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THE DISCRETE PETROV-GALERKIN METHOD
FOR WEAKLY SINGULAR INTEGRAL EQUATIONS

ZHONGYING CHEN, YUESHENG XU AND JIANSHENG ZHAO

ABSTRACT. We propose discrete Petrov-Galerkin meth-
ods for Fredholm integral equations of the second kind with
weakly singular kernels. To study the convergence of these
methods, we develop a theoretical framework for analysis
of a large class of numerical schemes including the discrete
Galerkin, Petrov-Galerkin, collocation methods and quadra-
ture methods. The theory is then applied to establish con-
vergence results of the discrete Petrov-Galerkin methods. We
also suggest a discrete iterated Petrov-Galerkin approximation
for the solutions of these equations and prove a superconver-
gence property when the kernels are assumed to be smooth.
Numerical examples are presented to illustrate the theoretical
estimate for the error of approximation of these methods.

1. Introduction. We begin our presentation with a brief review of
the literature. The Petrov-Galerkin method and the iterated Petrov-
Galerkin method for Fredholm integral equations of the second kind
were studied in [7], where the notions of the generalized best approxi-
mation and the regular pair of a trial space sequence and a test space
sequence were developed to serve as an approach for the analysis of
the methods. Several specific constructions of the Petrov-Galerkin ele-
ments in 1-D and 2-D were also designed in the paper. A general con-
struction of the univariate Petrov-Galerkin elements of the piecewise
polynomials were proposed in [6] and it was used to develop wavelet
Petrov-Galerkin methods for integral equations of one dimension. Some
early work on the Petrov-Galerkin method was found in [10]. Several
Petrov-Galerkin elements constructed in [7] and [6] were proved to be
useful in numerical solutions of integral equations.

Before describing the discrete Petrov-Galerkin method, a few remarks
are in order on a comparison between the standard Galerkin method
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and the underlying method. Unlike the standard Galerkin method,
the Petrov-Galerkin method allows us to have a trial space different
from the test space. This provides us with great freedom in choosing a
pair of space sequences to improve the computational efficiency while
preserving the convergence order of the standard Galerkin method. It
is revealed in [7] that for the Petrov-Galerkin methods the roles of the
trial space and test space are to approximate the solution space of the
equation and the range of the integral operator (or, in other words,
the image space), respectively. Therefore, the convergence order of the
Petrov-Galerkin method is the same as the approximation order of the
trial space and it is independent of the approximation order of the test
space. This leads to the following strategy of choosing the trial and
test spaces. We may choose the trial space as piecewise polynomials of
a higher degree and the test space as piecewise polynomials of a lower
degree but keep them having the same dimension. This choice of the
trial and test spaces results in a significantly less expensive numerical
algorithm in comparison to the standard Galerkin method with the
same convergence order which uses the same piecewise polynomials as
those for the trial space. The saving comes from computing the entries
of the matrix and the righthand side vector of the linear system that
results from the corresponding discretization. Note that an entry of the
Galerkin matrix is the inner product of the integral operator applied
to a basis function for the trial space against a basis function for the
same space, which is a piecewise polynomial of a higher degree, while
an entry of the Petrov-Galerkin matrix is that against a basis function
for the test space, which is a piecewise polynomial of a lower degree.
Computing the latter is less expensive than computing the former due
to the use of lower degree polynomials for the test space. In fact, the
Petrov-Galerkin method interpolates between the Galerkin method and
the collocation method.

However, to use the Petrov-Galerkin method in practical computa-
tion, we have to be able to efficiently compute the singular integrals
occurring in the method. The discrete Galerkin method for integral
equations of the second kind with continuous kernels has been stud-
ied in the literature. In [3], a discretized Galerkin method is obtained
using numerical integration to evaluate the integrals occurring in the
Galerkin method and in [5], by considering discrete inner product and
discrete projections, the authors treated more appropriately kernels
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with discontinuous derivatives. A discrete convergence theory and its
applications to the numerical solution of weakly singular integral equa-
tions were presented in [11]. A traditional construction of discrete pro-
jection methods for integral equations normally consists of two steps:
using the projection to establish a finite dimensional projection equa-
tion and then applying the quadrature formula to discretize the entries
to form the discrete projection methods. This way of development may
result in some unnecessary hypotheses. In our current construction, we
will take a one-step approach to discretizing a given integral equation
by a discrete projection and a discrete inner product. By doing every-
thing in one step, we do not assume the hypotheses for the convergence
of the Petrov-Galerkin method which are imposed in [7] and a new
assumption for the solvability and convergence of the discrete Petrov-
Galerkin method. We only need to verify one condition on a reference
element, condition (4.1). The further study of the condition (4.1) will
be left to forthcoming research.

The iterated solution suggested in this paper is also fully discrete, see
equation (2.13). Unlike a conventional iterated approximation in which
we iterate an approximate solution of the corresponding numerical
method by the exact integral operator K, here we define our iterated
solution using the approximate operator Kn. This results in a discrete
algorithm in which we do not need additional discretization. This
method also covers the iterated Petrov-Galerkin method presented in
[7], since we are allowed to choose Kn = K. Super-convergence for this
iterated method is fulfilled.

We organize this paper as follows. In Section 2 we develop the discrete
Petrov-Galerkin method and its iterated scheme. We first describe the
method in an “abstract” sense and then we use three piecewise poly-
nomial spaces to construct a concrete method. These three spaces
are used for different purposes. They are used to approximate the
solution space, the image space and the inner product, respectively.
In Section 3, in preparing for the analysis of the methods proposed
in Section 2, we extend the theory of collectively compact operators
to a somewhat more general setting which covers the discrete Petrov-
Galerkin method and its iterated scheme as special cases. We set up a
theoretical framework which is not only convenient for the analysis of
the discrete Petrov-Galerkin method, but is also suitable for analysis
of other discrete numerical methods. In our development we benefit
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from various ideas shown in [3, 5]. In Section 4 we apply the theory
established in Section 3 to the discrete Petrov-Galerkin method to ob-
tain a convergence theorem. In Section 5 we prove a superconvergence
result of the iterated discrete Petrov-Galerkin method. Section 6 is de-
voted to a presentation of numerical experiments, where we illustrate
with two numerical examples the theoretical estimates obtained in the
previous sections.

2. Discrete Petrov-Galerkin method. This section is devoted to
a description of discrete Petrov-Galerkin methods for Fredholm integral
equations of the second kind with weakly singular kernels. For this
purpose, we consider the equation

(2.1) (I − K)u = f,

where K : L∞(D) → C(D) is a compact linear integral operator defined
by

(2.2) (Ku)(s) =
∫

D

k(s, t)u(t) dt, s ∈ D,

D ⊂ Rd is a bounded closed domain and k(s, t) is a function defined
on D×D which is allowed to have weak singularities. We assume that
1 is not an eigenvalue of the operator K to guarantee the existence of
a unique solution u ∈ C(D). Some additional specific assumptions will
be imposed later in this section.

We first recall the Petrov-Galerkin method for equation (2.1) follow-
ing [7]. In this description, we let X be a Hilbert space with an inner
product 〈·, ·〉. Let {Xn} and {Yn} be two sequences of finite dimen-
sional subspaces of X such that

dimXn = dimYn = dn,

Xn = span {φ1, φ2, . . . , φdn
},

and

Yn = span {ψ1, ψ2, . . . , ψdn
}.
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We assume that {Xn, Yn} is a regular pair in the sense that there is
a linear operator Πn : Xn → Yn with ΠnXn = Yn and satisfying the
conditions ‖x‖ ≤ C〈x,Πnx〉1/2 and ‖Πnx‖ ≤ C2‖x‖, for all x ∈ Xn,
where C1 and C2 are positive constants independent of n. The notion
of regular pairs is closely related to the generalized best approximation
which we review below. Given x ∈ X, an element Pnx ∈ Xn is called
a generalized best approximation from Xn to x with respect to Yn if it
satisfies the equation

〈x− Pnx, y〉 = 0, for all y ∈ Yn.

It is known that the necessary and sufficient condition for a generalized
best approximation from Xn to x ∈ X with respect to Yn to exist
uniquely is Yn ∩ X⊥

n = {0}. If this condition holds, then Pn is
a projection and {Xn, Yn} forms a regular pair if and only if Pn

is uniformly bounded [7]. The Petrov-Galerkin method for solving
equation (2.1) is a numerical scheme to find a function

un(s) :=
dn∑

j=1

αjφj(s) ∈ Xn

such that

(2.3) 〈(I − K)un, y〉 = 〈f, y〉, for all y ∈ Yn,

or, equivalently,

(2.4)
dn∑

j=1

αj [〈φj , ψi〉 − 〈Kφj , ψi〉] = 〈f, ψi〉, i = 1, 2, . . . , dn.

Using the generalized best approximation Pn : X → Xn, we write
equation (2.3) in the operator form as

(2.5) (I − PnK)un = Pnf.

It is also proved in [7] that if {Xn, Yn} is a regular pair, then for a
sufficiently large n, equation (2.5) has a unique solution un ∈ Xn which
satisfies the estimate

‖un − u‖ ≤ C inf
x∈Xn

‖u− x‖.
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Solving equation (2.5) requires solving the linear system (2.4). Of
course, the entries of the coefficient matrix of (2.4) involve the integrals
〈Kφj , ψi〉 which are normally evaluated by a numerical quadrature for-
mula. Roughly speaking, the discrete Petrov-Galerkin method is the
scheme (2.4) with the integrals appearing in the method computed by
quadrature formulas. However, we will develop our discrete Petrov-
Galerkin method independent of the Petrov-Galerkin method (2.5).
In other words, we do not assume that the Petrov-Galerkin method
(2.5) has been previously constructed, to avoid the ‘regular pair’ as-
sumption which is crucial for the solvability and convergence of the
Petrov-Galerkin. We will take a one-step approach to fully discretize
equation (2.1) directly. We will first describe the method in “abstract”
terms without specifying the bases and the concrete quadrature for-
mulas. Later we will specialize them using the piecewise polynomial
spaces. The only assumption that we have to impose later to guaran-
tee the solvability and convergence of the resulting concrete method is
condition (4.1). It is a local condition on the reference element only
and, thus, it is easy to verify it.

In our description we will use function values f(t) at given points
t ∈ D for an L∞ function f . We now follow [4] to define them precisely.
Let C̃(D) denote the subspace of L∞(D) which consists of functions
each of which is equal to an element in C(D) almost everywhere. The
point evaluation functional δt on the space C̃(D) is defined by

δt(f) := f(t), t ∈ D, f ∈ C̃(D),

where f on the righthand side is chosen to be the representative function
f ∈ C̃(D) which is continuous. By the Hahn-Banach theorem, the point
evaluation function δt can be extended from C̃(D) to the whole L∞(D)
in such a way that the norm is preserved. We will use dt to denote such
an extension and define

f(t) := dt(f) for f ∈ L∞(D).

We remark that the extension is not unique but it is usually immaterial.
What is important is that it exists and preserves many of the properties
naturally with point evaluation. For example, at a point of continuity
of f , the extended point evaluation is uniquely defined and has the
natural value and, moreover, the point value is continuous. The reader
is referred to [4] for more details in this extension.
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We now return to our description of the discrete Petrov-Galerkin
method. As in the description of the (continuous) Petrov-Galerkin
method, we choose two subspaces Xn = span {φ1, φ2, . . . , φdn

} and
Yn = span {ψ1, ψ2, . . . , ψdn

} of the space L∞(D) such that dimXn =
dimYn = dn. We choose mn points ti ∈ D and a set of weights w1,i,
i = 1, 2, . . . ,mn, and for x, y ∈ L∞(D), we define the discrete inner
product

(2.6) (x, y)n :=
mn∑
i=1

w1,ix(ti)y(ti), x, y ∈ L∞(D),

which will be used to approximate the inner product

〈x, y〉 :=
∫

D

x(t)y(t) dt.

We also introduce a set of weight functions w2,i, i = 1, 2, . . . ,mn, and
define discrete operators by

(2.7) (Knu)(s) :=
mn∑
i=1

w2,i(s)u(ti), u ∈ L∞(D).

These operators will be used to approximate the operator K. With the
notation as above, the discrete Petrov-Galerkin method for equation
(2.1) is a numerical scheme to find

(2.8) un(s) :=
dn∑

j=1

αn,jφj(s)

such that

(2.9) ((I − Kn)un, y)n = (f, y)n, for all y ∈ Yn.

In terms of basis functions, equation (2.9) is written as

(2.10)
dn∑

j=1

αn,j

[ mn∑
�=1

w1,�φj(t�)ψi(t�) −
mn∑
�=1

w1,�

mn∑
m=1

w2,m(t�)φj(tm)ψi(t�)
]

=
mn∑

�=12

w1,�f(t�)ψi(t�), i = 1, 2, . . . , dn.
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Upon solving the linear system (2.10), we obtain dn values αn,j .
Substituting them into (2.8) yields an approximation to the solution u
of equation (2.1). Equation (2.9) can also be written in the operator
form by a discrete generalized best approximation Qn, which we define
next. Let Qn : X → Xn be defined by

(2.11) (Qnx, y)n = (x, y)n for all y ∈ Yn.

If Qnx is uniquely defined for every x ∈ X, equation (2.9) can be
written in the form

(2.12) (I − QnKn)un = Qnf.

We postpone a discussion of the unique existence of Qnx until later.

The iterated Petrov-Galerkin method has been shown in [7] to have a
superconvergence property, where the additional order of convergence
gained from an iteration is attributed by approximation of the kernel
from the test space. The convergence order of the iterated Petrov-
Galerkin method is equal to the approximation order of space Xn

plus the approximation order of space Yn. It is of interest to study
the superconvergence of the iterated discrete Petrov-Galerkin method,
which we define by

(2.13) u′n = f + Knun.

Equation (2.13) is a fully discrete algorithm, which can be implemented
very easily, involving only multiplications and additions. It can be
shown that u′n satisfies the operator equation

(2.14) (I − KnQn)u′n = f.

This form of equations allows us to treat the iterated discrete Petrov-
Galerkin method as an operator equation whose analysis is covered by
the theory developed in the next section.

Up to now, the discrete Petrov-Galerkin method is described in
abstract terms without specifying the spaces Xn and Yn. In the
remainder of this section, we specialize the discrete Petrov-Galerkin
method by specifying the spaces Xn and Yn and defining operators Qn

and Kn in terms of piecewise polynomials. We assume that D is a
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polyhedral region and construct a triangulation for D by dividing it
into Nn simplices Tn := {En,1, . . . , En,Nn

} such that

(2.15) h := max{diamEn,i : i = 1, 2, . . . , Nn} −→ 0, as n→ ∞,

D =
Nn⋃
i=1

En,i,

and
meas (En,i ∩En,j) = 0, i �= j.

When the dependence of the simplex En,i on n is well understood, we
drop the first index n in the notation and simply write it as Ei. For
each positive integer n, the set Tn forms a partition for the domain D.
We also require that the triangulation be regular in the sense that any
vertex of a simplex in Tn is not in the interior of an edge of another
simplex in the set. It is well known that, for each simplex, there exists
a unique bijective affine mapping which maps the simplex onto a unit
simplex E called a reference element.

Let Fi, i = 1, 2, . . . , Nn, denote the affine mappings that map the
simplices Ei bijectively onto the reference element E. Then the affine
mappings Fi have the form

(2.16) Fi(t) = Bit+ bi, t ∈ E,

where Bi is a d × d invertible matrix and bi a vector in Rd, and they
satisfy

Ei = Fi(E).

On the reference element E, we choose two piecewise polynomial
spaces S1,k1(E) and S2,k2(E) of total degree k1 − 1 and k2 − 1,
respectively, such that

dimS1,k1(E) = dimS2,k2(E) = μ.

The partitions Δ1 and Δ2 of E associated, respectively, with S1,k1(E)
and S2,k2(E) may be different; they are arranged according to the
integers k1, k2 and d. Assume that the numbers of the sub-triangles
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contained in the partitions Δ1 and Δ2 are denoted by ν1 and ν2. We
have to choose these pair of integers k1, ν1 and κ2, ν2 such that

(
k1 − 1 + d

d

)
ν1 =

(
k2 − 1 + d

d

)
ν2 = μ,

because the dimension of the space of polynomials of total degree k is(
k+d

d

)
. We will not provide a detailed discussion on how the partitions

Δ1 and Δ2 are constructed. Instead, we assume that we have chosen
bases for these two spaces so that

S1,k1(E) := span {φ1, φ1, . . . , φμ},

and

S2,k2(E) := span {ψ1, ψ2, . . . , ψμ}.

We next map these piecewise polynomial spaces on E to each simplex
Ei by letting

φi,j(t) :=

{
φj ◦ F−1

i (t) t ∈ Ei,

0 t /∈ Ei,

and

ψi,j(t) :=

{
ψj ◦ F−1

i (t) t ∈ Ei,

0 t /∈ Ei,

for i = 1, 2, . . . , Nn and j = 1, 2, . . . , μ. Using these functions as bases,
we define the trial space and the test space, respectively, by

Xn = span {φi,j : i = 1, 2, . . . , Nn, j = 1, 2, . . . , μ},

and

Yn = span {ψi,j : i = 1, 2, . . . , Nn, j = 1, 2, . . . , μ}.
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It follows from (2.15) that

C(D) ⊆
⋃
Xn

and

C(D) ⊆
⋃
Yn.

Moreover, we have that, if x ∈ W k1∞ (D), then there exists a constant
C > 0 independent of n such that

inf
φ∈Xn

‖x− φ‖ ≤ Chk1 ,

and if x ∈W k2∞ (D), then

inf
φ∈Yn

‖x− φ‖ ≤ Chk2 .

However, the space X̃ := ∪Xn does not equal L∞(D); it is a proper
subspace of L∞(D) because the space L∞(D) is not separable. Due
to this fact, the existing theory of collectively compact operators, cf.
[1], does not apply directly to this setting. Some modifications of the
theory are required.

We next specialize the definition of the discrete inner product (2.6)
and describe a concrete construction of the approximate operators Kn.
To this end, we introduce a third piecewise polynomial space S3,k3(E)
of total degree k3 − 1 on E. We divide the reference element E into ν3
subtriangles

Δ3 := {ei : i = 1, 2, . . . , ν3}

and also assume that the triangulation Δ3 is regular. On each of the
triangles, ei, we choose m :=

(
k3−1+d

d

)
points τi,j , j = 1, 2, . . . ,m,

such that they admit a unique Lagrange interpolating polynomial of
total degree k3 − 1 on ei. For multivariate Lagrange interpolation by
polynomials of total degree, see [8] and the references cited therein.
Let pi,j be the polynomial of total degree k3 − 1 on ei satisfying the
interpolation conditions

pi,j(τi′,j′) = δi,i′δj,j′ , i, i′ = 1, 2, . . . , ν3, j, j′ = 1, 2, . . . ,m,
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where

δi,j =
{

1 if i = j,
0 if i �= j.

We assemble these polynomials to form a basis for the space S3,k3(E)
by letting

ζ(i−1)m+j(t) :=
{
pi,j(t) t ∈ ei,
0 t /∈ ei,

, i = 1, 2, . . . , ν3, j = 1, 2, . . . ,m.

Set γ = mν3, which is equal to the dimension of S3,k3(E) and

t(i−1)m+j = τi,j , i = 1, 2, . . . , ν3, j = 1, 2, . . . ,m.

Then ζi ∈ S3,k3(E) and satisfy the interpolation conditions

ζi(tj) = δi,j , i, j = 1, 2, . . . , γ.

This set of functions forms a basis for the space S3,k3(E). It can be
used to introduce a piecewise polynomial space on D by mapping the
basis ζj , j = 1, 2, . . . , γ for S3,k3(E) from E into each Ei. Specifically,
we define

ζi,j(t) :=
{
ζj ◦ F−1

i (t) t ∈ Ei,
0 t /∈ Ei,

where Fi is the affine map defined by (2.16) and let

Zn := span {ζi,j : i = 1, 2, . . . , Nn, j = 1, 2, . . . , γ}.

Hence, Zn is a piecewise polynomial space of dimension γNn. For each
i, we define

ti,j := Fi(tj) = Bitj + bi,

where Bi and bi are the matrix and vector appearing in the definition
of the affine map Fi. Furthermore, we define the linear projection
Zn : X → Zn by

Zng =
Nn∑
i=1

γ∑
j=1

dti,j
(g)ζi,j ,

where dt is the extension of the point evaluation functional δt satisfying
‖dt‖ = 1, which was discussed earlier and satisfies the condition

dti,j
(ζi′,j′) = δi,i′δj,j′ ,

i, i′ = 1, 2, . . . , Nn, j, j′ = 1, 2, . . . , γ.
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Moreover, we have

‖Zn‖ = ess sup
t∈D

Nn∑
i=1

γ∑
j=1

|ζi,j(t)| = ess sup
t∈E

γ∑
j=1

|ζj(t)|.

That is, ‖Zn‖ is uniformly bounded independent of n. It follows from
the uniform boundedness of ‖Zn‖ that, for any y ∈ W k3∞ (D), the
following estimate holds

(2.17) ‖y − Zny‖ ≤ C inf
φ∈Zn

‖y − φ‖ ≤ Chk3 .

Using the projection Zn defined above, we have a quadrature formula

∫
D

g(t) dt =
Nn∑
i=1

γ∑
j=1

wi,jdti,j
(g) + O(hk3),

where
wi,j :=

∫
D

ζi,j(t) dt.

If we set
wi :=

∫
E

ζi(t) dt, i = 1, 2, . . . , γ,

then we have

wi,j =
∫

Ei

ζj(F−1
i (t)) dt = det (Bi)

∫
E

ζj(t) dt = det (Bi)wj .

Without loss of generality, we assume that

det (Bi) > 0, i = 1, 2, . . . , γ.

Employing this formula, we introduce the following discrete inner
product

(2.18) (x, y)n =
Nn∑
i=1

γ∑
�=1

wi,�x(ti,�)y(ti,�).
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Formula (2.18) is a concrete form for (2.6). When x, y ∈ W k3∞ (D), we
have the error estimate

|〈x, y〉 − (x, y)n| ≤ Chk3 .

With this specific definition of the spaces Xn, Yn and the discrete
inner product, we obtain a construction of the operators Qn by using
equation (2.11).

Finally, to describe a concrete construction of the approximate oper-
ators Kn, we impose a few additional assumptions on the kernel k(s, t)
of the integral operator K. Roughly speaking, we assume that k(s, t)
is a product of two kernels: one of them is continuous but perhaps
involves a complicated function, and the other has a simple form but
has a singularity. In particular, we let

k(s, t) = k1(s, t)k2(s, t),

where k1 is continuous on D×D and k2 has a singularity and satisfies
the conditions

k2(s, ·) ∈ L1(D), s ∈ D, sup
s∈D

∫
D

|k2(s, t)| dt < +∞,(2.19)

‖k2(s, ·) − k2(s′, ·)‖1 −→ 0, as s′ −→ s.(2.20)

Moreover, we assume that the integration of the product of k2(s, t) and
a polynomial p(t) with respect to the variable t can be evaluated exactly.
Many integral operators K that appear in practical applications are of
this type.

Using the linear projection Zn, we define Kn : X → X by

(Knx)(s) =
∫

D

Zn(k1(s, t)x(t))k2(s, t) dt,

which approximates the operator K. For un ∈ Xn, we have

(Knun)(s) =
Nn∑
i=1

γ∑
j=1

wi,j(s)k1(s, ti,j)un(ti,j),
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where
wi,j(s) =

∫
Ei

ζi,j(t)k2(s, t) dt.

This concrete construction of the trial space Xn, the test space Yn,
and operators Qn,Kn yields a specific discrete Petrov-Galerkin method
which is described by equation (2.12). This is the method which we
will analyze in Section 4.

3. An abstract framework. To analyze the discrete Petrov-
Galerkin method described in the last section, we develop an abstract
framework in this section. This framework covers the discrete Petrov-
Galerkin method and many other cases as well. It is well known that the
theory of collectively compact operators presented in [1] or [2] provides
us with an abstract setting for analysis of many numerical schemes for
integral equations of compact operators. The known theory requires
that the approximate finite dimensional spaces Xn be dense in the
original function space, X. However, as indicated in the last section,
in the current method, this is not the case. Therefore, we need to
extend the theory of collectively compact operators to a somewhat more
general setting. This will be done in this section.

Let X be a Banach space with norm ‖·‖ and V its subspace. Assume
K : X → V is a compact linear operator. We consider the Fredholm
equation of the second kind

(3.1) u−Ku = f.

We assume that (3.1) is uniquely solvable in V , or X, for all f ∈ V ,
or X. This is equivalent to assuming that 1 is not an eigenvalue of the
operator K.

We first describe the setting for our discrete approximate scheme.
For this purpose, we let {Xn} denote a sequence of finite-dimensional
subspaces of X, which will be used to approximate the solution u of
equation (3.1). We let

X̃ :=
∞⋃

n=1

Xn.

We also assume that

V ⊆ X̃ ⊆ X, X̃ �= X.
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In our later application to the discrete Petrov-Galerkin method, the
space X will be chosen as L∞(D) and the subspace V will be chosen
as C(D), and Xn will be chosen as the piecewise polynomial space
described in the last section. These spaces satisfy the above inclusion
relation.

In order for our setting to cover the discrete approximate scheme, we
require two sequences of approximate operators Kn and Qn. Specif-
ically, we suppose that the operator K is approximated by operators
Kn : X → V and the identity operator I by operators Qn : X → Xn.
In other words, the operator K is approximated by the composite op-
erator QnKn. Using these two sequences of approximate operators, we
define an approximation scheme for solving equation (3.1) by

(3.2) (I − QnKn)un = Qnf.

This approximate scheme includes the discrete Galerkin method, the
discrete Petrov-Galerkin method and the discrete collocation method as
special cases, and it also covers the (nondiscrete) Galerkin method, col-
location method, and Petrov-Galerkin method and quadrature method
as well. To see this, we define Kn by a given quadrature formula or
product integration formula. When Qn is chosen to be the orthogonal
projection, the generalized best approximation projection introduced in
[7] and the interpolation projection, respectively, equation (3.2) gives
the discrete Galerkin method, the discrete Petrov-Galerkin method and
the discrete collocation method. When Qn is chosen to be the identity
operator, equation (3.2) corresponds to the quadrature method. On
the other hand, if Kn = K, then equation (3.2) defines the Galerkin
method, the Petrov-Galerkin method and the collocation method when
the operator Qn is chosen to be the orthogonal projection, the gener-
alized best approximation projection and the interpolation projection,
respectively. The approximate scheme (3.2) gives us a unified frame-
work for studies of different methods.

We are also interested in the iterated approximation associated with
the approximate solution un of (3.2) defined by

(3.3) u′n := f + Knun.

It can be shown that the iterated approximation u′n satisfies the
following new operator equation

(3.4) (I − KnQn)u′n = f.
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We will prove that u′n approximates u faster than un does under certain
conditions.

In this section we will establish a theoretical framework for the anal-
ysis of the approximate scheme (3.2) and its iterated approximations.
To do this, we are required to analyze the existence and uniform bound-
edness of the inverse operators

A−1
n := (I − QnKn)−1 and Ã−1

n := (I − KnQn)−1.

We begin with a set of assumptions on the operators Kn and Qn. We
assume that Kn : X → V and Qn : X → Xn are bounded linear
operators satisfying the following conditions.

(H1) The set of operators {Kn : n = 1, 2, . . . } is collectively compact,
i.e., the set

B̂ :=
⋃
n

Kn(B)

is relatively compact whenever B ⊂ X is bounded.

(H2) The approximate operators Kn converge pointwise to K on the
set X̃, denoted by Kn → K on X̃, i.e., for each x ∈ X̃ the following
holds

‖Knx−Kx‖ −→ 0, as n −→ ∞.

(H3) The set of operators {Qn : n = 1, 2, . . . } is uniformly bounded,
i.e., there is a constant q > 0 such that

‖Qn‖ ≤ q for all n.

(H4) The approximate operators Qn converge pointwise to I on V ,
i.e., for each x ∈ V , the following holds

‖Qnx− x‖ −→ 0 as n −→ ∞.

With the set of assumptions, we will extend the theory of the
collectively compact operators presented in [1] to the setting which
is needed for a study of the operators An and Ãn and their inverses.
As a first step, a slight modification of the proof for Proposition 1.7 in
[1] yields the following result.
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Lemma 3.1. Let X be a Banach space and S ⊂ X a relatively
compact set. Assume that T , Tn are bounded linear operators from X
to X satisfying

‖Tn‖ ≤ C for all n,

and, for each x ∈ S,

‖Tnx− T x‖ −→ 0 as n −→ ∞,

where C is a constant independent of n. Then ‖Tnx − T x‖ → 0
uniformly for all x ∈ S.

This result generalizes Proposition 1.7 of [1] in the sense that
Lemma 3.1 only requires the pointwise convergence of Tn to T on a
relatively compact set S ⊆ X. The next result concerns the conver-
gence of several approximate operators.

Lemma 3.2. Assume that conditions (H1) (H4) hold. Then

(i) ‖(Qn − I)Kn‖ → 0 as n→ ∞,

(ii) ‖(Kn −K)QnKn‖ → 0 as n→ ∞,

(iii) ‖(KnQn −K)KnQn‖ → 0 as n→ ∞.

Proof. (i) Let B denote the closed unit ball in X, that is,

B := {x ∈ X : ‖x‖ ≤ 1}.

We also let
A := {Knx : x ∈ B, n = 1, 2, . . . }.

Because of condition (H1), we conclude that A is a relatively compact
set in V . Using the hypotheses (H3) and (H4), we see that the
conditions of Lemma 3.1 are satisfied. Hence, ‖Qnx−x‖ → 0 uniformly
for x ∈ A. It follows that

‖(Qn − I)Kn‖ = sup
x∈B

‖(Qn − I)Knx‖

= sup
x∈A

‖(Qn − I)x‖ −→ 0.
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(ii) For a fixed x ∈ V , it follows from (H4) that {Qnx : n = 1, 2, . . . }
is a relatively compact set in X. By Lemma 3.1 and the hypotheses
(H1) (H2), we conclude that

‖(Kn −K)Qnx‖ −→ 0 as n −→ ∞.

Hence we have

‖(Kn −K)QnKn‖ = sup
y∈B

‖(Kn −K)QnKny‖

= sup
x∈A

‖(Kn −K)Qnx‖.

Using Lemma 3.1 with T = 0, Tn = (Kn − K)Qn and S = A, we
conclude the validity of this result.

(iii) It can be shown by the hypotheses (H1) and (H3) that

A′ := {KnQnx : x ∈ B, n = 1, 2, . . . }

is a relatively compact set in V . On the other hand, note that

KnQn −K = (KnQn −KQn) + (KQn −K).

We then conclude from statement (ii) and (H4) that, for any x ∈ V ,

‖(KnQn −K)x‖ −→ 0 as n −→ ∞.

Thus, the statement (iii) follows immediately from the above equation
and the relative compactness of the set A′.

We next study the existence of the inverse operator of An and Ãn.
For this purpose, we recall a known result about the existence and the
boundedness of inverse operators, e.g., [1, Proposition 1.2].

Lemma 3.3. Let X be a Banach space and B, T bounded linear
operators from X to X. If

BT = I − A, ‖A‖ < 1,
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then T −1 exists as an operator defined on T (X), and

‖T −1‖ ≤ ‖B‖
1 − ‖A‖ .

We now prove the main result of this section.

Theorem 3.4. Assume that conditions (H1) (H4) hold. Then there
exists N0 > 0 such that, for all n > N0, the inverse (I −QnKn)−1 and
(I − KnQn)−1 exist as linear operators defined on X, and there exists
a constant C independent of n such that

‖(I − QnKn)−1‖ ≤ C and ‖(I − KnQn)−1‖ ≤ C.

Moreover, let u, un and u′n be the solution of equations (3.1), (3.2) and
(3.4), respectively. Then we have the estimates

(3.5) ‖u− un‖ ≤ C(‖u−Qnu‖ + q‖Ku−Knu‖),

and

(3.6) ‖u− u′n‖ ≤ C(‖K(I − Qn)u‖ + ‖(K −Kn)Qnu‖).

Proof. We first note that a straightforward computation leads to the
identities

[I + (I − K)−1Kn](I − QnKn)
= I − (I − K)−1[(Qn − I)Kn + (Kn −K)QnKn],

and

[I + (I − K)−1KnQn](I −KnQn) = I − (I −K)−1(KnQn −K)KnQn.

By Lemma 3.2 there exists N0 > 0 such that, for all n > N0,

Δ1 := ‖(I − K)−1[(Qn − I)Kn + (Kn −K)QnKn]‖ ≤ 1
2
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and
Δ2 := ‖(I − K)−1(KnQn −K)KnQn‖ ≤ 1

2
.

It follows from Lemma 3.3 that the inverse operators (I − QnKn)−1

and (I − KnQn)−1 exist, and the following holds

‖(I − QnKn)−1‖ ≤ 1
1 − Δ1

(1 + ‖(I − K)−1‖ ‖Kn‖),

and
‖(I − KnQn)−1‖ ≤ 1

1 − Δ2
(1 + q‖(I − K)−1‖ ‖Kn‖).

Since the set of operators {Kn} is collectively compact, the norms ‖Kn‖
are uniformly bounded. Thus (I − QnKn)−1 and (I − KnQn)−1) are
uniformly bunded. Moreover, it is easily seen that QnKn and KnQn

are compact. Thus the Fredholm theory allows us to conclude that
(I − QnKn)−1 and (I − KnQn)−1 are defined on X; that is, the
equations (3.2) and (3.4) have unique solutions for every f ∈ X.

It remains to prove the second statement. To this end, we note that
from equations (3.1), (3.2) and (3.4), we have

(I − QnKn)un = Qn(I − K)u,

and
(I − KnQn)u′n = (I − K)u.

Using these equations, we obtain that

(I − QnKn)(u− un) = (u−Qnu) + Qn(Ku−Knu),

and
(I − KnQn)(u− u′n) = Ku−KnQnu

= K(u−Qnu) + (K −Kn)Qnu.

By the first part of this theorem, we obtain the estimates.

We remark that, from estimate (3.5), the convergence order of un

depends completely on the orders of Qn and Kn approximating the
identity operator and K, respectively. On the other hand, it is seen
from (3.6) that if Kn approximates K in an order higher than the
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convergence order of Qn, superconvergence of the iterated solution will
be exhibited since the significant error term is the first term which has
superconvergence property due to iteration.

4. The analysis of discrete Petrov-Galerkin methods. In this
section we follow the general theory developed in Section 3 to prove con-
vergence results of the discrete Petrov-Galerkin method when piecewise
polynomial approximation is used. Throughout the remaining part of
this paper, we let X = L∞(D), V = C(D), Xn and Yn be the piece-
wise polynomial spaces defined in Section 2, and X̃ = ∪nXn. Our main
task in this section is to verify that the operators Qn and Kn with the
spaces Xn, Yn defined in Section 2 by the piecewise polynomials satisfy
the hypotheses (H1) (H4), so that Theorem 3.4 can be applied. For
this purpose, we define the necessary notation. Let

Φ := [φi(tj)]μ×γ and Ψ := [ψi(tj)]μ×γ ,

where {φi} and {ψi} are the basis which we have chosen for the
piecewise polynomial spaces S1,k1(E) and S2,k2(E), and {tj} are the
interpolation points in the reference element E chosen in Section 2.
Noting that wi are the weights of the quadrature formula on the
reference element developed in Section 2, we set

W := diag (w1, . . . , wγ) and M := ΨWΦT .

The next proposition presents a necessary and sufficient condition for
the discrete generalized best approximation to exist uniquely.

Proposition 4.1. For each x ∈ L∞(D), the discrete generalized best
approximation Qnx from Xn to x with respect to Yn defined by (2.11)
exists uniquely if and only if

(4.1) det (M) �= 0.

Under this condition, Qn is a projection, i.e., Q2
n = Qn.

Proof. Let x ∈ L∞(D) be given. Showing that there is a unique
Qnx ∈ Xn satisfying equation (2.11) is equivalent to proving that the
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linear system

(4.2)

Nn∑
i=1

μ∑
j=1

ci,j(φi,j , ψi′,j′)n = (x, ψi′,j′)n,

i′ = 1, 2, . . . , Nn, j
′ = 1, 2, . . . ,m,

has a unique solution [c1,1, . . . , c1,μ, . . . , cNn,1, . . . , cNn,μ]. This is in
turn equivalent to that the coefficient matrix M̃ of this system is
nonsingular. It is easily seen that

M̃ = diag (det (B1)M, . . . , det (BNn
)M).

Thus the first result of this proposition follows from the hypothesis
(4.1).

It remains to show that Qn is a projection. By definition, we have
that for every x ∈ L∞(D),

(Qnx, y)n = (x, y)n for all y ∈ Yn.

In particular, this equation holds when x is replaced by Qnx. That is,

(Q2
x, y)n = (Qnx, y)n for all y ∈ Yn.

It follows that, for each x ∈ X,

Q2
nx = Qnx.

That is, Qn is a projection.

Condition (4.1) is a condition on the choice of the points {tj} on the
reference element. They have to be selected in a careful manner so that
they match with the choice of the bases {φi} and {ψi}. This condition
has to be verified before a concrete construction of the projection Qn

is given. This is not a difficult task since the condition is on the
reference element, it is independent of n and in practical applications
the numbers μ and γ are not too large.

The next proposition gives two useful properties of the projection Qn.
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Proposition 4.2. Assume that condition (4.1) is satisfied. Let Qn be
defined by (2.11) with the spaces Xn, Yn and the discrete inner product
constructed in terms of the piecewise polynomials described in Section 2.
Then

(i) Qn is uniformly bounded, i.e., there exists a constant C > 0 such
that ‖Qn‖ ≤ C for all n.

(ii) There exists a constant C > 0 independent of n such that the
estimate

‖Qnx− x‖∞ ≤ C inf
φ∈Xn

‖x− φ‖∞

holds for all x ∈ L∞(D). Thus, for each x ∈ C(D), ‖Qnx− x‖∞ → 0
holds as n→ ∞.

Proof. (i) For any x ∈ L∞(D), we have the expression

(4.3) Qnx =
Nn∑
i=1

μ∑
j=1

ci,jφi,j ,

where the coefficients ci,j satisfy equation (4.2). It follows that

(4.4)

‖Qnx‖∞ ≤ ‖c‖∞ess sup
s∈D

Nn∑
i=1

μ∑
j=1

|φi,j(s)|

= ‖c‖∞ max
s∈E

μ∑
j=1

|φj(s)|,

where
c := [c1,1, . . . , c1,μ, . . . , cNn,1, . . . , cNn,μ]T ,

and the discrete norm of c is defined by ‖c‖∞ := maxi,j |ci,j |. By
definition, the vector c is dependent on n although we do not specify
it in the notation. However, we will prove that ‖c‖∞ is in fact
independent of n. To this end, we use system (4.2) and the hypothesis
(4.1) to conclude that

(4.5) ‖c‖∞ = ‖M̃−1d‖∞,

where

d := [(x, ψ1,1)n, . . . , (x, ψ1,μ)n, . . . , (x, ψNn,1)n, . . . , (x, ψNn,μ)n]T ,
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and
M̃−1 = diag (det (B1)−1M−1, . . . ,det (BNn

)−1M−1).

Let
di = [(x, ψi,1)n, . . . , (x, ψi,μ)n]T ∈ Rμ.

Then, it follows from (4.5) that the following estimate of ‖c‖∞ holds
in terms of blocks di and M−1

(4.6) ‖c‖∞ ≤ max
1≤i≤Nn

‖det (Bi)−1M−1di‖∞.

This inequality reduces the estimating ‖c‖∞ to bounding each block
di. By the definition of the discrete inner product, we have an estimate
for the norm of di,

(4.7)

‖di‖∞ ≤ ‖x‖∞ max
1≤j≤μ

γ∑
�=1

wi,�|ψi,j(ti,�)|

= det (Bi)‖x‖∞ max
1≤j≤μ

γ∑
�=1

w�|ψj(t�)|.

From (4.4) (4.7), we conclude that

‖Qnx‖∞ ≤ C‖x‖∞ for all n,

where C is a constant independent of n with the value

C := ‖M−1‖∞ max
s∈E

μ∑
j=1

|φj(s)| max
1≤j≤μ

γ∑
�=1

w�|ψj(t�)|.

(ii) Let φ ∈ Xn. Since Qn is a projection, we have that, for each
x ∈ L∞,

‖Qnx− x‖∞ ≤ ‖x− φ‖∞ + ‖Qnφ−Qnx‖∞ ≤ (1 + C)‖x− φ‖∞.

Thus, we obtain the estimate

‖Qnx− x‖∞ ≤ C inf
φ∈Xn

‖x− φ‖∞.
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This estimate with the relation C(D) ⊆ ∪nXn implies that ‖Qnx −
x‖∞ → 0 as n→ ∞ for each x ∈ C(D).

In the next proposition we verify that the operators Kn defined
in Section 2 by the piecewise polynomial approximation satisfy the
hypotheses (H1) (H2).

Proposition 4.3. Suppose that Kn is defined as in Section 2 by the
piecewise polynomial approximation. Then

(i) The set of operators {Kn} is collectively compact.

(ii) For each x ∈ X̃, ‖Knx−Kx‖∞ → 0 holds as n→ ∞.

(iii) If x ∈W k3∞ (D) and k1 ∈ C(D)×W k3∞ (D), the following estimate
holds

‖Kx−Knx‖∞ ≤ Chk3 .

Proof. (i) By the continuity of the kernel k1(s, t) and condition (2.20),
there exist constants C1 and C2 such that

‖k1(s, ·)‖∞ ≤ C1 and ‖k2(s, ·)‖1 ≤ C2.

Thus we have

(4.8)
|(Knx)(s)| =

∣∣∣∣
∫

D

Zn(k1(s, t)x(t))k2(s, t) dt
∣∣∣∣

≤ C0C1C2‖x‖∞.

On the other hand,

|(Knx)(s) − (Knx)(s′)| =
∣∣∣∣
∫

D

Zn(k1(s, t)x(t))k2(s, t) dt

−
∫

D

Zn(k1(s′, t)x(t))k2(s′, t) dt
∣∣∣∣

≤
∣∣∣∣
∫

D

Zn(k1(s, t)x(t))[k2(s, t) − k2(s′, t)] dt
∣∣∣∣

+
∣∣∣∣
∫

D

[Zn(k1(s, t)x(t))
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−Zn(k1(s′, t)x(t))]k2(s′, t) dt
∣∣∣∣

≤ C0‖x‖∞(C1‖k2(s, ·) − k2(s′, ·)‖1

+ C2‖k1(s, ·) − k1(s′, ·)‖∞).

Since ‖k2(s, ·) − k2(s′, ·)‖1 and ‖k1(s, ·) − k1(s′, ·)‖∞ are uniformly
continuous on D, we observe that {Knx} is equicontinuous on D.
By the Arzela-Ascoli theorem we conclude that {Kn} is collectively
compact.

(ii) For any x ∈ X̃,

|(Knx)(s) − (Kx)(s)| =
∣∣∣∣
∫

D

[Zn(k1(s, t)x(t))− k1(s, t)x(t)]k2(s, t) dt
∣∣∣∣

≤ C2‖Zn(k1(s, t)x(t))− k1(s, t)x(t)‖∞.

Note that k1(s, t)x(t) is piecewise continuous as is x(t). By the
definition of Zn, we have that the righthand side of the above inequality
converges to zero as n → ∞. We conclude that the lefthand side
converges uniformly to zero on the compact set D. That is, ‖Knx −
Kx‖ → 0 as n→ ∞.

(iii) If x ∈ W k3∞ (D), by the approximate order of the interpolation
projection Zn, we have

‖Knx−Kx‖∞ ≤ C sup
s∈D

‖(Zn(k1(s, ·)x(·)))(·)− k1(s, ·)x(·)‖∞

≤ Chk3 .

The estimate above follows immediately from the fact that k1 ∈
C(D) ×W k3∞ (D) and inequality (2.17).

Using Propositions 4.2 and 4.3 and Theorem 3.4, we obtain the
following theorem.

Theorem 4.4. The following statements are valid:

(i) There exists N0 > 0 such that, for all n > N0, the Petrov-
Galerkin method using the piecewise polynomial approximation de-
scribed in Section 2 has a unique solution un ∈ Xn.
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(ii) If u ∈Wα
∞(D) with α := min{k1, k3}, then the following estimate

holds.
‖u− un‖∞ ≤ Chα.

Proof. By Propositions 4.2 and 4.3, we conclude that conditions
(H1) (H4) are satisfied. Hence, from Theorem 3.4, we have that
statement (i) follows immediately and the following estimate holds

(4.9) ‖u− un‖∞ ≤ C(‖u−Qnu‖∞ + ‖Ku−Knu‖∞).

Now let u ∈Wα
∞(D). Again, Proposition 4.2 ensures that

(4.10) ‖u−Qnu‖∞ ≤ C inf
φ∈Xn

‖u− φ‖∞ ≤ Chα.

By (iii) of Proposition 4.3, we have that

(4.11) ‖Ku−Knu‖∞ ≤ Chα.

Substituting estimates (4.10) and (4.11) into inequality (4.9) yields the
estimate (ii).

5. Superconvergence of the iterated approximation. We
present in this section a superconvergence property of the iterated
discrete Petrov-Galerkin method when the kernel is smooth. Super-
convergence of the iterated discrete Petrov-Galerkin approximation is
also anticipated. It may be obtained by a similar analysis provided
by [9] for the superconvergence of the iterated Galerkin method when
the kernels are weakly singular. However, it is out of the scope of this
paper; we will leave it to a future project.

To obtain superconvergence, we require, furthermore, that the par-
titions Δ1 and Δ3 of E, associated with spaces S1,k(E) and S3,k3(E),
respectively, be exactly the same. In the main theorem of this section
we will prove that the corresponding iterated discrete Petrov-Galerkin
approximation has a superconververgence property when the kernels
are smooth. In particular, we assume that the kernel k = k1 and k2 = 1
in the notation of Section 2. We first establish a technical lemma.
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Lemma 5.1. Let x ∈ L∞(D) and k1 ∈ C(D) ×W k3∞ (D). Assume
that Δ1 = Δ3. Then there exists a positive constant C independent of
n such that

‖(K −Kn)Qnx‖∞ ≤ Chk3 .

Proof. Since Qnx is not even a continuous function, Proposition 4.3
(iii) does not apply to this case. However, it follows from the proof of
Proposition 4.3 (ii) that

|(KnQnx)(s) − (KQnx)(s)| ≤ C‖rs‖∞,

where

rs(t) := (Zn(k1(s, ·)(Qnx)(·))(t) − k1(s, t)(Qnx)(t).

Hence, it suffices to estimate rs(t).

Using the definition of the projection Qn, we write

(5.1) (Qnx)(t) =
Nn∑
i=1

μ∑
j=1

ci,jφi,j(t), t ∈ D,

where φi,j are the basis function for Xn given in Section 2, and the
coefficients ci,j satisfy the linear system (4.2). Consequently, we have

(5.2) (Zn(k1(s, ·)(Qnx)(·))(t) =
Nn∑
i=1

μ∑
j=1

ci,j(Zn(k1(s, ·)φi,j(·))(t).

By the construction of the functions φi,j , we have that φi,j(ti′,j′) = 0
if i �= i′. Thus, it follows that

(Zn(k1(s, ·)φi,j(·))(t) =
Nn∑
i′=1

γ∑
j′=1

k1(s, ti′,j′)φi,j(ti′,j′)ζi′,j′(t)

=
γ∑

j′=1

k1(s, ti,j′)φi,j(ti,j′)ζi,j′(t).



30 Z. CHEN, Y. XU AND J. ZHAO

Substituting this equation into (5.2) yields
(5.3)

(Zn(k1(s, ·)(Qnx)(·))(t) =
Nn∑
i=1

μ∑
j=1

ci,j

γ∑
j′=1

k1(s, ti,j′)φi,j(ti,j′)ζi,j′(t),

t ∈ D.

We now assume that, for some point t̂ ∈ Ei′ , ‖rs‖∞ = |rs(t̂)|. For
this point t̂, there exists a point τ in the reference element E such that
t̂ = Fi′(τ ). Hence,

‖rs‖∞ =
∣∣∣∣

μ∑
j=1

ci′,j

[ γ∑
j′=1

k1(s, Fi′(tj′))φj(tj′)ζj′(τ )−k1(s, Fi′(τ ))φj(τ )
]∣∣∣∣.

Because E = ∪ν3
i=1ei, the point τ must be in some ēi. For each

integer j′ = 1, 2, . . . , γ, assume that positive integers i0 and j0 with
1 ≤ i0 ≤ ν3, 1 ≤ j0 ≤ m, are such that (i0 − 1)m+ j0 = j′. Therefore,
we have

ζj′(t) =
{
pi0,j0(t) t ∈ ei0

0 t /∈ ei0 ,
and tj′ = τi0,j0 ,

so that

‖rs‖∞ =
∣∣∣∣

μ∑
j=1

ci,j

[ ν3∑
i0=1

m∑
j0=1

k1(s, Fi′(τi0,j0))φj(τi0,j0)pi0,j0(τ )

− k1(s, Fi′(τ ))φj(τ )
]∣∣∣∣

=
∣∣∣∣

μ∑
j=1

ci,j

[ m∑
j0=1

k1(s, Fi′(τi,j0))φj(τi,j0)pi,j0(τ )

− k1(s, Fi′(τ ))φj(τ )
]∣∣∣∣.

We identify that the function in the blanket of the last term is the
error of polynomial interpolation of the function k1(s, Fi′(τ ))φj(τ ) on
ei, which we call the error term on ei. Since Δ1 = Δ3, k1(s, Fi′(τ ))φj(τ )
as a function of τ is in the space W k3∞ (ei). We conclude that the error
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term on ei is bounded by a constant time ‖Dk3(k1(s, Fi′(·))φj(·)‖∞.
The latter is bounded by a constant time |det (Bi′)|k3 ≤ Chk3 . Hence,
we obtain

‖rs‖∞ ≤ C‖c‖∞hk3 .

By the proof of Proposition 4.2, we know that ‖c‖∞ ≤ C. Therefore,
we have ‖rs‖∞ ≤ Chk3 .

We are now ready to establish the main result of this section con-
cerning the superconvergence of the iterated solution.

Theorem 5.2. Let β := min{k1 + k2, k3}, u ∈ W β
∞(D) and

k ∈ C(D) ×W k3∞ (D). Then the following estimate holds

‖u− u′n‖∞ ≤ Chβ.

Proof. It follows from Theorem 3.4 that

(5.4) ‖u− u′n‖∞ ≤ C(‖(K −Kn)Qnu‖∞ + ‖K(I − Qn)u‖∞).

Because Δ1 = Δ3, by applying Lemma 5.1, we have that

(5.5) ‖(K −Kn)Qnu‖∞ ≤ Chk3 .

Moreover, since k(s, ·) ∈W k3∞ (D) and Δ1 = Δ3, we conclude that

(5.6) ‖K(u−Qnu)‖∞ ≤ ‖(k(s, t), u(t) − (Qnu)(t))n‖∞ + Chk3 .

It remains to estimate ‖(k(s, t), u(t)− (Qnu)(t))n‖∞. For this purpose,
we note that, for any y ∈ Yn, the following holds

(y, u−Qnu)n = 0.

It follows that

|(k(s, t), u(t) − (Qnu)(t))n| = |(k(s, t) − y(t), u(t) − (Qnu)(t))n|
≤ inf

y∈Yn

‖k(s, t) − y(t)‖∞‖u−Qnu‖∞.



32 Z. CHEN, Y. XU AND J. ZHAO

This implies that

(5.7) ‖(k(s, t), u(t)− (Qnu)(t))n‖∞ ≤ Chk2hk1 = Chk1+k2 .

Combining inequalities (5.4) (5.7), we establish the estimate of this
theorem.

We remark that, when k1 < k3 < k1 + k2, the optimal order of
convergence of un is O(hk1) while the iterated solution u′n has an order
of convergence O(hk3). This phenomenon is called superconvergence.

6. Numerical examples. In this section, we present two numerical
examples to illustrate the theoretical estimates obtained in the previous
sections. The kernel in the first example is weakly singular while
the kernel in the second example is smooth. The second example
is presented to show the superconvergence property of the iterated
solution. Since examples are used to illustrate the performance of
the method, we restrict ourselves to simple one-dimensional equations
whose exact solutions are known.

In both examples we will use piecewise linear functions and piecewise
constant functions for the spaces Xn and Yn, respectively. Specifically,
we define the trial space by

Xn = span {φ1, . . . , φ2n}

where

φ2j+1(t) :=
{
nt− j (j/n) ≤ t ≤ ((j + 1)/n),

0 otherwise,
, j = 0, 1, . . . , n− 1,

and

φ2j+2(t) :=
{
j+1−nt (j/n) ≤ t ≤ ((j+1)/n),

0 otherwise,
j = 0, 1, . . . , n− 1.

The test space is then defined by

Yn = span {ψ1, . . . , ψ2n},



THE DISCRETE PETROV-GALERKIN METHOD 33

where

ψi(t) :=
{

1 (i− 1/(2n)) ≤ t ≤ (i/(2n)),
0 otherwise,

i = 1, 2, . . . , 2n.

Example 1. Consider the integral equation with a weakly singular
kernel

x(s) −
∫ π

0

log | cos s− cos t|x(t) dt = 1, 0 ≤ s ≤ π.

This equation is a reformulation of a third boundary value problem of
the 2-D Laplace equation, and it has the exact solution given by

x(s) =
1

1 + π log 2
,

see [2] for more details about this example. By changes of variables
t = πt′, s = πs′, we have an equivalent equation

x(πs) − π

∫ 1

0

log | cos(πs) − cos(πt)|x(πt) dt = 1, 0 ≤ s ≤ 1.

We write the kernel

log | cos(πs) − cos(πt)| =
4∑

i=1

ki,1(s, t)ki,2(s, t)

where

k1,1(s, t) = log
(

sin((π(t− s))/2)) sin((π(t+ s))/2))
π3((t− s)/2)(t+ s)(2 − t− s)

)
,

k1,2(s, t) = k2,1(s, t) = k3,1(s, t) = k4,1(s, t) = 1,
k2,2(s, t) = log |π(s− t)|, k3,2(s, t) = log(π(2 − s− t)),

and
k4,2(s, t) = log(π(s+ t)).

In Table 1 we present the error en of the approximate solution and
the error e′n of the iterated approximate solution, where we use q and
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q′ to represent the corresponding orders of approximation, respectively.
In our computation, we choose k3 = 2.

TABLE 1.

n 4 8 16 32
en 1.504077E-06 3.879971E-07 9.877713E-08 2.957718E-08
q 1.954761 1.973797 1.739639
e′n 3.186220E-06 8.005914E-07 1.973337E-07 5.153006E-08
q′ 1.992708 2.020429 1.93715

The order of approximation agrees with our theoretical estimate. The
iteration does not improve the accuracy of the approximate solution for
this example due to the nonsmoothness of the kernel.

Example 2. We consider the integral equation with a smooth kernel

x(s) −
∫ 1

0

sin s cos tx(t) dt = sin s(1 − esin 1) + esin s, 0 ≤ s ≤ 1.

It is not difficult to verify that x(s) = esin s is the unique solution of
this equation. In the notation of Section 2, we have k1(s, t) = sin s cos t
and k2(s, t) = 1. In this case we choose k3 = 3 for the quadrature
formula. The notation in Table 2 is the same as that in Table 1.

TABLE 2.

n 4 8 16 32
en 1.68156E-02 4.10275E-03 1.01615E-03 3.00353E-04
q 2.035137 2.013478 1.75839
e′n 6.78911E-05 4.16056E-06 2.58946E-07 1.61679E-08
q′ 4.028373 4.006054 4.001447

In this example the iteration improves the accuracy of the approxi-
mation by the order as estimated in Theorem 5.2.
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