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ON THE ANALYTICITY OF THE
CAUCHY INTEGRAL IN SCHAUDER SPACES

MASSIMO LANZA DE CRISTOFORIS AND LUCA PRECISO

ABSTRACT. As is well known, if the contour of integration
and the density function belong to a suitable Schauder space,
the Cauchy integral belongs to the same Schauder space. We
analyze, in this Schauder space setting, the dependence of
the Cauchy integral upon its contour and its density func-
tion, which we think of as functional variables, and we prove
a result of complex analyticity for such dependence. We prove
our statement by constructing a functional equation which in-
volves the Cauchy integral, the contour of integration and the
density function and by applying to such functional equation
the implicit function theorem in its formulation for nonlinear
maps between Banach spaces.

1. Introduction. In this paper we analyze the analytic dependence
of the Cauchy integral

(1.1) C[φ, f ](·) ≡ 1
2πi

p.v.
∫

∂D

f(t)φ′(t)
φ(t) − φ(·) dt

upon the plane oriented simple closed curve φ and the density function
f , both defined on the counterclockwise oriented boundary ∂D of the
plane unit disk D. We assume that both φ and f belong to a Schauder
space, say Cm,α

∗ (∂D,C), of complex valued functions of class Cm,α

on ∂D, with m a positive natural number and α ∈ ]0, 1[. (The ‘∗’
subscript just means that we are taking the derivatives with respect
to the variable on ∂D.) As is well known, under such conditions on
φ and f , the function C[φ, f ](·) is also of class Cm,α

∗ (∂D,C), and
we consider Cm,α

∗ (∂D,C) as the target space of C[φ, f ]. Although
the linear operator C[φ, ·] for a fixed φ has been studied extensively
during the last century and a considerable amount of work has been
done on the numerical computation of C[φ, f ], especially in view of
the several applications to integral equations and to boundary value
problems, the analysis of the nonlinear functional dependence of C[φ, f ]
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upon both of its arguments, and in particular on φ, seems to be a
subject analyzed only more recently. We mention the contribution of
Calderón, Coifman, Meyer, McIntosh, David, whose work implies the
analyticity of singular integral operators strictly related to C. Calderón
[2, Theorem 1] has shown that if φ is the graph of a Lipschitz function
ψ, i.e., if φ(x) = x + iψ(x) with ψ′ ∈ L∞(R), and if ‖ψ′‖L∞(R) < ε
for some ε > 0, then the linear integral operator with singular kernel
φ′(y)/(φ(y) − φ(x)) is an element of the space L(L2(R,C), L2(R,C))
of the linear and continuous operators of L2(R,C) to itself. Then, by
using a standard argument of truncated kernels, one can deduce the
analytic dependence of the operator with kernel φ′(y)/(φ(y) − φ(x))
upon ψ′ when ‖ψ′‖L∞(R) < min{1, ε}, cf., e.g., Meyer and Coifman
[19, p. 438]. Later, Coifman, McIntosh and Meyer [3, Theorem 1] and,
by different methods, David [6, p. 178], have extended the validity
of the same analyticity result to the case in which ‖ψ′‖L∞(R) <
1. Coifman and Meyer [5] have considered the dependence of the
Cauchy integral upon an arc-length parametrized curve φ defined on
R, with values in the plane and determined by a function, say θ, which
represents the direction of φ′, and have shown that the Cauchy operator
of L(L2(R,C), L2(R,C)) with kernel φ′(y)/(φ(y) − φ(x)) depends
analytically on θ, if θ ranges in a suitable open subset of the John-
Nirenberg space BMO of functions with bounded mean oscillation, cf.,
Coifman and Meyer [5, p. 10]. Later Wu [25, p. 1310], under the advice
of Coifman, has extended the analyticity result of Coifman and Meyer
[5] on the Cauchy integral to arc-length parametrized simple closed
curves.

In our work, we consider simple closed curves φ, which are not neces-
sarily arc-length parametrized, but which are more regular than those
considered by Coifman and Meyer [5]. Correspondingly, the Cauchy op-
erator C[φ, ·] acts in Cm,α

∗ (∂D,C), as opposed to that of Coifman and
Meyer [5] or Wu [25], which acts in L2(R,C) or in L2(∂D,C), respec-
tively. Although our curves are more regular, our analyticity results
cannot be deduced by the work of the authors mentioned above and do
not seem to follow by an immediate modification of their methods. An
advantage of considering arbitrary parametrizations is that the Cauchy
integral C[φ, f ] is defined for φ in an open subset of Cm,α

∗ (∂D,C).

We present an alternative approach to the study of the regularity
of the Cauchy integral. As in [15], we represent a Jordan domain
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by an injective and differentiable function, which we denote by Ψ, of
clD to R2, rather than by the more traditional curve φ parametrizing
the boundary of the Jordan domain. Then we observe that a Cauchy
integral on a contour is uniquely determined by the pair, say (S+, S−),
of “sectionally holomorphic” functions, which are associated to the
Cauchy integral, which are defined in the interior and in the exterior of
the contour, respectively, and which satisfy a certain boundary value
problem. Then we transform such boundary value problem into a
nonlinear boundary value problem of elliptic nature defined on the unit
disk, which we now write in the form of an abstract nonlinear operator
equation as

(1.2) Λ[Ψ, f, T+, T̃ ] = 0,

where (T+, T̃ ) is a pair of functions which is associated to the pair
(S+, S−). Then we show that we can apply to equation (1.2) the
implicit function theorem and we deduce that the solution set of (1.2)
is the graph of a real analytic operator depending on (Ψ, f). By this
result, the real analytic dependence of C[φ, f ] on (φ, f) follows easily.
An advantage of such an approach is that in equation (1.2) there are
no singular integrals and that the operator Λ of equation (1.2) is easily
seen to be analytic. Although to apply the implicit function theorem we
still have to prove an isomorphism theorem for the linearized problem
associated to (1.2), the difficulties we encounter in doing so are only of
linear type. In principle, it seems that our method could be employed
even with weaker regularity assumptions on the curve φ and on the
density f . Once the real analyticity of C is established, we compute all
order derivatives of C and we show that C is actually complex analytic.
The statement concerning the real analyticity of C[φ, f ] as a function of
(φ, f) we prove in this paper, finds application in problems of nonlinear
integral equations, and in particular in those of a perturbation nature,
cf. Lanza and Rogosin [17].

The paper is organized as follows. Section 2 is a section of prelimi-
naries. In Section 3 we show that C is real analytic. In Section 4 we
compute the derivatives of C and we show that C is complex analytic.

2. Preliminaries and notation. Let X ,Y be normed spaces over
K, with K = R or K = C. We say that X is continuously imbedded
in Y , provided that X ⊆ Y and that the inclusion map is continuous.
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LK(X ,Y) denotes the normed space of the continuous K-linear maps of
X into Y and is equipped with the topology of the uniform convergence
on the unit sphere of X . For standard definitions of calculus in normed
spaces, we refer, e.g., to Prodi and Ambrosetti [21] or to Berger
[1]. Unless otherwise specified, we understand that a finite product
of normed spaces is equipped with the sup-norm of the norms of the
components. Let N be the set of nonnegative integers including 0, and
let n ∈ N\{0}. Let [·]n denote the diagonal map of X to Xn defined by
[v]n ≡ (v, . . . , v) for all v ∈ X . A complex normed space can be viewed
naturally as a real normed space. Accordingly, we will say that a certain
map between complex normed spaces is real differentiable, real analytic
or real linear, to indicate that such a map is differentiable, analytic or
linear, respectively, as a map between the corresponding underlying
real spaces. To emphasize that we are retaining the complex structure,
we will say that the map is complex differentiable, complex analytic or
complex linear. To emphasize that the variables of a certain operator
F are functions rather than scalars, we write F[φ] or F[φ, f ] instead of
F(φ) or F(φ, f). The inverse function of a function f is denoted f (−1)

as opposed to the reciprocal of a complex valued function G or the
inverse of a matrix A, which are denoted G−1 and A−1, respectively.
Let r ∈ N\{0}. Mr(K) denotes the set of r × r matrices with entries
in K. A dot ‘·’ denotes the matrix product. Throughout the paper,
we make no formal distinction between complex numbers and pairs of
real numbers, so D denotes the open unit disk both in C and in R2.
Let B ⊆ Rn. Then clB denotes the closure of B and intB denotes the
interior of B.

We now introduce the Schauder spaces on open subsets of Rn. Let
Ω be an open subset of Rn, and let m ∈ N. We denote by Cm(Ω,C)
the space of m-times continuously real differentiable complex-valued
functions on Ω and by Cm(cl Ω,C) the subspace of those functions
f ∈ Cm(Ω,C) such that for all η ∈ Nn with |η| ≡ η1 + · · · + ηn ≤ m,
the function Dηf ≡ ∂|η|f/(∂η1

1 · · · ∂ηn
n ) can be extended with continu-

ity to clΩ. In particular, the elements of Cm(cl Ω,C) or of Cm(Ω,C)
are not necessarily holomorphic in Ω even when m > 0, n = 2. If Ω is
a bounded open subset of Rn, we equip Cm(cl Ω,C) with the norm
‖f‖Cm(cl Ω,C) ≡ ∑

|η|≤m supclΩ |Dηf |. The subspace of Cm(cl Ω,C)
whose functions have m-th order derivatives that are Hölder con-
tinuous with exponent α ∈ ]0, 1] is denoted by Cm,α(cl Ω,C). If
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f ∈ C0,α(cl Ω,C), then its Hölder quotient |f : Ω|α or more simply |f |α,
is defined as sup{(|f(ξ1)−f(ξ2)|/|ξ1−ξ2|α) : ξ1, ξ2 ∈ cl Ω, ξ1 �= ξ2}. The
space Cm,α(cl Ω,C) is equipped with its usual norm ‖f‖Cm,α(cl Ω,C) ≡
‖f‖Cm(cl Ω,C) +

∑
|η|=m |Dηf |α. It is well known that (Cm(cl Ω,C),

‖ ‖Cm(cl Ω,C)) and (Cm,α(cl Ω,C), ‖ ‖Cm,α(cl Ω,C)) are complex Banach
spaces. Let r ∈ N\{0}. We identify Cm(cl Ω,Cr), Cm,α(cl Ω,Cr)
and Cm,α(cl Ω,Mr(C)) with the complex Banach spaces (Cm(cl Ω,C))r,
(Cm,α(cl Ω,C))r and (Cm,α(cl Ω,C))r2

, respectively. If B ⊆ Cr,
Cm(cl Ω, B) denotes the set {f ∈ Cm(cl Ω,Cr) : f(cl Ω) ⊆ B}. Simi-
larly we define Cm,α(cl Ω, B). Clearly, Cm(cl Ω,Rr), Cm,α(cl Ω,Rr) and
Cm,α(cl Ω,Mr(R)) are real Banach spaces. In accordance with our def-
initions, the real Banach spaces Cm,α(cl Ω,C) and Cm,α(cl Ω,R2) coin-
cide algebraically and have equivalent norms. If n = 2 and if G ≡ G1 +
iG2 ∈ C1(cl Ω,C), we set as usual ∂G ≡ (∂x1G+ i∂x2G)/2 = [(∂x1G1 −
∂x2G2) + i(∂x1G2 + ∂x2G1)]/2. Let Ω be an open bounded connected
subset of Rn. We set c[Ω] ≡ sup{(λ(x, y)/|x − y|) : x, y ∈ Ω, x �= y},
where λ(x, y) ≡ inf {length of γ ∈ C1([0, 1],Ω) : γ(0) = x, γ(1) = y}.
The open subset Ω of Rn is said to be regular in the sense of Whit-
ney if Ω is bounded, connected, and if c[Ω] < +∞. It is well known
that if Ω is a bounded, connected, open subset of Rn of class C1, then
c[Ω] < +∞, cf., e.g., Jones [10, p. 73].

We now state two abstract results that we need in order to prove
some technical facts on the composition and on the reciprocal operator
in Schauder spaces. The validity of the following has been pointed out
in [14, Proposition 3.11].

Lemma 2.1. Let X ,Y ,Z be normed spaces. Let A ⊆ X . Let S be a
map of Y × A to Z such that, for all x ∈ A, the map S[·, x] is linear
from Y to Z, i.e., S is linear in its first variable. Then the following
statements are equivalent.

(i) S maps bounded sets of Y ×A to bounded sets of Z.

(ii) There exists an increasing function ψ, i.e., ψ(ρ1) ≤ ψ(ρ2) when-
ever ρ1 ≤ ρ2, of [0,∞[ to itself such that ‖S[y, x]‖Z ≤ ‖y‖Yψ(‖x‖X )
for all (y, x) ∈ Y ×A.

Proof. Statement (ii) follows by statement (i) by setting ψ(r) ≡
sup{‖S[y, x]‖Z : (y, x) ∈ Y ×A, ‖y‖Y = 1, ‖x‖X ≤ r} where sup ∅ ≡ 0.
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Statement (i) is an obvious consequence of statement (ii).

The validity of the following abstract proposition concerning the
regularity of the reciprocal map is well known and can be verified by a
standard argument, cf., e.g., Hille and Phillips [8, Theorems 4.3.2 and
4.3.4].

Proposition 2.2. Let X be a real or complex Banach algebra with
unity, possibly noncommutative. Let I be the subset of the elements of
X which are invertible with respect to the product of X . Then I is open
and the reciprocal map, which takes an element x of I to its reciprocal
with respect to the product of X , is analytic.

Then we have the following.

Lemma 2.3. Let m,n, r, h ∈ N, n, r, h ≥ 1, α, β ∈ ]0, 1]. Let Ω be an
open subset of Rn, regular in the sense of Whitney. Then we have the
following.

(i) Cm+1(cl Ω,C) is continuously imbedded in Cm,α(cl Ω,C).

(ii) The pointwise product in Cm,α(cl Ω,R) is continuous and
Cm,α(cl Ω,R) with this product is a commutative Banach algebra with
unity.

(iii) The pointwise matrix product in Cm,α(cl Ω,Mr(R)) is continuous
and Cm,α(cl Ω,Mr(R)) with this product is a noncommutative Banach
algebra with unity.

(iv) The reciprocal map in Cm,α(cl Ω,Mr(R)), which maps an invert-
ible matrix of functions M to its inverse matrix M−1, is real analytic
from the open subset {M ∈ Cm,α(cl Ω,Mr(R)) : det(M(x)) �= 0, for all
x ∈ clΩ} of Cm,α(cl Ω,Mr(R)) to itself.

(v) Let Ω1 be an open subset of Rr, regular in the sense of Whitney.
If F ∈ Cm,α(cl Ω1,Rh) and if G ∈ Cm,β(cl Ω, cl Ω1), then F ◦ G ∈
Cm,γm(α,β)(cl Ω,Rh), with γ0(α, β) = αβ and γm(α, β) = min{α, β} if
m > 0. Furthermore, there exists an increasing function ψ of [0,+∞[
to itself such that

‖F ◦G‖Cm,γm(α,β)(cl Ω,Rh) ≤ ‖F‖Cm,α(cl Ω1,Rh)ψ(‖G‖Cm,β(cl Ω,Rr)),



ANALYTICITY OF THE CAUCHY INTEGRAL 369

for all (F,G) ∈ Cm,α(cl Ω1,Rh) × Cm,β(cl Ω, clΩ1).

(vi) Let m ≥ 1. If G ∈ Cm,α(cl Ω,Rn) is injective and satisfies
the condition detDG(x) �= 0 for all x in cl Ω, then G(Ω)is a bounded
connected open subset of Rn, G(cl Ω) = clG(Ω), c[G(Ω)] < +∞ and
G(−1) ∈ Cm,α(clG(Ω), clΩ).

Proof. Statement (i) is an obvious consequence of the inclusion
C1(cl Ω,C) ⊆ C0,α(cl Ω,C), which holds because Ω is regular in the
sense of Whitney. Statement (ii) is well known, cf., e.g., [13, Lemma
2.4(v)]; we can prove statement (iii) by using (ii) and by a sim-
ple computation. By Proposition 2.2 and by statement (iii) we ob-
tain statement (iv). The first part of statement (v) can be proved
by induction on m, by using the chain rule and by statement (i)
and (ii), see also [13, Lemma 4.20]. We can prove the second part
of (v) by Lemma 2.1 and by showing that the composition opera-
tor of Cm,α(cl Ω1,Rh)×Cm,β(cl Ω, clΩ1) to Cm,γm(α,β)(cl Ω,Rh) maps
bounded sequences to bounded sequences, a fact which easily follows
by induction on m, by the chain rule and by statement (ii). To prove
statement (vi), we note that G(Ω) is open by the inverse function theo-
rem. Since cl Ω is compact, G is a homeomorphism of cl Ω onto G(cl Ω)
and we have G(cl Ω) = clG(Ω). Inequality c[G(Ω)] < +∞ follows, for
example, from [13, Lemma 4.26]. Then, by induction on m, by exploit-
ing statement (v) and equality DG(−1)(y) = (DG(G(−1)(y)))−1 for all
y ∈ clG(Ω), we obtain G(−1) ∈ Cm,α(clG(Ω), clΩ).

As we shall see later, we parametrize Jordan domains by one-to-one
functions defined on the unit disk. Thus we will employ the following,
cf., [13, Corollary 4.24, Proposition 4.29].

Lemma 2.4. Let Ψ ∈ C1(clD,C). Let

l[Ψ] ≡ inf
{ |Ψ(x) − Ψ(y)|

|x− y| : x, y ∈ clD, x �= y

}
,

A ≡ {Ψ ∈ C1(clD,C) : l[Ψ] > 0}.
Then the following statements hold.

(i) l[Ψ] > 0 if and only if Ψ is injective and detDΨ(x) �= 0 for all x
in clD.
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(ii) The function of C1(clD,C) to R which maps Ψ to l[Ψ] is
continuous; in particular, A is open in C1(clD,C).

We now want to define the Schauder spaces on plane Jordan curves,
which are particular compact subsets of C with no isolated points.
With somewhat more generality, we define the Schauder spaces on
a general compact subset K of C with no isolated points. We say
that a function f of K to C is complex differentiable at z0 ∈ C if
limK�z→z0(f(z)−f(z0))/(z−z0) exists finite. We denote such a limit by
f ′(z0). As usual, the higher order derivatives, if they exist, are defined
inductively. Let m ∈ N. We denote by Cm

∗ (K,C) the complex normed
space of m-times continuously complex differentiable functions f of K
to C equipped with the norm ‖f‖Cm∗ (K,C) =

∑m
i=0 supK |f (i)|. We say

that f is Hölder continuous onK with exponent α ∈ ]0, 1] provided that
|f : K|α ≡ sup{(|f(z1)−f(z2)|/|z1−z2|α) : z1, z2 ∈ K, z1 �= z2} is finite.
We denote by Cm,α

∗ (K,C) the subspace of Cm
∗ (K,C) of functions having

α-Hölder continuousm-th order derivatives. We equip Cm,α
∗ (K,C) with

the norm ‖f‖Cm,α
∗ (K,C) ≡ ‖f‖Cm∗ (K,C) + |f (m) : K|α. If B ⊆ C, we set

Cm,α
∗ (K,B) ≡ {f ∈ Cm,α

∗ (K,C) : f(K) ⊆ B}. Then the following
variant of [13, Corollary 4.24, Proposition 4.29] holds.

Lemma 2.5. Let K be a compact subset of C with no isolated points.
Let φ ∈ C1

∗(K,C). Let

lK [φ] ≡ inf
{ |φ(x) − φ(y)|

|x− y| : x, y ∈ K,x �= y

}
AK ≡ {φ ∈ C1

∗(K,C) : lK [φ] > 0}.
Then the following statements hold.

(i) Assume that, for all φ ∈ C1
∗(K,C) and for all x̃ ∈ K, the limit

lim
{(ξ,η)∈K2,ξ 	=η}�(x,y)→(x̃,x̃)

φ(x) − φ(y)
x− y

exists and equals φ′(x̃). Then lK [φ] > 0 if and only if φ is injective and
φ′(ξ) �= 0 for all ξ in K.

(ii) If K is such that C1
∗(K,C) is continuously imbedded in C0,1

∗ (K,C),
then the function of C1

∗(K,C) to R which maps φ to lK [φ] is continuous
and, in particular, AK is open in C1

∗(K,C).
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Proof. The necessity of the condition of statement (i) is obvious. We
now show the sufficiency by a contradiction argument, cf. Lanza and
Antman [16, Lemma 4.11]. If lK [φ] = 0, then by the compactness of
K, there exist two sequences {xn}n∈N and {yn}n∈N in K with xn �= yn

for all n, which converge to x̃ and ỹ, respectively, and such that

lim
n→+∞

|φ(xn) − φ(yn)|
|xn − yn| = 0.

If x̃ �= ỹ, then φ(x̃) = φ(ỹ), a contradiction. If x̃ = ỹ, then, by
the assumption on K, we must have φ′(x̃) = 0, a contradiction.
Statement (ii) can be shown by following the proof of the corresponding
statement for φ ∈ C1(cl Ω,R2), with Ω open and bounded in R2, cf.
[13, Proposition 4.29].

Remark 2.6. It can be easily verified that K = ∂D satisfies the
assumptions on K of conditions (i) and (ii) of Lemma 2.5 and that
accordingly the conclusions of Lemma 2.5 (i) and (ii) hold for K = ∂D.

We are now ready to state the following, which collects a few facts
which we need on the spaces Cm,α

∗ (K,C).

Lemma 2.7. Let m ∈ N, α, β ∈ ]0, 1], φ ∈ A∂D, L = φ(∂D). Then
the following statements hold.

(i) There exists a positive constant cφ depending only on φ such that,
for all f ∈ C1

∗(L,C) and for all z1, z2 ∈ L,

|f(z1) − f(z2)| ≤ cφ(sup
L

|f ′|)|z1 − z2|.

(ii) Cm+1
∗ (L,C) is continuously imbedded in Cm,α

∗ (L,C).

(iii) Cm
∗ (L,C) and Cm,α

∗ (L,C) are complex Banach spaces.

(iv) The pointwise product is continuous in Cm,α
∗ (L,C).

(v) The reciprocal map in Cm,α
∗ (L,C), which maps a nonvanishing

function f to its reciprocal, is complex analytic from the open subset
{f ∈ Cm,α

∗ (L,C) : f(ξ) �= 0, for all ξ ∈ L}of Cm,α
∗ (L,C) to itself.
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(vi) Let φ1 ∈ A∂D, L1 = φ1(∂D). If f ∈ Cm,α
∗ (L1,C) and if

g ∈ Cm,β
∗ (L,L1), then f ◦ g ∈ Cm,γm(α,β)

∗ (L,C) with γ0(α, β) = αβ
and γm(α, β) = min{α, β} if m > 0. Furthermore, there exists an
increasing function ψ of [0,+∞[ to itself such that

‖f ◦ g‖
C

m,γm(α,β)
∗ (L,C)

≤ ‖f‖Cm,α
∗ (L1,C)ψ(‖g‖Cm,β

∗ (L,C)),

∀ (f, g) ∈ Cm,α
∗ (L1,C) × Cm,β

∗ (L,L1).

(vii) Let m ≥ 1. If g ∈ Cm,α
∗ (L,C) is injective and satisfies condition

g′(ξ) �= 0 for all ξ ∈ L, then g(−1) ∈ Cm,α
∗ (g(L), L).

(viii) Let m ≥ 1 and φ ∈ Cm,α
∗ (∂D,C) ∩ A∂D. Then the map Tφ

defined by Tφ[f ] ≡ f ◦ φ for all f ∈ Cm,α
∗ (L,C) is a complex linear

homeomorphism of Cm,α
∗ (L,C) onto Cm,α

∗ (∂D,C).

Proof. We prove (i). Let j = 1, 2, θj ∈ [0, 2π], sj = eiθj ,
zj = φ(sj), σ(θ1, θ2) ≡ min{|t1 − t2| : tl ∈ R, eitl = eiθl , l = 1, 2},
η = inf {(|eiθ1 − eiθ2 |/σ(θ1, θ2) : θ1, θ2 ∈ [0, 2π], σ(θ1, θ2) �= 0}. As
shown in Lanza and Antman [16, Lemma 4.11], η > 0. Since f◦φ(eit) ∈
C1(R,C), we have

|f(z1) − f(z2)| ≤
(

sup
θ∈[0,2π]

|f ′(φ(eiθ))φ′(eiθ)|
)
σ(θ1, θ2)

≤
(

sup
L

|f ′|
)(

sup
[0,2π]

|φ′|
)
η−1(l∂D[φ])−1|z1 − z2|.

Then statement (i) follows by setting cφ ≡ (sup[0,2π] |φ′|)η−1(l∂D[φ])−1.
Statement (ii) is an immediate consequence of (i). We now prove
statement (iii). It clearly suffices to show that Cm

∗ (L,C) is complete.
We proceed by induction on m. Case m = 0 is well known. Case
m = 1 can be shown by observing that, if f ∈ C1

∗(L,C), then
f(φ(eit)) ∈ C1(R,C) and by using a standard argument. Case m + 1
can be deduced by case m and by applying case m = 1. Statement
(iv) can be proved by a standard inductive argument, cf., e.g., [13,
Lemma 2.4(v)] and by using statement (ii). Statement (v) is an
immediate consequence of (iii), (iv) and of Proposition 2.2. We can
prove statement (vii) and the first part of (vi) by induction on m,
by using the chain rule, the rule of differentiation of the inverses and



ANALYTICITY OF THE CAUCHY INTEGRAL 373

statements (ii) and (iv). By statements (ii) and (iv) and, by induction
on m, it can be easily shown that the composition operator maps
bounded sequences of Cm,α

∗ (L1,C)×Cm,β
∗ (L,L1) to bounded sequences

of Cm,γm(α,β)
∗ (L,C). Then, by Lemma 2.1, we conclude the existence

of ψ as in the second part of statement (vi). Statement (viii) is an
immediate consequence of statements (vi) and (vii).

Now let φ ∈ A∂D. By the Jordan theorem, cf., e.g., Godbillon [7,
Corollary 4.4, p. 214], C\φ(∂D) consists of two open connected com-
ponents. We denote by I[φ] and E[φ] the bounded and the unbounded
components of C\φ(∂D), respectively. We collect in the following
lemma some properties of I[φ], of E[φ] and of the trace of a function of
class Cm,α in cl I[φ].

Lemma 2.8. The following statements hold.

(i) If φ ∈ A∂D, then ∂I[φ] = ∂E[φ] = φ(∂D) and c[I[φ]] < +∞.

(ii) Let m ∈ N, α ∈ ]0, 1], φ ∈ Cm,α
∗ (∂D,C) ∩ A∂D. Then the

trace operator R from Cm,α(cl I[φ],C) to Cm,α
∗ (φ(∂D),C) defined by

R[F ] = F/φ(∂D) is complex linear and continuous.

Proof. Conditions φ(eit) ∈ C1(R,C), φ′(eit) �= 0 for all t ∈ R,
l∂D[φ] > 0 imply that φ(∂D) is a real connected submanifold of class
C1 and of codimension one of C. It follows that the boundary of
I[φ] and E[φ] is φ(∂D) and that I[φ] and E[φ] are open subsets of
C of class C1. Then c[I[φ]] < +∞. We now fix m and prove by
induction on j = 0, . . . ,m, that R is continuous from Cj,α(cl I[φ],C)
to Cj,α

∗ (φ(∂D),C). Case j = 0 is obvious. We now assume that the
statement holds for j ∈ {0, . . . ,m − 1} and prove it for j + 1. Let
F ∈ Cj+1,α(cl I[φ],C) and let φ1 and φ2 be the real and the imaginary
part, respectively, of φ. Since φ(eit) belongs to Cm,α([0, 2π],C) then
φ1 and φ2 belong to Cm,α

∗ (∂D,C). By Lemma 2.3 (v), we have
F (φ(eit)) ∈ C1(R,C). Then F ′ exists. By the chain rule applied to the
function F (φ(eit)), we deduce that

F ′(z) =
[
∂F

∂x
(z)φ′1(φ

(−1)(z)) +
∂F

∂y
(z)φ′2(φ

(−1)(z))
]
(φ′(φ(−1)(z)))−1,

∀ z ∈ φ(∂D).
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By inductive assumption and by Lemma 2.7 (iv), (v), (vi) and
(vii), there exists a positive constant c such that ‖F ′‖Cj,α

∗ (φ(∂D),C)

≤ c‖F‖Cj+1,α(cl I[φ],C). Then statement (ii) follows immediately.

We now show that our representation of a Jordan domain depends
analytically on the curve which parametrizes the boundary of the
Jordan domain. To do so we need the following which is a restatement
of a corresponding lemma of [15, Lemma 2.13].

Lemma 2.9. Let m ∈ N\{0}, α ∈ ]0, 1[. Let φ0 ∈ Cm,α
∗ (∂D,C) ∩

A∂D, z0 ∈ I[φ0]. Then the following hold.

(i) There exists at least an element Ψ0 ∈ Cm,α(clD,C)∩A such that
Ψ0/∂D = φ0 and that Ψ0(0) = z0.

(ii) There exists a continuous complex linear extension operator E
of Cm,α

∗ (∂D,C) to Cm,α(clD,C) such that the affine map between the
same spaces defined by

(2.10) Eφ0 [φ] ≡ Ψ0 + E[φ− φ0],

maps an open neighborhood Uφ0 of φ0 contained in Cm,α
∗ (∂D,C)∩A∂D

into {Ψ ∈ Cm,α(clD,C) ∩A : Ψ(0) = z0} and satisfies

Eφ0 [φ]/∂D = φ, ∀φ ∈ Uφ0 .

Proof. Clearly, the function φ0(eit) is a simple closed curve of class
Cm,α defined on [0, 2π] with (d/dt){φ0(eit)} �= 0 for all t ∈ [0, 2π].
Then, by [15, Lemmas 2.7, 2.13 (i)], statement (i) holds. To prove
statement (ii), we take k ∈ C∞([0, 1], [0, 1]) such that k([0, (1/3)]) =
{0}, k([(2/3), 1]) = {1} and we set E[h](x) ≡ h(x/|x|)k(|x|), for
all x ∈ clD, h ∈ Cm,α

∗ (∂D,C). By exploiting Lemma 2.3 (ii) and
(v), it can be verified that E[·] is a complex linear and continuous
operator of Cm,α

∗ (∂D,C) to Cm,α(clD,C) and that E[h]/∂D = h for all
h ∈ Cm,α

∗ (∂D,C). Then, by using Lemmas 2.4 (ii) and 2.5 (ii), it is
easy to check that the affine map defined in (2.10) satisfies the required
properties.
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3. Introduction of a modified problem and analyticity of
the Cauchy integral. We now turn our attention to the dependence
of the Cauchy integral of (1.1) upon φ, f . We understand that all
line integrals on ∂D are computed with respect to the parametrization
θ �→ eiθ, θ ∈ [0, 2π] and that all line integrals on φ ∈ C1

∗(∂D,C)
are computed with respect to the parametrization θ �→ φ(eiθ). Let
φ ∈ C1

∗(∂D,C) ∩ A∂D. We denote by ind [φ] the index of the curve
θ �→ φ(eiθ), θ ∈ [0, 2π] with respect to any of the points of I[φ]:

(3.1) ind [φ] ≡ 1
2πi

∫
φ

dξ

ξ − z
, z ∈ I[φ].

The map ind [·] is obviously constant on the open connected compo-
nents of A∂D in C1

∗(∂D,C). Now it is well known that the Cauchy in-
tegral

∫
φ
f ◦φ(−1)(ξ)/(ξ−z) dξ determines a so-called “sectionally holo-

morphic function” which vanishes at infinity and which jumps across
the contour of integration, as shown by the Plemelj formula. Also the
jump condition and the condition at infinity determine the “sectionally
holomorphic function.” We formulate such known facts in the following
statement.

Theorem 3.2. Let m ∈ N\{0}, α ∈ ]0, 1[. Let φ ∈ Cm,α
∗ (∂D,C) ∩

A∂D, f ∈ Cm,α
∗ (∂D,C). Then there exists one and only one pair of

functions

(S+, S−) ∈ Cm,α(cl I[φ],C) × (C1(clE[φ],C) ∩ Cm,α
∗ (φ(∂D),C)),

which satisfies the following boundary value problem associated to (φ, f)

(3.3)

⎧⎪⎪⎨⎪⎪⎩
∂̄S+ = 0 in I[φ],
∂̄S− = 0 in E[φ],
S+ − S− = f ◦ φ(−1) on φ(∂D),
S−(∞) ≡ limz→∞ S−(z) = 0.

We denote such a unique solution (S+, S−) by (S+[φ, f ],S−[φ, f ]). The
functions S+[φ, f ] and S−[φ, f ] can be written explicitly as follows

S+[φ, f ](z) =
ind [φ]
2πi

∫
φ

f ◦ φ(−1)(ξ)
ξ − z

dξ ∀ z ∈ I[φ],

S−[φ, f ](z) =
ind [φ]
2πi

∫
φ

f ◦ φ(−1)(ξ)
ξ − z

dξ ∀ z ∈ E[φ],
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and the following Plemelj formula holds

(3.4)
S±[φ, f ](z) = ±1

2
f ◦ φ(−1)(z) +

ind [φ]
2πi

p.v.
∫

φ

f ◦ φ(−1)(ξ)
ξ − z

dξ

∀ z ∈ φ(∂D).

Proof. We first consider the uniqueness. Assume that (S+
j , S

−
j ),

j = 1, 2, are solutions of (3.3); then⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂̄[S+

1 − S+
2 ] = 0 in I[φ],

∂̄[S−
1 − S−

2 ] = 0 in E[φ],
(S+

1 − S+
2 ) − (S−

1 − S−
2 ) = 0 on φ(∂D),

(S−
1 − S−

2 )(∞) = 0.

We observe that, by Lemma 2.8 (i), we have ∂I[φ] = ∂E[φ] = φ(∂D).
Thus the function

G(z) =
{

(S+
1 − S+

2 )(z) if z ∈ cl I[φ],
(S−

1 − S−
2 )(z) if z ∈ C\cl I[φ],

is holomorphic in C\φ(∂D) and continuous on C. Then a well-known
result, cf., e.g., Muskhelishvili [20, p. 36], implies that G is holomorphic
in C. Since G(∞) = 0, Liouville’s theorem implies that G = 0. By
Lemma 2.7 (vi) and (vii), we have f ◦ φ(−1) ∈ Cm,α

∗ (φ(∂D),C) and
thus, by the well-known properties of the Cauchy integral, see, e.g., Lu
[18, pp. 23, 28, 36] and by Lemma 2.8 (ii), we deduce the existence of
(S+, S−) and equation (3.4).

Then, by Lemma 2.8 (ii), we deduce the following corollary.

Corollary 3.5. Let m ∈ N\{0}, and let α ∈ ]0, 1[. For all
(φ, f) ∈ (Cm,α

∗ (∂D,C) ∩ A∂D) × Cm,α
∗ (∂D,C) the integral

C[φ, f ](·) ≡ 1
2πi

p.v.
∫

∂D

f(t)φ′(t)
φ(t) − φ(·) dt

=
1

2πi
p.v.

∫
φ

f ◦ φ(−1)(ξ)
ξ − φ(·) dξ
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belongs to Cm,α
∗ (∂D,C). Thus C defines a nonlinear operator of

(Cm,α
∗ (∂D,C) ∩ A∂D) × Cm,α

∗ (∂D,C) to Cm,α
∗ (∂D,C).

Remark 3.6. By (3.4), by Lemma 2.8 (ii) and by the constancy of
ind [·] on the open connected components of Cm,α

∗ (∂D,C) ∩ A∂D, the
study of the regularity of the operator C[φ, f ] is equivalent to that of
the operator from (Cm,α

∗ (∂D,C)∩A∂D)×Cm,α
∗ (∂D,C) to Cm,α

∗ (∂D,C)
which maps a pair (φ, f) to S+[φ, f ] ◦ φ.

To enable the application of our methods, we now represent the
contour of integration of our Cauchy integrals by the restriction to
∂D of a function Ψ defined on clD. Let Ψ ∈ Cm,α(clD,C)∩A, m ≥ 1,
φ ≡ Ψ/∂D. By Brouwer’s theorem on the invariance of the domain, cf.,
e.g., Hurewicz and Wallman [9, p. 95], and by a simple topological
argument, cf., e.g., [15, Lemma 2.2], we have Ψ(D) = I[φ] and
C\Ψ(clD) = E[φ]. Now our aim is to prove that the nonlinear operator
which takes the pair (Ψ, f) to S+[Ψ/∂D, f ] ◦ Ψ is real analytic from
(Cm,α(clD,C)∩A)×Cm,α

∗ (∂D,C) to Cm,α(clD,C). As a consequence,
we can deduce by Lemmas 2.8 (ii) and 2.9 the real analyticity of the
operator C.

We note that problem (3.3) has been formulated in part on the
unbounded domain C\Ψ(clD). Since we find it more convenient
to work on a bounded domain, we now transform the problem in
C\Ψ(clD) into a problem defined in a bounded domain. To do so,
we need the following.

Lemma 3.7. Let m ∈ N\{0}, α ∈ ]0, 1[. Let Ψ0 ∈ Cm,α(clD,C)∩A.
Then there exists an open neighborhood WΨ0 of Ψ0 in the open subset
Cm,α(clD,C) ∩ A of Cm,α(clD,C) and a complex analytic map G of
WΨ0 to Cm,α(clD,C) ∩A such that

G[Ψ](t) =
1

Ψ(t) − Ψ(0)
∀ t ∈ ∂D,

G[Ψ](0) = 0,

for all Ψ ∈ WΨ0 .

Proof. By Lemma 2.8 (ii), the map of Cm,α(clD,C) to Cm,α
∗ (∂D,C),
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which takes Ψ to (Ψ/∂D − Ψ(0)), is complex linear and continuous
and thus complex analytic. By Lemma 2.7 (v), the reciprocal map
is complex analytic from Cm,α

∗ (∂D,C\{0}) to itself. Since the map
H(z) ≡ 1/(z − Ψ(0)) is a one-to-one holomorphic map of C\{Ψ(0)}
onto C\{0}, we have 1/(Ψ/∂D(·) − Ψ(0)) ∈ Cm,α

∗ (∂D,C\{0}) ∩ A∂D

for all Ψ ∈ Cm,α(clD,C) ∩ A. Then we can conclude the proof by
applying Lemma 2.9, with φ0(·) ≡ 1/(Ψ0(·) − Ψ0(0)) in ∂D and with
z0 = 0.

We now reformulate the boundary value problem (3.3) on a bounded
domain.

Proposition 3.8. Let m ∈ N\{0}, α ∈ ]0, 1[. Let Ψ0 ∈
Cm,α(clD,C)∩A. Let WΨ0 be the neighborhood of Ψ0 in Cm,α(clD,C)∩
A of Lemma 3.7. Let (Ψ, f) ∈ WΨ0 ×Cm,α

∗ (∂D,C). Then the boundary
value problem

(3.9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂̄[T+ ◦ Ψ(−1)] = 0 in Ψ(D),
∂̄[T̃ ◦ (G[Ψ])(−1)] = 0 in G[Ψ](D),
T+ − T̃ = f on ∂D,
T̃ (0) = 0,

has a unique solution (T+, T̃ ) ∈ (Cm,α(clD,C))2. Such a unique
solution is delivered by the formulas
(3.10)

T+(z) = S+[Ψ/∂D, f ](Ψ(z)), ∀ z ∈ clD,

T̃ (z) =

{
S−[Ψ/∂D, f ](Ψ(0) + (G[Ψ](z))−1) if z ∈ clD\{0},
S−[Ψ/∂D, f ](∞) = 0 if z = 0.

Proof. Assume that (T+, T̃ ) ∈ (Cm,α(clD,C))2 solves (3.9). Then,
by Lemma 2.3 (v) and (vi), the function S̃ ≡ T̃ ◦ (G[Ψ])(−1) belongs
to Cm,α(clG[Ψ](D),C). We now observe that the function H(z) ≡
1/(z−Ψ(0)) is a one-to-one map of C\{Ψ(0)} onto C\{0} and that it is
holomorphic with inverse map H(−1)(w) = Ψ(0)+(1/w). Furthermore,
H is a one-to-one map of cl (C\Ψ(clD)) onto (clG[Ψ](D))\{0}. Then
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by chain rule and Lemmas 2.7 (ii), (vi) and 2.8 (ii), we have S− ≡
S̃ ◦H ∈ C1(cl (C\Ψ(clD)),C)∩Cm,α

∗ (Ψ(∂D),C) and S−(∞) = S̃(0) =
T̃ (G[Ψ](−1)(0)) = T̃ (0) = 0. By Lemma 2.3 (v) and (vi), we have
S+ ≡ T+ ◦ Ψ(−1) ∈ Cm,α(cl Ψ(D),C) and an immediate computation
shows that (S+, S−) solves problem (3.3) for φ ≡ Ψ/∂D. Then
S+ = S+[Ψ/∂D, f ], S− = S−[Ψ/∂D, f ]. This shows the uniqueness
of problem (3.9) and that the formulas for T+, T̃ hold provided that
problem (3.9) has at least a solution.

We now prove the existence for problem (3.9). We define the function
S̃ from clG[Ψ](D) to C by setting

S̃(w) ≡
{

S−[Ψ/∂D, f ](Ψ(0) + (1/w)) if w ∈ (clG[Ψ](D))\{0},
S−[Ψ/∂D, f ](∞) if w = 0.

We set γ ≡ G[Ψ]/∂D. By Lemma 2.8 (ii) we have γ ∈ Cm,α
∗ (∂D,C\{0})∩

A∂D, and an easy computation shows that

S̃(w) = −w · S+

[
γ,
f

γ

]
(w)

for all w ∈ cl I[γ]. Since S+[φ, f ] ∈ Cm,α(cl I[φ],C) for all (φ, f) ∈
(Cm,α

∗ (∂D,C)∩A∂D)×Cm,α
∗ (∂D,C), Lemmas 2.7 (iv), (v) and 2.3 (i)

and (ii) imply that S̃ ∈ Cm,α(clG[Ψ](D),C). Then, by Lemma 2.3
(v) and (vi), we deduce that (T+, T̃ ) defined as in (3.10) belongs to
(Cm,α(clD,C))2 and solves problem (3.9).

To proceed further, we wish to rewrite the equations of (3.9) in a
way suitable to the application of our methods. To do so we introduce
the following lemma, whose proof is of immediate verification, cf., [15,
Lemma 3.1].

Lemma 3.11. Let m ∈ N, α ∈ ]0, 1]. Let Ω be an open subset of
R2. Let L be the linear and continuous map of Cm,α(cl Ω,M2(R)) to
itself defined by

L[F ] =
(
F22 −F21

−F12 F11

)
∀F ≡

(
F11 F12

F21 F22

)
∈ Cm,α(cl Ω,M2(R)),

and let I be the identity map in Cm,α(cl Ω,M2(R)). Then the following
hold.
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(i) L ◦ L = I,

(ii) (I − L)[F ] = 0 if and only if F11 = F22, F12 = −F21.

Remark 3.12. With the same notation of Lemma 3.11, let G ≡
G1 + iG2 ∈ Cm+1,α(cl Ω,C). Then both the first row and the first
column of the 2 × 2 matrix

1
2
(I − L)[DG]

equal (Re ∂̄G, Im ∂̄G). Furthermore, we have (I − L)[DG] = 0 in Ω if
and only if G1 + iG2 is holomorphic in Ω.

Thus we have the following.

Proposition 3.13. Let m ∈ N\{0}, α ∈ ]0, 1[, Ψ0 ∈ Cm,α(clD,C)∩
A. Let WΨ0 be the neighborhood of Ψ0 in Cm,α(clD,C) ∩ A of
Lemma 3.7. Let (Ψ, f) ∈ WΨ0 × Cm,α

∗ (∂D,C). The pair (T+, T̃ ) ∈
(Cm,α(clD,C))2 satisfies the boundary value problem (3.9) if and only
if the same pair satisfies the following boundary value problem

(3.14)

⎧⎪⎪⎨⎪⎪⎩
(I − L)[DT+(·) · (DΨ(·))−1] = 0 in D,
(I − L)[DT̃ (·) · (DG[Ψ](·))−1] = 0 in D,
T+ − T̃ = f on ∂D,
T̃ (0) = 0.

In particular, problem (3.14) associated to (Ψ, f) has a unique solution
(T+, T̃ ) in (Cm,α(clD,C))2, and T+ = S+[Ψ/∂D, f ] ◦ Ψ.

Proof. By Remark 3.12, condition ∂̄[T+ ◦Ψ(−1)] = 0 can be rewritten
as

(3.15) (I − L)[D(T+ ◦ Ψ(−1))] = 0 in Ψ(D).

By taking the composition of both sides of (3.15) with Ψ, one obtains
the first equation of (3.14). The second equation can be obtained
similarly. Then we conclude by Proposition 3.8.

Our strategy is now to recast (3.14) in a form suitable for the ap-
plication of the implicit function theorem. We note that the applica-
tion of the implicit function theorem normally involves difficulties of
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two types. The first type of difficulty is concerned with showing the
regularity of the nonlinear operators involved and with this respect
we know that all of the operators appearing in (3.14) are easily seen
to be real analytic, cf., Lemmas 2.3 (iii), (iv) and 3.7. The second
type of difficulty is inherent with the unique solvability of the lin-
earized problem. Although the latter type of difficulty still remains,
we note that our approach has completely annihilated all the difficul-
ties of “nonlinear type.” A direct approach to show the analyticity of
(φ, f) → ∫

∂D
f(t)φ′(t)/(φ(t)−φ(·)) dt would, instead, have to deal with

difficulties of nonlinear type aggravated by the presence of a singular
integral. Thus we now prove the following.

Theorem 3.16. Let m ∈ N\{0}, α ∈ ]0, 1[. Then the nonlinear
operator defined by

(3.17) T+[Ψ, f ] ≡ S+[Ψ/∂D, f ] ◦ Ψ

is real analytic from (Cm,α(clD,C)∩A)×Cm,α
∗ (∂D,C) to Cm,α(clD,C).

Proof. Let (Ψ0, f0) ∈ (Cm,α(clD,C)∩A)×Cm,α
∗ (∂D,C). Let WΨ0 be

the neighborhood of Ψ0 of Lemma 3.7. We now prove the analyticity
of T+ by analyzing problem (3.14) for (Ψ, f) in WΨ0 × Cm,α

∗ (∂D,C).

With the notation of Lemma 3.11, we set

Vr,α ≡ {V ∈ Cr,α(clD,M2(R)) : (I + L)[V ] = 0 in clD},

for all r ∈ N. Vr,α is obviously a closed subspace of the Banach space
Cr,α(clD,M2(R)). To recast problem (3.14) in the form of a nonlinear
operator equation, we define the operator Λ of WΨ0 × Cm,α

∗ (∂D,C) ×
(Cm,α(clD,C))2 to (Vm−1,α)2 × Cm,α

∗ (∂D,C) × C by means of the
following equality

Λ[Ψ, f, T+, T̃ ] ≡ ((I − L)[DT+(·) · (DΨ(·))−1],

(I − L)[DT̃ (·) · (DG[Ψ](·))−1], T+ − T̃ − f, T̃ (0)).

By Proposition 3.13, we have

(3.18) Λ[Ψ, f, T+, T̃ ] = 0 if and only if (T+, T̃ ) satisfies (3.9).
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We now apply the implicit function theorem, cf., Prodi and Ambrosetti
[21, Theorem 11.6] or Berger [1, p. 134] to the operator equation
(3.18). By the real analyticity of the real multi-linear continuous
operators and by Lemmas 2.3 (iii), (iv) and 3.7, the operator Λ is
real analytic. Furthermore, Λ is defined between an open subset of a
Banach space and a Banach space. Let (T+

0 , T̃0) be the solution of (3.9)
corresponding to the pair (Ψ0, f0). Then all we have to show is that
the differential d(T+,T̃ )Λ[Ψ0, f0, T

+
0 , T̃0] of the affine map (T+, T̃ ) →

Λ[Ψ0, f0, T
+, T̃ ] is a real linear homeomorphism of (Cm,α(clD,C))2

onto (Vm−1,α)2 × Cm,α
∗ (∂D,C) × C. Since d(T+,T̃ )Λ[Ψ0, f0, T

+
0 , T̃0] is

real linear and continuous, by the open mapping theorem it suffices to
show that for all (V +

∗ , Ṽ∗, g, c) ∈ (Vm−1,α)2 × Cm,α
∗ (∂D,C) × C there

exists a unique pair (W+
∗ , W̃∗) ∈ (Cm,α(clD,C))2 satisfying

(3.19)

⎧⎪⎪⎨⎪⎪⎩
(I − L)[DW+

∗ (·) · (DΨ0(·))−1] = V +
∗ in D,

(I − L)[DW̃∗(·) · (DG[Ψ0](·))−1] = Ṽ∗ in D,
W+

∗ − W̃∗ = g on ∂D,
W̃∗(0) = c.

By composing the first equation of (3.19) with Ψ(−1)
0 and the second

with G[Ψ0](−1), system (3.19) can be rewritten as
(3.20)⎧⎪⎪⎪⎨⎪⎪⎪⎩

(I − L)[D(W+
∗ ◦ Ψ(−1)

0 )] = V +
∗ ◦ Ψ(−1)

0 in Ψ0(D),
(I − L)[D(W̃∗ ◦ G[Ψ0](−1))] = Ṽ∗ ◦ G[Ψ0](−1) in G[Ψ0](D),
W+

∗ − W̃∗ = g on ∂D,
W̃∗(0) = c.

Clearly,

Ψ(−1)
0 (z) = G[Ψ0](−1)

(
1

z − Ψ0(0)

)
, ∀ z ∈ Ψ0(∂D).

Now we set
V + ≡ first row of V +

∗ ◦ Ψ(−1)
0 /2,

Ṽ ≡ first row of Ṽ∗ ◦ G[Ψ0](−1)/2.

Then, in view of Remark 3.12 and of Lemma 2.3 (v) and (vi), the exis-
tence and unique solvability in (Cm,α(clD,C))2 of problem (3.19) for all
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(V +
∗ , Ṽ∗, g, c) ∈ (Vm−1,α)2×Cm,α

∗ (∂D,C)×C is equivalent to existence
and unique solvability in Cm,α(clΨ0(D),C)× Cm,α(clG[Ψ0](D),C) of
the following linear boundary value problem

(3.21)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂̄[W+

∗ ◦ Ψ(−1)
0 ] = V + in Ψ0(D),

∂̄[W̃∗ ◦ G[Ψ0](−1)] = Ṽ in G[Ψ0](D),
W+

∗ − W̃∗ = g on ∂D,
W̃∗(0) = c,

for all (V +, Ṽ , g, c) ∈ Cm−1,α(clΨ0(D),C)×Cm−1,α(clG[Ψ0](D),C)×
Cm,α
∗ (∂D,C) × C. By Proposition 3.8, system (3.21) has at most

one solution. We now consider the existence. Let (V +, Ṽ , g, c) ∈
Cm−1,α(clΨ0(D),C) × Cm−1,α(clG[Ψ0](D),C) × Cm,α

∗ (∂D,C) × C.
It is well known, cf., Vekua [24, p. 56], that there exist U+ ∈
Cm,α(clΨ0(D),C) and Ũ ∈ Cm,α(clG[Ψ0](D),C) such that{

∂̄U+ = V + in Ψ0(D),
∂̄Ũ = Ṽ in G[Ψ0](D).

By possibly subtracting a constant to Ũ , we can assume that Ũ(0) = c.
Thus all we have to show is the existence of a pair of functions
(T+, T̃ ) ∈ (Cm,α(clD,C))2 such that

(3.22)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂̄[T+ ◦ Ψ(−1)] = 0 in Ψ0(D),
∂̄[T̃ ◦ G[Ψ0](−1)] = 0 in G[Ψ0](D),
T+ − T̃ = g − U+ ◦ Ψ0 + Ũ ◦ G[Ψ0] on ∂D,
T̃ (0) = 0.

Let h be the function of ∂D to C be defined by

h(z) ≡ g(z) − U+(Ψ0(z)) + Ũ(G[Ψ0](z)).

By Lemmas 2.8 (ii) and 2.7 (vi), we have h ∈ Cm,α
∗ (∂D,C). Then

Proposition 3.8 ensures the existence of a pair of solutions (T+, T̃ ) of
problem (3.22).

By the previous theorem, by Lemma 2.9 and by Remark 3.6, we
immediately deduce the validity of the following.
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Theorem 3.23. Let m ∈ N\{0}, α ∈ ]0, 1[. The nonlinear operator
C from (Cm,α

∗ (∂D,C) ∩ A∂D) × Cm,α
∗ (∂D,C) to Cm,α

∗ (∂D,C) defined
by

C[φ, f ](·) =
1

2πi
p.v.

∫
∂D

f(t)φ′(t)
φ(t) − φ(·) dt

for all (φ, f) ∈ (Cm,α
∗ (∂D,C) ∩ A∂D) × Cm,α

∗ (∂D,C) is real analytic.

4. Complex analyticity of the Cauchy integral. Let C be
the Cauchy integral as in Theorem 3.23. We now compute all the
differentials C(n) of C and show that C is complex analytic in its
domain.

Proposition 4.1. Let m,n ∈ N\{0}, α ∈ ]0, 1[. Let C be the
nonlinear operator of Theorem 3.23. Let (φ0, f0) ∈ (Cm,α

∗ (∂D,C) ∩
A∂D) × Cm,α

∗ (∂D,C). Then the following formulas for the real partial
differentials of C hold.

(i)

∂nC

(∂φ)n
[φ0, f0][h1, . . . , hn](·)

=
(−1)n(n− 1)!

2πi

∫
∂D

f ′0(t)
n∏

i=1

(
hi(t) − hi(·)
φ0(t) − φ0(·)

)
dt,

for all (h1, . . . , hn) ∈ (Cm,α
∗ (∂D,C))n.

(ii)

∂nC

(∂φ)n−1∂f
[φ0, f0][h1, . . . , hn−1, kn](·)

=

⎧⎪⎨⎪⎩
C[φ0, kn](·) if n = 1,

(−1)n−1(n− 2)!
2πi

∫
∂D

k′n(t)
∏n−1

i=1

(
hi(t) − hi(·)
φ0(t) − φ0(·)

)
dt if n ≥ 2,

for all (h1, . . . , hn−1, kn) ∈ (Cm,α
∗ (∂D,C))n.



ANALYTICITY OF THE CAUCHY INTEGRAL 385

(iii)

C(n)[φ0, f0](h1, k1), . . . , (hn, kn)]

=
∂nC

(∂φ)n
[φ0, f0][h1, . . . , hn]

+
n∑

i=1

∂nC

(∂φ)(n−1)∂f
[φ0, f0][h1, . . . , ĥi, . . . , hn, ki],

for all (h1, k1, . . . , hn, kn) ∈ (Cm,α
∗ (∂D,C))2n. The ‘ ’̂ symbol on a

term denotes that such a term must be omitted. In particular, C is
complex analytic in its domain.

Proof. It clearly suffices to consider the case in which ind [φ0] = 1.
Let R be the trace operator of Cm,α(clD,C) to Cm,α

∗ (∂D,C). Let
z0 ∈ I[φ0], and let E,Eφ0 ,Ψ0 and Uφ0 be as in Lemma 2.9. Clearly,
we can assume that ind [φ] = 1 for all φ ∈ Uφ0 . The operator Eφ0 is
complex differentiable at all points of its domain, with differential given
by the operator E which satisfies E[h]/∂D = h for all h ∈ Cm,α

∗ (∂D,C).
We now compute the Taylor expansion of the real analytic operator
C[·, f0] at φ0. By the definition of T+, cf. (3.17), and of C and by the
Plemelj formula (3.4), we have

(4.2) C[φ, f0] = −1
2
f0 +R[T+[Eφ0 [φ], f0]] on ∂D,

for all φ ∈ Uφ0 . Since R is linear, it suffices to find the Taylor expansion
at Ψ0 ≡ Eφ0 [φ0] of the operator T+[·, f0] of Cm,α(clD,C) ∩ A to
Cm,α(clD,C). We set

Dρ = {(x1, x2) ∈ R2 : |(x1, x2)| < ρ} ∀ ρ ∈ ]0, 1[ ,

and we denote by Rρ the restriction operator of Cm,α(clD,C) to
Cm,α(clDρ,C). Then we have that
(4.3)

Rρ ◦T+[Ψ, f0](w) =
ind [Ψ/∂D]

2πi

∫
∂D

f0(t)Ψ′(t)
Ψ(t) − Ψ(w)

dt ∀w ∈ clDρ,

for all Ψ ∈ Cm,α(clD,C) ∩ A and for all ρ ∈ ]0, 1[. Now we note that,
by Theorem 3.16, Rρ ◦ T+[·, f0] is real analytic on Cm,α(clD,C) ∩ A
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and that by standard calculus

Rρ ◦
(
∂nT+

(∂Ψ)n
[Ψ0, f0]

)
[[U ]n] =

∂n

(∂Ψ)n
(Rρ ◦ T+)[Ψ0, f0][[U ]n]

=
dn

(dε)n|ε=0
{Rρ ◦ T+[Ψ0 + εU, f0]}(4.4)

for all U ∈ Cm,α(clD,C). Since Cm,α(clD,C) is continuously embed-
ded in C0(clD,C) and since the integral in (4.3) is not singular when
w ∈ clDρ, then by a standard result on the differentiation of integrals
depending on a parameter and by a straightforward computation, we
obtain that

dn

(dε)n|ε=0
{Rρ ◦ T+[Ψ0 + εU, f0]}(w)

=
1

2πi

∫
∂D

dn

(dε)n|ε = 0

{
f0(t)(Ψ′

0 + εU ′)(t)
(Ψ0 + εU)(t) − (Ψ0 + εU)(w)

}
dt

=
(−1)n−1n!

2πi

∫
∂D

(
U(t) − U(w)

Ψ0(t) − Ψ0(w)

)n−1

·
{
− f0(t)Ψ′

0(t)(U(t) − U(w))
(Ψ0(t) − Ψ0(w))2

+
f0(t)U ′(t)

Ψ0(t) − Ψ0(w)

}
dt

=
(−1)n−1(n− 1)!

2πi

∫
∂D

f0(t)
d

dt

{(
U(t) − U(w)

Ψ0(t) − Ψ0(w)

)n}
dt

=
(−1)n(n− 1)!

2πi

∫
∂D

f ′0(t)
(
U(t) − U(w)

Ψ0(t) − Ψ0(w)

)n

dt

for all w ∈ clDρ, where the last equality follows by integration by parts.
Then, if w ∈ D, we can choose ρ such that |w| < ρ < 1 and, by (4.4),
we obtain

(4.5)
∂nT+

(∂Ψ)n
[Ψ0, f0][[U ]n](w)

=
(−1)n(n− 1)!

2πi

∫
∂D

f ′0(t)
(
U(t) − U(w)

Ψ0(t) − Ψ0(w)

)n

dt.

Since U ≡ U1 + iU2 belongs to C1(clD,C), by Lemma 2.4 (i) and by
the mean value inequality, we obtain
(4.6)∣∣∣∣ U(t) − U(w)

Ψ0(t) − Ψ0(w)

∣∣∣∣ ≤ |U(t) − U(w)|
l|Ψ0]|t− w| ≤

∑
1≤h,j≤2 supclD |∂Uh/∂xj |

l[Ψ0]
,
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for all (t, w) ∈ ∂D × clD with t �= w. Then, by the theorem of
continuity of integrals depending on a parameter, the righthand side of
(4.5) depends continuously on w ∈ clD and then equality (4.5) holds
for all w ∈ clD. By (4.6), the equality

H[U1, . . . , Un](w) ≡ (−1)n(n− 1)!
2πi

∫
∂D

f ′0(t)
n∏

i=1

(
Ui(t) − Ui(w)
Ψ0(t) − Ψ0(w)

)
dt,

∀w ∈ clD,

for all (U1, . . . , Un) ∈ (Cm,α(clD,C))n, defines a complex n-linear
symmetric map of (Cm,α(clD,C))n to C0(clD,C). Clearly,

H[[U ]n] =
∂nT+

(∂Ψ)n
[Ψ0, f0][[U ]n]

for all U ∈ Cm,α(clD,C)). Since Cm,α(clD,C) is continuously em-
bedded in C0(clD,C) and both H and (∂nT+/(∂Ψ)n)[Ψ0, f0] are
real n-linear symmetric maps which coincide on the diagonal of
(Cm,α(clD,C))n, we must have

H =
∂nT+

(∂Ψ)n
[Ψ0, f0]

and accordingly (∂nT+/(∂Ψ)n)[Ψ0, f0] is a complex n-linear map. By
using the chain rule combined with the properties of the map Eφ0 , we
obtain statement (i). The linearity of C in the variable f implies the
validity of statement (ii) and of equality

(4.7)
∂j+2C

(∂φ)j(∂f)2
[φ, f ] = 0

for all (φ, f) in the domain of C and for all j ∈ N. We obtain statement
(iii) by statements (i), (ii), (4.7) and by induction on n. Since for all
r ∈ N\{0}, C(r)[φ0, f0] is a complex r-linear symmetric map from
(Cm,α

∗ (∂D,C))r to Cm,α
∗ (∂D,C), Theorem 3.23 implies that C is a

complex analytic operator.

Now we restate Theorem 3.23 by using a domain of integration more
general than ∂D.
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Corollary 4.8. Let m ∈ N\{0}, α ∈ ]0, 1[. Let φ ∈ Cm,α
∗ (∂D,C) ∩

A∂D, L = φ(∂D). The set of g ∈ C1
∗(L,C) which are injective and

satisfy condition g′(ξ) �= 0 for all ξ ∈ L coincides with AL and is open
in C1

∗(L,C). The nonlinear operator of (Cm,α
∗ (L,C)∩AL)×Cm,α

∗ (L,C)
to Cm,α

∗ (L,C) defined by

CL[γ, f ](·) ≡ 1
2πi

p.v.
∫

L

f(t)γ′(t)
γ(t) − γ(·) dt

∀ (γ, f) ∈ (Cm,α
∗ (L,C) ∩ AL) × Cm,α

∗ (L,C),

where we understand that the line integral is computed with respect to
the parametrization φ(eiθ), θ ∈ [0, 2π], is complex analytic. The partial
differentials of CL can be obtained by those of C∂D = C by replacing
the integration on ∂D with an integration on L.

Proof. By simple computations and by Lemma 2.7 (ii), it follows that
K = φ(∂D) satisfies the assumptions on K of conditions (i) and (ii)
of Lemma 2.5. Accordingly, the conclusions of Lemma 2.5 (i) and (ii)
hold for K = φ(∂D). Let Tφ be the complex linear homeomorphism
of Cm,α

∗ (L,C) to Cm,α
∗ (∂D,C) of Lemma 2.7 (viii). Clearly,

CL[γ, f ] = T(−1)
φ [C[Tφ[γ],Tφ[f ]]]

for (γ, f) ∈ (Cm,α
∗ (L,C)∩AL)×Cm,α

∗ (L,C). Then the chain rule yields
the conclusion.

We now show that the formal expansion of the Cauchy kernel with
respect to the curve φ studied by Tran-Oberlé [22] for graph curves in
C around the inclusion map of R in C gives, in our setting, the Taylor
series of the Cauchy operator as a function of the contour φ. As a
consequence, we deduce the validity of a result of Coifman and Meyer
[5, p. 10] in our Schauder space setting and for curves which are not
necessarily arc-length parametrized.

Corollary 4.9. Let m ∈ N\{0}, α ∈ ]0, 1[. Let C be the non-
linear operator of Theorem 3.23. The nonlinear operator C̃ from
Cm,α
∗ (∂D,C) ∩A∂D to LC(Cm,α

∗ (∂D,C), Cm,α
∗ (∂D,C)) defined by

C̃[φ] ≡ C[φ, ·]
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is complex analytic. Furthermore, if φ0 ∈ Cm,α
∗ (∂D,C) ∩ A∂D

and if we denote the integral operators f �→ ∫
∂D

f(t)k(·, t) dt and
f �→ p.v.

∫
∂D

f(t)k(·, t) dt associated to a given complex-valued func-
tion k(·, ·) defined on {(s, t) ∈ (∂D)2 : s �= t} by k(·, t) dt and
p.v. k(·, t) dt, respectively, we have the following Taylor expansion which
has radius of convergence greater than or equal to r̃ ≡ sup{r > 0 :
clCm,α

∗ (∂D,C)B(φ0, r) ⊆ Cm,α
∗ (∂D,C) ∩ A∂D}, where B(φ0, r) ≡ {φ ∈

Cm,α
∗ (∂D,C) : ‖φ− φ0‖Cm,α

∗ (∂D,C) < r}:

1
2πi

p.v.
φ′0(t) + h′(t)

φ0(t) − φ0(·) + h(t) − h(·) dt

=
1

2πi
p.v.

φ′0(t)
φ0(t) − φ0(·) dt

+
∞∑

n=1

(−1)n−1

2πin
d

dt

{(
h(t) − h(·)
φ0(t) − φ0(·)

)n}
dt

for all h ∈ Cm,α
∗ (∂D,C) such that ‖h‖Cm,α

∗ (∂D,C) < r.

Proof. We first observe that C is linear in its second variable.
Accordingly, if f0 is an arbitrary but fixed element of Cm,α

∗ (∂D,C),
we have

C̃[φ] =
∂C

∂f
[φ, f0]

for all φ ∈ Cm,α
∗ (∂D,C) ∩ A∂D. Then the analyticity of C̃ fol-

lows from that of C. A simple computation based on the Hölder
continuity of φ′0, h′ and on Lemmas 2.5 (i) and 2.7 (i) shows that
there exists a constant c > 0 depending only on h and φ0 such
that |(d/dt)[(h(t) − h(t0))/(φ0(t) − φ0(t0))]| ≤ (c/|t − t0|1−α) for all
t, t0 ∈ ∂D, t �= t0, see also Lu [18, p. 20], and that accordingly the
integral

∫
∂D

f(t)(d/dt)[(h(t) − h(t0))/(φ0(t) − φ0(t0))] dt exists in the
sense of Lebesgue for all f ∈ C0

∗(∂D,C) and for all t0 ∈ ∂D. By Propo-
sition 4.1 (ii) and by integration by parts, we obtain the validity of the
Taylor expansion of the statement in a ball B(φ0, r1) of sufficiently
small radius r1 > 0. Let r > 0 be such that B ≡ clCm,α

∗ (∂D,C)B(φ0, r)
is contained in Cm,α

∗ (∂D,C) ∩ A∂D. To complete the proof it suffices
to show that C̃[·] is bounded on B. By a standard application of the
Ascoli-Arzela theorem, the set B is a compact subset of C1

∗(∂D,C).
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Then Lemma 2.5 (ii) implies that the map l∂D[·] has a strictly posi-
tive minimum on B. Then, by the Privalov theorem, cf., e.g., Lu [18,
Theorem 3.1.1] and by standard properties of the Cauchy integral, the
boundedness of C̃[·] on B follows.
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