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OPERATOR NORMS OF POWERS
OF THE VOLTERRA OPERATOR

D. KERSHAW

1. Introduction. The Volterra operator V : L2[0, 1] → L2[0, 1] will
be defined by

(1.1) V f(x) =
∫ x

0

f(t) dt,

where f is real valued function.

Definition 1.1. The operator norm, ‖.‖, is defined by

(1.2) ‖T ‖ = sup
‖f ‖2=1

‖Tf ‖2,

where

(1.3) ‖f ‖2 =
[ ∫ 1

0

|f(t)|2 dt

]1/2

.

It is not difficult to show that the operator norm of V is 2/π. In [5]
N. Lao and R. Whitley give the numerical evidence which led them to
the conjecture that

(1.4) lim
m→∞ ‖m!V m‖ = 1/2.

The purpose of this article is to verify that this is indeed the case.
The analysis will be presented for a more general operator defined as
follows.

Definition 1.2. The linear operator A : L2[0, 1] → L2[0, 1] is given
by

(1.5) Af(x) =
∫ x

0

a(x − t)f(t) dt,
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where a is a nonnegative, nondecreasing L2-integrable function on [0, 1].

A is a Hilbert-Schmidt operator. It will be convenient to state some
definitions and results concerning cones and u0-positive operators. The
general theory will be found in [4] from which the following are taken.

Definition 1.3. Let E be a real Banach space. A set K ⊂ E is
called a cone if the following conditions are satisfied:

(a) the set is closed,

(b) if u, v ∈ K then αu + βv ∈ K for all nonnegative real numbers α,
β,

(c) of each pair of vectors f,−f at least one does not belong to K
provided that f �= 0.

We write f ≥ 0 if f ∈ K, and f ≥ g if f − g ∈ K.

Definition 1.4. A cone is called reproducing if every element f ∈ E
can be represented in the form

f = u − v, u, v ∈ K.

Example 1.1. The collection of nonnegative functions in C, the
space of functions which are continuous on a bounded closed set, is a
reproducing cone. In fact it is solid, that is to say, it contains interior
points.

Example 1.2. Although L2[0, 1] does not contain a solid cone it
does in fact contain the reproducing cone of functions which are positive
almost everywhere, since every function f ∈ L2[0, 1] can be represented,
as

f = f+ − f−,

where f+ and f− are nonnegative and belong to L2[0, 1].

Definition 1.5. The operator A defined on E is u0-positive if there
exists u0 ∈ K and a fixed positive integer p such that for each element
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f ∈ K there are positive numbers α and β, which depend on f , so that

α u0 ≤ Apf ≤ β u0.

Example 1.3. The Volterra operator V is not u0-positive. For
simplicity we take p = 1; the proof for a general value is similar.
Suppose there did exist a nonnegative function u0, and positive scalars
α, β, such that

(1.6) α(f) u0(x) ≤
∫ x

0

f(t) dt ≤ β(f) u0(x),

for all nonnegative functions f . Set f1(t) = 1 on the right and f2(t) = t
on the left to give, for almost all x ∈ [0, 1],

x

β(f1)
≤ u0(x) ≤ x2

2α(f2)
,

which is clearly not true for all x.

Example 1.4. The operator G defined on L2[0, 1] by

(1.7) Gf(x) = (1 − x)
∫ x

0

tf(t) dt + x

∫ 1

x

(1 − t)f(t) dt,

is u0-positive, with p = 1 and u0(x) = x(1 − x).

Let f ∈ L2[0, 1] and be positive almost everywhere; then

Gf(x)
x(1 − x)

=
1
x

∫ x

0

tf(t) dt +
1

(1 − x)

∫ 1

x

(1 − t)f(t) dt

≥ min
0≤x≤1

[
1
x

∫ x

0

tf(t) dt +
1

(1 − x)

∫ 1

x

(1 − t)f(t) dt

]

= α.(1.8)

It follows that

(1.9) Gf(x) ≥ α x(1 − x).
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Clearly α ≥ 0 since f is positive almost everywhere and not identically
zero; in fact, it must be positive. For, suppose that α = 0, in which case
the lefthand side of (1.8) would vanish for some value of x, call this value
x0. If 0 < x0 < 1 this would imply that Gf(x0) = 0. However, f is not
identically zero and the integrands in (1.7) are positive; consequently,
this cannot occur. On the other hand, if x0 = 0 then

lim
x→0

Gf(x)
x(1 − x)

=
∫ 1

0

(1 − t)f(t) dt,

which is not zero unless f is zero. The case of x0 = 1 is treated in a
similar fashion. We can take

(1.10) β = max
0≤x≤1

[
1
x

∫ x

0

tf(t) dt +
1

(1 − x)

∫ 1

x

(1 − t)f(t) dt

]
.

Finally we quote from [4] the following results. These will be found in
the summary on pages 329 330.

Theorem 1.6 (Krasnosel’skǐi). Let K be a reproducing cone and T
a u0-positive linear operator. Then

(a) T has a unique eigenfunction which is in K,

(b) the corresponding eigenvalue, λ0, is simple,

(c) if λ is any other eigenvalue, then

|λ| < λ0.

2. Equivalent formulation. The problem of finding the norm of
A, defined by (1.5), is equivalent to that of finding the square root of
the norm of A∗A, where A∗ is the adjoint of A, given by

(2.1) A∗f(x) =
∫ 1

x

a(t − x)f(t) dt.

We have to estimate the largest eigenvalue of A∗A.
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Theorem 2.1. Let the operator B : L2[0, 1] → L2[0, 1] be defined by

(2.2) Bf(x) =
∫ 1−x

0

a(1 − x − t)f(t) dt;

then

(2.3) A∗A = B2.

Proof. Let f ∈ L2[0, 1]; then

A∗Af(x) =
∫ 1

x

a(t − x)
∫ t

0

a(t − s)f(s) ds dt,

replace t 	→ 1 − t to give

A∗Af(x) =
∫ 1−x

0

a(1 − x − t)
∫ 1−t

0

a(1 − t − s)f(s) ds dt

= B2f(x).

We note in passing the more usual Fredholm form of the operators:

(2.4)
A∗Af(x) = B2f(x) =

∫ x

0

f(s)
∫ 1

x

a(t − x)a(t − s) dt ds

+
∫ 1

x

f(s)
∫ 1

s

a(t − x)a(t − s) dt ds.

Thus the problem of finding the spectral radius of A∗A can be replaced
by that of finding the spectral radius of B2. Denote it by λ2

0 and the
corresponding eigenfunction by φ0. We shall show that φ0 is of constant
sign. This will enable us to estimate bounds for λ0.

3. The u0-positivity of B. We now show that the operator B
defined by (2.2) is u0-positive, with p = 2.
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Lemma 3.1. Let g(0) �= 0, g(1) = 0, g′(t) ≤ 0, a(t) ≥ 0, a′(t) ≥ 0,
0 ≤ t ≤ 1. Then

(3.1) max
0≤x0≤1

g(x0)

∫ x0

0
a(t) dt∫ 1

0
a(t) dt

≤
∫ x

0
a(x − t)g(t) dt∫ x

0
a(t) dt

≤ g(0).

Proof. We note first that g decreases to zero.

Let x0 satisfy 0 ≤ x0 ≤ 1; then

(a) 0 ≤ x ≤ x0, since g is a decreasing function, g(t) ≥ g(x0), for
0 ≤ t ≤ x0, and so

(3.2)

∫ x

0
a(x − t)g(t) dt∫ x

0
a(t) dt

≥ g(x0)

∫ x

0
a(x − t) dt∫ x

0
a(t) dt

= g(x0).

(b) x0 ≤ x ≤ 1, the integrand is positive and so
∫ x

0

a(x − t)g(t) dt ≥
∫ x0

0

a(x − t)g(t) dt

=
∫ x0

0

[a(x − t) − a(x0 − t)]g(t) dt

+
∫ x0

0

a(x0 − t)g(t) dt,

which, since a′ is nonnegative, gives
∫ x

0

a(x − t)g(t) dt ≥
∫ x0

0

a(x0 − t)g(t) dt.

It follows that∫ x

0

a(x − t)g(t) dt ≥
∫ x0

0

a(x0 − t)g(t) dt ≥ g(x0)
∫ x0

0

a(t) dt.

Now
∫ x

0
a(t) dt ≤ ∫ 1

0
a(t) dt and so

(3.3)

∫ x

0
a(x − t)g(t) dt∫ x

0
a(t) dt

≥ g(x0)

∫ x0

0
a(t) dt∫ 1

0
a(t) dt

.
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The combination of (3.2) and (3.3) gives, for any x0 in [0, 1],

(3.4)

∫ x

0
a(x − t)g(t) dt∫ x

0
a(t) dt

≥ min
[
g(x0), g(x0)

∫ x0

0
a(t) dt∫ 1

0
a(t) dt

]

= g(x0)

∫ x0

0
a(t) dt∫ 1

0
a(t) dt

.

Since the lefthand side is independent of x0, we have

(3.5)

∫ x

0
a(x − t)g(t) dt∫ x

0
a(t) dt

≥ max
0≤x0≤1

g(x0)

∫ x0

0
a(t) dt∫ 1

0
a(t) dt

.

The upper bound in (3.1) follows from the fact that g(t) ≤ g(0),
0 ≤ t ≤ 1.

Theorem 3.2. Let f(t) ≥ 0, 0 ≤ t ≤ 1. Then

(3.6) αu0 ≤ B2f ≤ βu0,

where

u0(x) =
∫ 1−x

0

a(t) dt

(3.7)

α = max
0≤x0≤1

[∫ x0

0
a(t) dt∫ 1

0
a(t) dt

∫ 1−x0

0

a(1 − x0 − u)f(u) du

]
(3.8)

β =
∫ 1

0

a(1 − u)f(u) du.(3.9)

Proof. In (3.1) replace x 	→ 1 − x and set

(3.10) g(t) =
∫ 1−t

0

a(1 − t − u)f(u) du.

This function will satisfy the conditions of Lemma 3.1, and the result
follows.
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Hence, B is u0-positive, and so by Theorem 1.6 the eigenvalue
which gives the spectral radius of B is positive and the corresponding
eigenfunction is nonnegative.

4. Mean value theorem. The proof of the next theorem is
a generalization of one given by Collatz [2] for a finite dimensional
operator, see also [1] and [3].

Theorem 4.1. For any positive function f ∈ C[0, 1] the eigenvalue
λ0 which corresponds to an eigenfunction of constant sign satisfies

(4.1) inf
0<τ<1

{∫ 1−τ

0
a(1 − τ − x)u0(x)f(x) dx

u0(τ )f(τ )

}

≤ λ0 ≤ sup
0<τ<1

{∫ 1−τ

0
a(1 − τ − x)u0(x)f(x) dx

u0(τ )f(τ )

}
,

where

(4.2) u0(x) =
∫ 1−x

0

a(t) dt, 0 < x < 1.

Proof. Let φ0 be the eigenvector which corresponds to λ0, and as we
have seen, φ0 ∈ K. Multiply (2.2) by u0f and integrate to give

λ0

∫ 1

0

u0(x)f(x)φ0(x) dx

=
∫ 1

0

u0(x)f(x)
∫ 1−x

0

a(1 − x − t)φ0(t) dt dx.

Interchange the order of integration, then

λ0

∫ 1

0

u0(x)f(x)φ0(x) dx

=
∫ 1

0

φ0(t)
∫ 1−t

0

a(1 − x − t)u0(x)f(x) dx dt.
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Hence

λ0

∫ 1

0

u0(x)f(x)φ0(x) dx

=
∫ 1

0

u0(t)φ0(t)f(t)
[

1
u0(t)f(t)

∫ 1−t

0

a(1 − t − x)u0(x)f(x) dx

]
dt.

The expression inside the square brackets is nonnegative, and so we
can use the integral mean value theorem to give
(4.3)

λ0 =

∫ 1−τ

0
a(1 − τ − x)u0(x)f(x) dx

u0(τ )f(τ )
, for some τ, 0 < τ < 1,

from which the desired result follows.

5. The Volterra operator. We now apply the results of the
previous section to the problem of finding upper and lower bounds for
‖m!V m‖ where

(5.1) (m − 1)!V mf(x) =
∫ x

0

(x − t)m−1f(t) dt.

Theorem 5.1. Let λ0 be the largest eigenvalue of (m−1)!V m. Then

(5.2)
1

2m
< λ0 <

1
m

.

Proof. In this case a(x) = xm−1 and the corresponding operator is
u0-positive, with

u0(x) =
(1 − x)m

m
.

Hence the eigenfunction which corresponds to λ0 is of constant sign,
and so (4.3) becomes

(5.3)
λ0 =

∫ 1−τ

0
(1 − τ − x)m−1(1 − x)m dx

(1 − τ )m

=
∫ 1

0

(1 − x)m−1(1 − x + τx)m dx.
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It follows that

∫ 1

0

(1 − x)2m−1 dx < λ0 <

∫ 1

0

(1 − x)m−1 dx,

which gives (5.2).

The next corollary follows from the definition.

Corollary 5.2.

(5.4)
1
2

< ‖m!V m‖ < 1.

The upper bound in (5.2) can be improved by the use of the next
result.

Theorem 5.3. Let

(5.5) Af(x) =
∫ x

0

a(x − t)f(t) dt,

where f ∈ L2[0, 1], then

(5.6) λ2
0 = ‖A‖2 ≤

∫ 1

0

∫ t

0

a2(x) dx dt.

Proof. As we have seen

A∗A = B2,

where

Bf(x) =
∫ 1−x

0

a(1 − x − t)f(t) dt.
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Hence,

(5.7)

|λ0f(x)|2 = |Bf(x)|2

≤
∫ 1−x

0

a2(1 − x − t) dt

∫ 1−x

0

f2(t) dt

≤
∫ 1−x

0

a2(1 − x − t) dt

∫ 1

0

f2(t) dt.

Integrate this from 0 to 1 to give

λ2
0 ≤

∫ 1

0

∫ 1−x

0

a2(1 − x − t) dt dx

=
∫ 1

0

∫ 1

x

a2(t − x) dt dx

=
∫ 1

0

∫ t

0

a2(x) dx dt.

In the present case

(5.8) Af(x) = (m − 1)!V mf(x) =
∫ x

0

(x − t)m−1f(t) dt,

and an easy calculation gives

(5.9) ‖m!V m‖ ≤
[

m2

2m(2m − 1)

]1/2

=
1
2

(
1 − 1

2m

)−1/2

.

This together with the lower bound in Corollary 5.2 gives the result
stated in the introduction.

Theorem 5.4.

(5.10) lim
m→∞ ‖m!V m‖ =

1
2
.
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