=Im~y) <l -1

for every 6 € [0,1]. Thus, (7.3) holds for every 6 € [0, 1]. O
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7.4 Necessary conditions for Fredholmness. Now we are in a
position to state the main result of this paper.

Theorem 7.3. Let T be a rectifiable Jordan curve, let w : T' — [0, o0]
be a weight, and let X be a Banach function space. Suppose the Cauchy
singular integral operator S is bounded on the weighted Banach function
space X, and X, is reflexive. If the operator aPy+ P_, where a € PC,

1

is Fredholm in X,,, then a € GL*> and
a(t —0)
oy | —1
ETO O‘t(% o8 a(t+0)‘>

a(t —0)
1
+(1-0)8¢ <% log

1
(7.5) — 77 T8

i) 2

forallt €T and all 6 € [0,1].

Proof. The proof is developed by analogy with the proof of necessity
part of [24, Theorem 7.8], see also [3, Proposition 7.3].

If R, is Fredholm, then, by Theorem 6.11, a € GL*. Fix an arbitrary
t € I Choose v = v € C as in (7.1). Then the function a is
locally equivalent to c;g:,, at the point ¢, where ¢, € C\ {0} is
some constant. If 7 € T'\ {t}, then g;,, is continuous and nonzero
at 7. Hence, it is locally equivalent to the nonzero constant b, :=
gt ~,(7) at 7. Clearly, the operator Ry := b, P + P_ is invertible,
(b; Py +P_)"' =b 1P+ P_. Therefore, the operator R, is Fredholm
for every 7 € I'\ {t}. Remind that the function g, ,, is locally equivalent
to the function ¢; 'a. Since

(7.6) R-1R, = P.c;'aP, + P_ = T,
and the operator R -1 is invertible, from Lemma 6.7 and (7.6) it follows
that R, is Fredholm if and only if R, .1, is Fredholm. Therefore,
applying Theorem 6.14, we infer that the operator Ry, | is Fredholm.

By Theorem 6.14, the function g; , admits a Wiener-Hopf factorization
in X,,. From Theorem 7.2 it follows that

(7.7) —Rev +0ai(—Imy) + (1 - 0)5; (—Imv) ¢ Z
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for all @ € [0,1]. Since ¢t € I is arbitrary, from (7.1) and (7.7) we
conclude that (7.5) holds for every ¢ € I" and every 6 € [0, 1]. o

7.5 Lower estimates for essential norms. For an operator
A € B(Xy), let

A X = .]lf A + K B(X
= v Ke}c(xw) | | (Xw)
be its essential norm in X,,.

Theorem 7.4. Let T be a rectifiable Jordan curve, let w : T' — [0, o0]
be a weight, and let X be a Banach function space. If the Cauchy
singular integral operator S is bounded on the weighted Banach function
space Xy and X, is reflexive, then

1S|x. > cot (WAF,X,W/z), 1P|y, > 1/sin(rAr x.0),

where

Ar x = grellﬁ min {a(Qtw), 1- 5(Qtw)}.

This statement is proved by a literal repetition of the proof of [25,
Theorem 4.5] using the scheme of [16, Chapter 9, Theorem 9.1]. One
can find more information about estimates of (essential) norms on
weighted Lebesgue spaces in [16, Chapter 13] and [36, Chapter 2].

8. Fredholmness of singular integral operators in weighted
Nakano spaces.

8.1 Necessary conditions for Fredholmness. The necessary
conditions for the Fredholmness of R, in weighted Nakano spaces have
a simpler form than in the general case because we can replace the
indicator functions «f and Sy by the indicator functions 1/p(t) + oy
and 1/p(t) + B¢, respectively. More precisely, the next theorem is true.

Theorem 8.1. Let T be a rectifiable Jordan curve, let w : T — [0, 00]
be a weight, and let p € P. Suppose the Cauchy singular integral
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operator is bounded on the weighted Nakano space qu('). If the operator
aPy + P_, where a € PC, is Fredholm in Lﬁ,('), then a € GL* and

el
a(t—O)D ¢z

a(t+0)

1 at—0) 1 1
1) - ag BT L ga, (o
81 —grae m Yo T at(zw 8

. 0)@(% log

forallt €T and all 6 € [0,1].

Proof. Since p € P, inequalities (5.25) are satisfied. In that case,
by Lemma 2.4, the nonweighted Nakano space LP() is reflexive. On
the other hand, by Theorem 6.1, w € LP() and 1/w € (LP))". Then
the weighted Nakano space Lﬁ,(') is also reflexive, due to Corollary 2.8.
Thus, all assumptions of Theorem 7.3 are satisfied and we can repeat
its proof. In view of Theorem 7.2, there exists an [ € Z such that
Ot 1—yw € App)(T), where 74 is given by (7.1). In that case, by
Lemma 5.17,

—Rey +6a; (—Imvy) + (1 —0)8; (—Imy)
= —Rev: +1/p(t) + O (—Imy;) + (1 — 0) B¢ (— Im ).

Therefore, we can replace condition (7.5) by condition (8.1) in the case
of weighted Nakano spaces. O

For Lebesgue spaces LP, with Muckenhoupt weights w (that is, in the
case when p(-) is constant), condition (8.1) becomes also sufficient for
the Fredholmness of R,, see [3, Proposition 7.3].

8.2 Lower estimates for essential norms.

Theorem 8.2. Let T be a rectifiable Jordan curve, let w : T — [0, 00]
be a weight, and let p € P. If the Cauchy singular integral operator is
bounded on the weighted Nakano space Lﬁ,('), then

|S|qu(.) > cot (wAp,p,w/2>, |Pi|Lg,U(A> > 1/sin(mAr pw)s
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where

. . 1 1
Arpw = igﬁmln{m + g, 1 — m —I/t}.

By Theorem 6.1, w € A, (I'). Therefore, the latter theorem
immediately follows from Theorem 7.4 and Theorem 5.9.

If logw € VMO(T") (in particular, if w = 1), then from Lemma 4.7
and (5.25) it follows that

A 'f'{lll} -{-f11 1}
pow=MIMmNng ——,1 ———» =min {inf —-, 1 —sup ——
Dpw = fep p(t) p(t) ter p(t) ter p(t)

- min{l/p*,l Y }

8.3 Fredholm criterion.

Theorem 8.3. Let T be either a Lyapunov Jordan curve or a Radon
Jordan curve without cusps, let p € P, and let o be a Khvedelidze weight
(1.2) satisfying (6.1). Then the operator aPy + P_, where a € PC, is
Fredholm in the weighted Nakano space Lg(') if and only if

1 a(t —0) 1

(82)  a(t+£0)#£0, ——arg 270 T 5D At ¢Z

for allt € T, where

if ¢t = k 1,...
)\(t) _ {A/w I Tk 6{ ) ,’I’L},

(8.3) 0, fteT\{r,. ...}

Proof. By Theorem 6.2, the operator S is bounded on the (reflexive)

weighted Nakano space L5\

Necessity. By Proposition 4.4, for Lyapunov curves and Radon
curves without cusps, we have §; = &7 = 0 whenever ¢t € I. By
Lemma 5.18, the indicator functions of the pair (T',0) are constants
ar(z) = pe, Br(z) = vy for € R, where the indices of powerlikeness
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e, v of the Khvedelidze weight (1.2) coincide with A(¢) given by (8.3).
Thus,
1 a(t —0) 1 a(t—0)[\
9at(2ﬂ' log a(t—|—O)D +{ 9)5,:(271_ log a(t+0)|) A®)

for every 6 € [0,1] and every t € T'. Therefore, the necessity of
conditions (8.2) follows from Theorem 8.1. The necessity part is proved.

Sufficiency. From (8.2) it follows that for every t € T', there exists an
my € Z such that

1
0 - R — + At 1
<mt e’Yt+p(t)+ ()< )

where 7; is given by (7.1). By Theorem 6.2, the operator S is bounded
)

on the weighted Nakano space et , where
Ot

01(7) i= |1 —t|™ R p(r), T eT.

In view of (5.50) and Proposition 4.4, there exist constants C(t), C2(t) €
(0, 00) such that

Ci(t)ar(1) < Prm v, (T) < Ca()@r(7), 7T\ {t}.

Therefore, S € B(LQ(')) if and only if V¢ m,—~, SOty —m. I € B(Lg(')).
Ot
By Lemma 7.1, the function g¢; ,, admits a Wiener-Hopf factorization in

the weighted Nakano space Lg('). Due to Theorem 6.14, for every t € T,
the operator g; -, Py +P_ is Fredholm. Then the operator cg; -, Py +P—
is Fredholm for ¢ € C\ {0} (see the proof of Theorem 7.3).

Since the function ¢;g; ,, with a specially chosen constant ¢; € C\{0}
is locally equivalent to the function a € PC at every point ¢ € T', in
view of Theorem 6.13, the operator R, = aP; + P_ is Fredholm in the

weighted Nakano space Lg('). o

In Theorem 8.3 the coefficient a can have a countable set of jumps.
If a has only a finite number of jumps and ¢ = 1, this result was
obtained in [31, Theorem A] (as well as a formula for the index of
the operator R,). Note that the transition from finitely many to
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infinitely many jumps is more or less standard (see [16, Section 9.8]
for Lebesgue spaces with Khvedelidze weights over Lyapunov curves),
using the stability of Fredholm operators and localization techniques,
see Section 6.5. We give the proof of Theorem 8.3 here for completeness.
For Lebesgue spaces with Khvedelidze weights over Lyapunov curves
the corresponding result was obtained in the late sixties by Gohberg
and Krupnik [16, Chapter 9].
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