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A WAVELET ALGORITHM FOR THE
SOLUTION OF A SINGULAR INTEGRAL EQUATION
OVER A SMOOTH TWO-DIMENSIONAL MANIFOLD

ANDREAS RATHSFELD

ABSTRACT. In this paper we consider a piecewise bilinear
collocation method for the solution of a singular integral equa-
tion over a smooth surface. Using a fixed set of parametriza-
tions, we introduce special wavelet bases for the spaces of test
and trial functions. The trial wavelets have two vanishing
moments only if their supports do not intersect the lines be-
longing to the common boundary of two subsurfaces defined
by different parameter representations. Nevertheless, analo-
gously to well-known results on wavelet algorithms, the stiff-
ness matrices with respect to these bases can be compressed to
sparse matrices such that the iterative solution of the matrix
equations becomes fast. Finally we present a fast quadrature
algorithm for the computation of the compressed stiffness ma-
trix.

1. Introduction. It is a well-known fact that usual finite element
discretizations of linear integral equations, e.g., of boundary integral
equations, lead to systems of linear equations with fully populated
matrices. Thus, even an iterative solution method requires a huge
number of arithmetic operations and a large storage capacity. In order
to improve these finite element approaches, several new algorithms
have been developed. For a relatively wide class of boundary integral
equations, Rokhlin and Greengard [37, 20] have introduced their
methods of multipole expansion, Hackbusch and Nowak [21], cf. also
[38], have considered panel clustering algorithms, and Brandt and
Lubrecht [3] have set up multilevel schemes. Another approach for
saving storage and computation time consists in employing wavelet
bases of the finite element spaces. This idea goes back to Beylkin,
Coifman and Rokhlin [2] and has been thoroughly investigated by
Dahmen, Petersdorff, Prößdorf, Schneider and Schwab [13, 14, 12,
15, 32, 31, 30, 39], cf. also the contributions by Alpert, Harten,
Yad-Shalom, Dorobantu, Kleemann and the author [1, 22, 19, 9, 10,
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36]. Note that all the different algorithms from multipole expansion to
wavelets seem to have a common multilevel background.

The subject of the present paper is to apply the wavelet technique
from [2] to the collocation solution of two-dimensional singular inte-
gral equations. The two-dimensional singular integral equations and
the bilinear collocation methods will be introduced in Section 2. In
particular, the collocation for the singular boundary integral equation
corresponding to the oblique derivative problem for Laplace’s equation,
cf. Miranda [27, Section 23], Klees, Engels [25, 24] or the similar equa-
tion for the Molodensky problem in Moritz [28, Section 43] is included.

If the underlying surface is smooth (continuously differentiable up to
a certain order) and diffeomorphic to the torus, then it is clear that the
wavelet algorithms, cf. [12, 31], admit high order compressions. For
general smooth surfaces represented by a set of parametrizations, simi-
lar results hold if the wavelet functions are suitably chosen. Supposing
that the parameter domains are squares, one can define the wavelets
of the trial space as tensor products of the orthogonal wavelets and
scaling functions over the interval [7, 5]. However, due to the orthogo-
nality, these wavelets are not optimal. Indeed, to reduce the amount of
work for the quadratures applied during the computation of the stiff-
ness matrix, wavelets with smaller supports but with the same moment
conditions seem to be preferable. Thus, in Section 3.1, we consider the
piecewise linear univariate biorthogonal wavelets used by Petersdorff,
Schwab and Rathsfeld [32, 36]. These wavelets have the smallest sup-
port among all the piecewise linear wavelets with two vanishing mo-
ments. By reflection techniques we define boundary wavelets and get
a stable wavelet system (Riesz basis) over the interval. Applying well-
known tensor product techniques in Section 3.2, we introduce a wavelet
basis over the square, and by using the parameterization mappings, we
end up with continuous wavelet functions over the boundary manifold.
For these wavelets, we will prove the Riesz basis property and the usual
decay property for the coefficients of a smooth bilinear function. If the
support of the wavelet does not intersect the lines belonging to the
common boundary of two subsurfaces defined by different parameter
representations, then the wavelets have two vanishing moments. Note
that the techniques for the proof of these properties are well known from
the works of, e.g., Cohen, Daubechies, Feauveau, Dahmen, Kunoth and
Schneider [6, 16, 11, 39]. Therefore, some parts of the proof are only
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sketched.

Following the ideas of Harten and Yad-Shalom [22], we define a
wavelet basis for the space of test functionals in Section 3.3. In
Section 3.4 we describe the wavelet algorithm which is based on the
just introduced bases in the test and trial spaces. Analogously to the
results by Dahmen, Prößdorf, Schneider, Petersdorff and Schwab [14,
39, 31], we will show that the n×n stiffness matrix corresponding to the
wavelet bases admits a compression up to a matrix with no more than
O(n[logn]4) nonzero entries and that, replacing the full stiffness matrix
by the compressed matrix, we get the same asymptotic convergence
rate O(n−1) as for the conventional collocation solution. For this
estimate, the second order moment condition for the wavelets along the
common boundary of two subsurfaces defined by different parameter
representations is not necessary. Note that the logarithmic factor
[log n]4 could be slightly improved if the factor j in the compression
criterion (3.66) of Theorem 3.1 is replaced by a power of j with exponent
less than one. Essential improvements are possible if wavelets with
more vanishing moments are used and if the compression is extended to
matrix entries corresponding to wavelets with overlapping supports, cf.
the compression of the Galerkin matrix due to Schneider [39]. However,
the complete removal of this factor similar to the compression of the
Galerkin matrix seems not to be possible since the basis transform
corresponding to the test wavelets is not bounded, cf. Lemma 3.4.

Clearly, using the compressed matrix, the iterative solution, e.g., by a
cascadic GMRes algorithm, of the collocation system requires no more
than O(n[logn]4) arithmetic operations. In Section 4 we will intro-
duce a quadrature algorithm for the computation of the compressed
stiffness matrix with no more than O(n4/3[logn]4/3) operations. The
corresponding error of the discretized collocation solution is less than
O(n−1 log n). Note that this quadrature algorithm is more or less an
adoption of the Johnson-Scott algorithm [23], cf. also the references
in [23], for the computation of conventional stiffness matrices to the
case of wavelet transformed stiffness matrices. The complexity result
is true if each of the parametrization mappings is analytic in a neigh-
borhood of the parameter domain and if the kernel function of the
singular integral operator admits a representation, cf. (4.3), which is
typically fulfilled for boundary integral operators. Moreover, in con-
trast to the estimates for the Galerkin method by Petersdorff, Schwab
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and Schneider [31, 39], we even do not need the global analyticity of the
parametrizations. Local analyticity is sufficient. More exactly, if the
thrice continuously differentiable surface is given by certain grid points
and if this surface is replaced by a suitable interpolation, then we may
suppose that the parametrizations are twice continuously differentiable
and piecewise polynomial. For this situation, the complexity estimate
O(n4/3[log n]4/3) remains true. Finally, we indicate how an algorithm
of complexity O(n) times a certain power of log n can be obtained.

For a numerical experiment with the method of the present paper,
we refer to the paper [35]. In that article we considered a singular
integral equation corresponding to an oblique derivative boundary
value problem of Laplace’s equation with application in geodesy, cf.
Moritz [28], Klees and Engels [24]. To this we applied a slightly
modified version of the wavelet and quadrature algorithm defined in
Sections 3.4 and 4.2. The underlying manifold was a part of the
earth’s surface which is not smooth and which was approximated by
Overhauser interpolation over the uniform grid of a square shaped
parameter domain. Thus a global parametrization mapping was applied
for the numerical computations. Using this we could replace the
singularity subtraction technique of Section 4.2 by a global singularity
technique. Furthermore, to reduce the computing time, we used test
functionals with one vanishing moment, only. Though these test
wavelets lead to asymptotically slower methods, we expect them to
be faster for linear systems of size less than 10,000. Due to the
lower compression rates the refinement step from {Γji} to {Γξ′i′ } for
the quadrature partition, cf. Section 4.2, turns out to be redundant.
Implementing our wavelet algorithm including the three modifications
mentioned above, we observed that the stiffness matrix of dimension
n = 9025 can be compressed to 5.1 percent such that the additional
relative compression error is still less than 10−5. The wavelet algorithm
reduces the computing time on a DEC 3000 AXP 400 α-processor
workstation from 10,500s for a conventional algorithm to 890s. For
more details and results, see [35].

2. The collocation method for the singular integral equa-
tion.

2.1. The singular integral equation. Now we consider a smooth



WAVELET ALGORITHM 449

two-dimensional surface Γ in the three-dimensional Euclidean space
R3. This surface is supposed to be the union of the closed bounded
surface pieces Γm, m = 1, . . . ,mΓ such that, for every m, there exists
an infinitely differentiable coordinate mapping κm from the reference
domain S := [0, 1] × [0, 1] to Γm. Moreover, we suppose that this
mapping extends to a mapping over a small neighborhood of S and
that the intersection of two subsurfaces Γm and Γm′ is either empty
or consists of a common corner point or is equal to a common side of
Γm and Γm′ , respectively. In case the intersection Γm ∩ Γm′ is a side,
we suppose that the parametrizations κm and κm′ restricted to this
common side coincide. The singular integral equation over Γ takes the
form

(2.1)
Au(x) := a(x)u(x) +

∫
Γ

KA(x, y)u(y) dyΓ = v(x),

x ∈ Γ,

where a is a smooth function and KA(x, y) is the singular kernel
function of operator A. We suppose that KA is infinitely differentiable
over Γ×Γ\{(x, x) : x ∈ Γ} and that the derivatives satisfy the Calderón-
Zygmund estimate

(2.2) |∂αx ∂βyKA(x, y)| ≤ C(α, β,A,Γ)|x− y|−(2+|α|+|β|)

for any multi-indices α and β. The integral on the lefthand side of (2.1)
is to be understood in the sense of a principle value, cf. [26]. Operator
A is supposed to be a classical pseudodifferential operator of order zero
and maps the Sobolev space Hs(Γ) of order s into Hs(Γ). In local
coordinates, (2.1) takes the form

(2.3)

a(κk(t))u(κk(t)) +
mΓ∑
m=1

∫
S
KA(κk(t), κm(s))u(κm(s))|κ′m(s)| ds

= v(κk(t)),
t ∈ S, k = 1, . . . ,mΓ,

where |κ′m(s)| denotes the density of the surface integral, i.e., the norm
of the vector product ∂s1κm(s) × ∂s2κm(s).

For the stability of the numerical methods, the concept of strong
ellipticity plays a crucial role. We call A strongly elliptic if A satisfies
the so-called G̊arding inequality, i.e.,

(2.4) Re 〈Au, u〉L2(Γ) ≥ γ‖u‖L2(Γ) − |〈Tu, u〉L2(Γ)|
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for any u ∈ L2(Γ). In (2.4) the operator T ∈ L(L2(Γ)) is supposed
to be compact and γ stands for a positive constant independent of u.
Note that the classical pseudodifferential operator A is strongly elliptic
if and only if the real part of its main symbol is greater than a positive
constant.

Finally, we remark that the smoothness assumptions can be relaxed.
This will be indicated in Section 4.1.

2.2. The bilinear trial functions and the collocation. We will seek an
approximate solution for u of (2.1) in the space of bilinear functions
over Γ. To define these functions, we first introduce functions over the
square S. We set N := Nj := 3 · 2j and h := hj := 1/N and consider
the grid ΔS

j := {τi,k : i, k = 0, . . . , N}, where τi,k := (ih, kh). The
space of piecewise bilinear functions SS

j := span {ϕS
τ : τ ∈ ΔS

j } over
the grid ΔS

j is defined by the basis functions ϕS
τ (t) := NϕT (N · [t− τ ]),

where ϕT ((t1, t2)) := ϕ(t1)ϕ(t2) is the tensor product of the univariate
hat function

(2.5) ϕ(s) :=
{

1 − |s| if |s| ≤ 1
0 else.

Using the parametrizations κm, we define the grid Δj := {ξmi,k :
m = 1, . . . ,mΓ, i, k = 0, . . . , N} over Γ by ξmi,k := κm(τi,k) and the
space of trial functions Sj := span {ϕξ : ξ ∈ Δj} by ϕξm

i,k
(κm(t)) :=

ϕmi,k(κm(t)) := ϕS
τi,k

(t). Note that, if ξ ∈ Δj belongs to more than one
subsurface Γm, then it admits several representations of the form ξ =
ξmi,k. Nevertheless, we consider ξ as one point. The corresponding basis
function ϕξ is the sum of the functions κm(t) 	→ ϕmi,k(κm(t)) := ϕS

τi,k
(t)

defined over the different Γm. Clearly, the functions of Sj are bilinear
with respect to the parametrization and ϕξ(ξ′) = Nδξ,ξ′ holds for any
ξ, ξ′ ∈ Δj .

With the collocation method, we seek an approximate solution uj ∈
Sj to u by solving the collocation equations

(2.6) (Auj)(ξ) = v(ξ), ξ ∈ Δj .

We introduce the interpolation projection Pj onto Sj by

(2.7) Pjf ∈ Sj , Pjf(ξ) = f(ξ), ξ ∈ Δj .
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Clearly the collocation system (2.6) is equivalent to PjAuj = Pjv. The
collocation is called stable if, for sufficiently large j, the collocation
operators Aj := PjA|Sj

∈ L(Sj) are invertible and the L2-norms of the
inverse operators are uniformly bounded.

Theorem 2.1. i) [34] Suppose that Γ is homeomorphic to the two-
dimensional torus and that mΓ := 1, i.e., κ := κ1 : S → Γ is a global
parametrization. Moreover, we assume A to be strongly elliptic. Then
the collocation method is stable in Hs for 0 ≤ s < 3/2. The collocation
solution uj defined by (2.6) converges in Hs to the exact solution u of
Au = v for any v ∈ Hs with s > 1, and the collocation error satisfies

‖uj − u‖Hs ≤ C2−j(t−s)‖u‖Ht

for 0 ≤ s ≤ t ≤ 2, s < 3/2, 1 < t.

(ii) [33] Suppose that Γ = S, that Sj and Δj are modified such that
Δj contains only the interior grid points and that Sj is spanned by
the basis functions vanishing at the boundary of Γ = S. Moreover, we
assume A to be strongly elliptic. Then the collocation method is stable in
L2. The collocation solution uj defined by (2.6) converges in L2 to the
exact solution u of Au = v for any v ∈ L2 such that ‖Pjv − v‖L2 → 0.
If u is in H2 and vanishes over the boundary of S, then

‖uj − u‖L2 ≤ C2−2j‖u‖H2 .

Unfortunately, we do not know stability results for the collocation
method in the general case. Nevertheless, we suppose in the following
that the collocation method is stable. Then the error estimates of the
last theorem remain valid.

Choosing the conventional finite element basis {ϕξ}ξ∈Δj
, the collo-

cation equation (2.6) is equivalent to the system

(2.8)
∑
ξ∈Δj

h(Aϕξ)(ξ′)wξ = hv(ξ′), ξ′ ∈ Δj

for the coefficients wξ of uj :=
∑
ξ∈Δj

wξϕξ. Thus, the stiffness matrix
of the collocation is Aj := (h(Aϕξ)(ξ′))ξ′,ξ∈Δj

.
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3. The wavelet algorithms.

3.1 Univariate wavelet functions. Using the parametrizations, it will
be sufficient to define the wavelet basis functions over the square S.
Since these wavelets can be defined by tensor product techniques, we
begin with the definition of univariate wavelets. To introduce wavelets
over the real axis R, we consider the uniform grids ΔR

j := {ihj : i ∈ Z}
and the difference grids ∇R

l := ΔR
l+1\ΔR

l for l ≥ 0 and ∇R
−1 := ∇R

0 .
Clearly, ΔR

j = ∪j−1
l=−1∇R

l and the space of piecewise linear functions SR
j

over the grid ΔR
j is spanned by the finite element basis {ϕR

j,σ : σ ∈ ΔR
j }

given by ϕR
j,σ(s) :=

√
N jϕ(Nj · [s− σ]). It is easy to see that the finite

element functions satisfy the refinement equations

(3.1) ϕR
l,ihl

=
1
2
ϕR
l+1,[2i−1]hl+1

+ ϕR
l+1,[2i]hl+1

+
1
2
ϕR
l+1,[2i+1]hl+1

.

Following the techniques for the construction of orthogonal wavelets, it
is natural to define the wavelet shape function

(3.2) ψ(s) :=
1
2
ϕ(2s− 1) − ϕ(2s) +

1
2
ϕ(2s+ 1)

and to introduce the wavelet basis functions by shifting the dilated
shape function s 	→ ψ(Nl · s) to the points of the reference grid
∇R
l . More exactly, we set ψR

σ (s) := ϕR
0,σ(s) for σ ∈ ∇R

−1 as well as
ψR
σ (s) :=

√
N lψ(Nl · [s− σ]) for σ ∈ ∇R

l with l ≥ 0. We arrive at the
hierarchical basis {ψR

σ : σ ∈ ∇R
l , l = −1, . . . , j−1} of the finite element

space SR
j and at the multiscale decomposition SR

j =
∑j−1

−1 WR
l , where

the wavelet space WR
l is spanned by {ψR

σ : σ ∈ ∇R
l }.

We remark that these basis functions are not wavelets in the sense of
[16, 4]. The ψR

σ are biorthogonal wavelets in the sense of [6], where
the dual scaling function does not have a finite support but decays
exponentially. From Proposition 4.8 of [6] with L = 2 and k = 2,
we infer that the dual scaling function belongs even to the Sobolev
space H1/2+ε(R) for a certain small positive ε. For a few more details,
we refer the reader to the proof of Lemma 3.5 in [36]. The wavelet
functions ψR

σ , σ ∈ ∇R
l of level l ≥ 0 have two vanishing moments, i.e.,

they are orthogonal to constant and linear functions. Moreover, among
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all the basis functions with two vanishing moments, the ψR
σ have the

smallest support.

Now we define wavelet functions over the interval I := [0, 1]. We
consider the uniform grids ΔI

j := {ihj : i = 0, . . . , Nj} and the
difference grids ∇I

l := ΔI
l+1\ΔI

l for l ≥ 0 and ∇I
−1 := ΔI

0 . Clearly
the space of piecewise linear functions SI

j over the grid ΔI
j is spanned

by the finite element basis {ϕI
j,σ : σ ∈ ΔI

j } given by ϕI
j,σ := ϕR

j,σ|I .
Similarly, the wavelet functions could be defined as the restrictions to
I of the corresponding functions over R. However, we will change those
basis functions which do not vanish at the end points of the interval.
To this end, we consider the space of “even” functions over R, i.e., the
functions satisfying f(s) = f(−s) = f(2− s) for s ∈ [0, 1]. The correct
basis functions for this space are the functions

s 	−→ ψσ(s) + ψσ(−s) + ψσ(2 − s) = ψσ(s) + ψ−σ(s) + ψ2−σ(s).

If we restrict these to I, we arrive at the wavelet basis {ψeven
σ : σ ∈

ΔI
j } defined by

(3.3) ψeven
σ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕR
0,σ|I if σ ∈ ∇I

−1

ψR
σ |I if σ ∈ ∇I

l , l ≥ 0,
and 0, 1 /∈ suppψR

σ

{ψR
hl+1

+ ψR
−hl+1

}|I if σ ∈ ∇I
l , l ≥ 0,

and σ = hl+1

{ψR
1−hl+1

+ ψR
1+hl+1

}|I if σ ∈ ∇I
l , l ≥ 0,

and σ = 1 − hl+1.

We denote the corresponding wavelet spaces span {ψeven
σ : σ ∈ ∇I

l }
by W I

l and obtain W I
l = WR

l |I and SI
j =

∑j−1
−1 W I

l . Clearly only
those wavelets of level l ≥ 0 have two vanishing moments for which
the support is contained in the interior of I. The wavelets of level
l ≥ 0 with support intersecting the boundary {0, 1} have one vanishing
moment, only. Instead of the orthogonality of the wavelet basis, we get
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Lemma 3.1. i) There exists a constant C > 0 such that, for any j
and any sequence (uσ)σ∈ΔI

j
, we get

(3.4)

1
C

√ ∑
σ∈ΔI

j

|uσ|2 ≤
∥∥∥∥ ∑
σ∈ΔI

j

uσψ
even
σ

∥∥∥∥
L2(I)

≤ C
√ ∑
σ∈ΔI

j

|uσ|2.

ii) There exist constants C > 0 and 0 < q < 1 such that, for any
l < l′, ul ∈ SI

l and ul
′ ∈W I

l′ , we get

(3.5) |〈ul, ul′〉L2(I)| ≤ Cql
′−l‖ul‖L2(I)‖ul

′‖L2(I).

Proof. Now and in the following, we denote by C a generic constant
the value of which varies from instant to instant. We note that
the corresponding assertions hold for the wavelets over the real axis.
Indeed, the analogue of i) is proved in Theorem 3.8 of [6]. For the proof
of ii), we consider the projection QR

j onto SR
j parallel to the closure of

∪∞
l=jW

R
l . This projection QR

j ∈ L(l2(R)) is uniformly bounded with
respect to j, cf. (3.4). We observe that the vanishing moment condition
for ψ implies that the constant function is contained in the span of
the dual scaling function, i.e., in im [QR

j ]∗. From this fact and the
exponential decay of the dual scaling functions, it is not hard to derive
the usual L2 convergence order O(

√
hj) for the approximation of an

H1/2 function f by |QR
j ]∗f . By duality arguments, we can approximate

an L2 function f by QR
j f with an H−1/2 error of O(

√
hj). This and

the well-known inverse property for piecewise linear functions yields,
cf., e.g., the proof of Lemma 6.3 in [39],

(3.6)

|〈ul, ul′〉L2(R)| ≤ ‖ul‖H1/2(R)‖ul
′‖H−1/2(R)

≤ ‖ul‖H1/2(R)‖(I −QR
l′−1)u

l′‖H−1/2(R)

≤ C2l/2‖ul‖L2(R)C2−l
′/2‖ul′‖L2(R)

≤ C

(
1√
2

)l′−l
‖ul‖L2(R)‖ul

′‖L2(R),
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and ii) for the case of the real axis is proved.

Now we consider I. The second inequality in (3.4) follows easily from
the corresponding estimate over the axis. To see the first, we choose
a sufficiently large integer M and extend uj =

∑
σ∈ΔI

j
uσψ

even
σ to the

real axis by setting

(3.7)

uj :=
∑
σ∈ΔR

j

uσψ
R
σ ,

uσ :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uσ−2m if 2m ≤ σ ≤ 2m+ 1

and m = −M, . . . ,M ,

u−σ+2m if 2m− 1 ≤ σ ≤ 2m

and m = −M, . . . ,M ,

0 else.

This function satisfies uj(s) = uj(s − 2m) for 0 < s < 1 and
m = −M, . . . ,M − 1, uj(s) = u(−s − 2m) for 0 < s < 1 and
m = −M + 1, . . . ,M , and uj(s) = 0 if |s| ≥ 2M + 1. The assertion i)
for the real axis leads to

(3.8)

4M‖uj‖L2(I) + 2C
√ ∑
σ∈ΔI

j

|uσ|2 ≥ ‖uj‖L2(R)

≥ 1
C

2M
√ ∑
σ∈ΔI

j

|uσ|2

‖uj‖L2(I) ≥
{

1
2C

− C

2M

}√ ∑
σ∈ΔI

j

|uσ|2,

which proves the first inequality of (3.4), i.e., the assertion i). Assertion
ii) follows by similar arguments from the corresponding result over the
axis.

Similarly, we can define a wavelet basis in the subspace SI
0,j of those

functions of SI
j which vanish at the end points 0 and 1. To this end

we consider the space of “odd” functions over R, i.e., the functions
satisfying f(s) = −f(−s) = −f(2 − s) for s ∈ [0, 1]. The correct basis
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functions for this space are the functions s 	→ ψσ(s)−ψ−σ(s)−ψ2−σ(s).
If we restrict these to I, we arrive at the wavelet basis {ψodd

σ : σ ∈
ΔI
j \{0, 1}} defined by

(3.9) ψodd
σ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕR
0,σ|I if σ ∈ ∇I

−1\{0, 1}
ψR
σ |I if σ ∈ ∇I

l , l ≥ 0,
and 0, 1 /∈ suppψR

σ ,
{ψR

hl+1
− ψR

−hl+1
}|I if σ ∈ ∇I

l , l ≥ 0,
and σ = hl+1,

{ψR
1−hl+1

− ψR
1+hl+1

}|I if σ ∈ ∇I
l , l ≥ 0,

and σ = 1 − hl+1.

We denote the corresponding wavelet spaces span {ψodd
σ : σ ∈ ∇I

l } by
W I

0,l and obtain SI
0,j =

∑j−1
−1 W I

0,l. Again, only those wavelets of level
l ≥ 0 have two vanishing moments for which the support is contained in
the interior of I. The wavelets of level l ≥ 0 with support intersecting
the boundary {0, 1} have no vanishing moment. The assertions of
Lemma 3.1 hold also for the basis {ψodd

σ } and for the spaces W I
0,l.

We conclude this section with some results on the dual wavelet
functions. For definiteness, we restrict our consideration to the dual
wavelets of the wavelets ψI

σ := ψeven
σ . From [6], cf. also [36, Lemma 3.5],

we infer the existence of a dual scaling function ϕ̃ and a dual mother
wavelet ψ̃. These functions ψ̃ and ϕ̃ belong to H1/2+ε for a certain
ε > 0 and decay exponentially. Setting ϕ̃R

l,σ(s) :=
√
Nlϕ̃(Nl · [s − σ]),

σ ∈ ΔR
l , ψ̃

R
σ (s) := ϕ̃R

0,σ, σ ∈ ∇R
−1, and ψ̃R

σ (s) :=
√
Nlψ̃(Nl · [s − σ]),

σ ∈ ∇R
l , l ≥ 0, we get the duality relations 〈ψR

σ , ψ̃
R
σ′〉 = δσ,σ′ and

〈ϕR
j,σ, ϕ̃

R
j,σ′〉 = δσ,σ′ for any σ, σ′ ∈ ΔR

j . Clearly, the projection QR
j

onto SR
j parallel to the closure of

∑∞
l=jW

R
l can be represented as

(3.10) QR
j f(s) =

∑
σ∈ΔR

j

〈ϕ̃R
j,σ, f〉ϕR

j,σ(s) =
∑
σ∈ΔR

j

〈ψ̃R
σ , f〉ψR

σ (s).

These projections are uniformly bounded in L2(R) since {ψR
σ } is a

Riesz basis. For the construction of dual wavelets over I, we introduce
the restriction operator R : L2

loc (R) → L2(I) by Rf := f |I , the
prolongation operator K : L2(I) → L2

loc (R) and the L2 adjoint
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operators R∗, K∗ by

(3.11)

Kf(s) :=

{
f(s− 2m) if 2m ≤ s ≤ 2m+ 1 and m ∈ Z,

f(−s+ 2m) if 2m− 1 ≤ s ≤ 2m and m ∈ Z

K∗g(s) :=
∑
m∈Z

{g(2m− s) + g(s+ 2m)},

R∗g(s) :=
{
f(s) if s ∈ I,

0 else.

Now we define the dual elements over I by ϕ̃I
j,σ := K∗ϕ̃R

j,σ and
the dual wavelets by ψ̃I

σ := K∗ψ̃R
σ . It is not hard to obtain that

〈ψ̃I
σ , ψ

I
σ′〉 = 〈ψ̃R

σ ,Kψ
I
σ′〉 = δσ,σ′ and that 〈ϕ̃I

j,σ, ϕ
I
j,σ′〉 = δσ,σ′ for any

σ, σ′ ∈ ΔI
j . Moreover, the projection QI

j onto SI
j parallel to the closure

of
∑∞
l=jW

I
l can be represented as

(3.12) QI
j f(s) =

∑
τ∈ΔI

j

〈ψ̃I
τ , f〉ψI

τ (s), QI
j = RQR

j K.

Analogously to Lemma 3.1, we get

Lemma 3.2. i) There exists a constant C > 0 such that, for any j
and any sequence (uσ)σ∈ΔI

j
, we get

(3.13)

1
C

√ ∑
σ∈ΔI

j

|uσ|2 ≤
∥∥∥∥ ∑
σ∈ΔI

j

uσψ̃
I
σ

∥∥∥∥
L2(I)

≤ C
√ ∑
σ∈ΔI

j

|uσ|2.

ii) There exist constants C > 0 and 0 < q < 1 such that, for any
l < l′, ul ∈ span {ϕ̃I

l,τ : τ ∈ ΔI
l } and ul

′ ∈ span {ψ̃I
τ : τ ∈ ∇I

l′}, we get

(3.14) |〈ul, ul′〉L2(I)| ≤ Cql
′−l‖ul‖L2(I)‖ul

′‖L2(I).

Proof. Assertion i) is a simple consequence of a duality argument,
of the duality relations between the basis {ψ̃I

σ} and {ψI
σ} and of
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Lemma 3.1 i). For assertion ii), we remark that it suffices to prove
the inverse property and the approximation property for the space
span {ϕ̃I

j,τ : τ ∈ ΔI
j } = im [QI

j ]∗, compare (3.6). However, the estimate
for the approximation error f − [QI

j ]∗f in H−ε(I), 0 < ε < 1/2 with f
from L2(I) is equivalent to the well-known L2(I) estimate for f −QI

j f
with f from Hε(I). Thus the approximation property is clear.

For the inverse property estimating the Hε(I) norm of uj ∈ im [QI
j ]∗

by Ch−εj times the L2 norm of uj , we consider uj =
∑

σ∈ΔI
j
ξσϕ̃

I
j,σ and

set ξ−σ := ξσ as well as Δ[−1,1]
j := ΔI

j ∪ −ΔI
j . We obtain

(3.15) ∑
σ∈ΔI

j

ξσϕ̃
I
j,σ =

∑
σ∈ΔI

j

ξσ
∑
m∈Z

{ϕ̃R
j,σ(2m− s) + ϕ̃R

j,σ(s+ 2m)},
∥∥∥∥ ∑
σ∈ΔI

j

ξσϕ̃
I
j,σ

∥∥∥∥
Hε(I)

≤
∥∥∥∥ ∑
σ∈ΔI

j

ξσ
∑
m∈Z

ϕ̃R
j,σ(2m− s)

∥∥∥∥
Hε(I)

+
∥∥∥∥ ∑
σ∈ΔI

j

ξσ
∑
m∈Z

ϕ̃R
j,σ(s+ 2m)

∥∥∥∥
Hε(I)

≤
∥∥∥∥ ∑
σ∈ΔI

j

ξσ
∑
m∈Z

ϕ̃R
j,−σ(2m+ s)

∥∥∥∥
Hε([−1,0])

+
∥∥∥∥ ∑
σ∈ΔI

j

ξσ
∑
m∈Z

ϕ̃R
j,σ(s+ 2m)

∥∥∥∥
Hε([0,1])

≤
∥∥∥∥ ∑
σ∈Δ

[−1,1]
j

ξσ
∑
m∈Z

ϕ̃R
j,σ(s+ 2m)

∥∥∥∥
Hε([−1,1])

.

The last norm can be estimated by standard techniques. Indeed, the
Hε norm of a function f over the periodic interval [−1, 1] is equivalent
to {∑k∈Z max[|k|, 1]2ε|fk|2}1/2, where the kth Fourier coefficient fk of
a function f is given by fk := (1/2)

∫ 1

−1
f(s)e−iπsk ds. Using the norm

equivalence, the formula

(3.16)

[ ∑
m∈Z

ϕ̃R
j,σ(2m− ·)

]
k

=
1

2
√
Nj

eiπσk[Fϕ̃]
(

k

2Nj

)
,

[Fϕ̃](s) :=
∫ ∞

−∞
ϕ̃(t)ei2πst dt,
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and the estimate, which follows from [6, Proposition 4.8] by choosing
L = 2 and k = 2,

(3.17) |Fϕ̃(s)| ≤ Cmin{1, |s|−1},

it is not hard to obtain

(3.18)

∥∥∥∥ ∑
σ∈ΔI

j

ξσϕ̃
I
j,σ

∥∥∥∥
Hε(I)

≤ CNε
j

√√√√ ∑
σ∈Δ

[−1,1]
j

|ξσ|2

≤ CNε
j

√ ∑
σ∈ΔI

j

|ξσ|2

≤ CNε
j

∥∥∥∥ ∑
σ∈ΔI

j

ξσϕ̃
I
j,σ

∥∥∥∥
L2(I)

,

where the last inequality follows analogously to (3.13). Thus, the
inverse property is proved, too.

3.2. Wavelet functions over the square S and over Γ. Our aim is to
introduce wavelets over the surface Γ. These wavelets will be tensor
products of the wavelets and scaling functions in the space SI

j and SI
0,j ,

respectively. In the first step, we define wavelets as tensor products of
functions from SI

j and then, using the parametrization κ1, we define
functions over Γ1. These functions are extended by a simple extension
procedure to piecewise bilinear functions on Γ vanishing at the grid
points of the other subdomains. For the basis over the neighbor Γ2 of
Γ1, however, the linear functions on the common edge already belong
to the span of basis functions of the first step. Thus we need a basis
of functions vanishing at the common edge. In general, for any Γm to
be considered in the further steps, we are given a certain set of edges
on which the linear functions belong already to the span of wavelets
of the previous steps, and we have to define basis functions vanishing
over these edges. This will be realized by taking appropriate tensor
products of functions from SI

j and SI
0,j , respectively.

Now we turn to S and seek a basis of bilinear functions vanishing
at the set of edges E . Here E is an arbitrary but fixed subset of
{ej : j = 1, . . . , 4} with e1 := [0, 1] × {0}, e2 := [0, 1] × {1},



460 A. RATHSFELD

e3 := {0} × [0, 1] and e4 := {1} × [0, 1]. We set

(3.19)

ψyσ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψeven
σ if σ ≤ 1/2 and e1 /∈ E
ψodd
σ if σ ≤ 1/2 and e1 ∈ E
ψeven
σ if σ > 1/2 and e2 /∈ E
ψodd
σ if σ > 1/2 and e2 ∈ E

ψxσ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψeven
σ if σ ≤ 1/2 and e3 /∈ E
ψodd
σ if σ ≤ 1/2 and e3 ∈ E
ψeven
σ if σ > 1/2 and e4 /∈ E
ψodd
σ if σ > 1/2 and e4 ∈ E .

Setting ΔS
l := ΔI

l × ΔI
l , ΔS,E

l := ΔS
l \ ∪ E , ∇S,E

−1 := ΔS,E
0 as well as

∇S,E
l := ∇S,E

l+1\ΔS,E
l if l ≥ 0, we get

(3.20)

∇S,E
l =

3⋃
t=1

∇S,E
t,l ,

∇S,E
1,l := ∇I

l × ΔI
l \ ∪ E ,

∇S,E
2,l := ΔI

l ×∇I
l \ ∪ E ,

∇S,E
3,l := ∇I

l ×∇I
l \ ∪ E ,

for l ≥ 0. The basis functions over S are defined as
(3.21)

ψS
τ (t1, t2) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕI
0,τ1(t1)ϕ

I
0,τ2(t2) if τ = (τ1, τ2) ∈ ∇S,E

−1

ψxτ1(t1)ϕ
I
l,τ2

(t2) if l ≥ 0 and τ = (τ1, τ2) ∈ ∇S,E
1,l

ϕI
l,τ1

(t1)ψyτ2(t2) if l ≥ 0 and τ = (τ1, τ2) ∈ ∇S,E
2,l

ψxτ1(t1)ψ
y
τ2(t2) if l ≥ 0 and τ = (τ1, τ2) ∈ ∇S,E

3,l .

Clearly, the functions {ψS
τ : τ ∈ ΔS,E

j } span the space SS,E
j of all

bilinear functions of SS
j which vanish over the edge points of ∪E . We

get SS,E
j =

∑j−1
l=−1W

S,E
l where WS,E

l := span {ψS
τ : τ ∈ ∇S,E

l }.
Besides these basis functions we also need the simple extension

procedure mentioned in the beginning of this section. We retain the
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definition of the finite element functions ϕS
τ from Section 2.2. For

a moment, however, we write ϕS
j,τ := ϕS

τ in order to indicate the
dependence on the level j. The trace of a bilinear function of SS

j on the
edge is a linear function. If the bilinear function belongs to WS,E

l , then
the trace on the edge is a piecewise linear function over the restriction
of ΔS

l+1 to the edge. Thus, suppose we are given a function f over the
union of the edges in E which is piecewise linear over the uniform grid
ΔS
l+1|∪E . Then we denote by Plf the function

(3.22) Plf(t) :=
∑

τ∈ΔS
l+1∩∪E

f(τ )
ϕS
l+1,τ (τ )

ϕS
l+1,τ (t),

i.e., the unique piecewise bilinear prolongation of f to a function in
SS
l+1 which vanishes over the grid points of ΔS,E

l+1.

Now we turn to Γ. We suppose that the Γm, m = 1, . . . ,mΓ are
given in such an order that, for any 2 ≤ m ≤ mΓ, each vertex of the
subdomain Γm belongs to an edge common with ∪m−1

m′=1Γm′ or does not
belong to ∪m−1

m′=1Γm′ . To each m with 1 ≤ m ≤ mΓ there belongs a
possibly empty set Em ⊆ {ej : j = 1, . . . , 4} such that {κm(e) : e ∈ Em}
are just the edges which are contained in ∪m−1

m′=1Γm′ . Obviously, we have
Δj = ∪mΓ

m=1κm(ΔS,Em

j ). To define the wavelet basis over Γ we first set

(3.23) ψ̂ξ(x) :=

⎧⎨
⎩
ψS
τ (t) if ξ = κm(τ ) ∈ κm(ΔS,Em

j )
and if x = κm(t)

0 else.

For m′ > m and ξ ∈ κm(ΔS,Em

j )∩κm′(∪Em′), however, the function ψ̂ξ
vanishes over the interior of Γm′ and does not vanish over the common
edge Γm ∩ Γm′ . The same kind of discontinuity along an edge occurs
also for wavelet functions ψ̂ξ with ξ in the interior of Γm but close to the
common edge, i.e., if ξ = κm(τ ) ∈ κm(∇S,Em

l ), if κm(e) = Γm∩Γm′ , and
if the distance of τ to e is equal to hl+1. To get a continuous function
from Sj , we extend the traces from the edge to a bilinear function over
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Γm′ . Finally, we arrive at
(3.24)

ψξ(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ̂ξ(x) if ξ ∈ κm(ΔS,Em

j )
and if x ∈ Γm,

[Pl(ψ̂ξ ◦ κm′ |∪Em′ )](t) if ξ = κm(τ ) ∈ κm(∇S,Em

l ),
x ∈ Γm′ ,
and Γm ∩ Γm′ = κm(e),
dist (τ, e) ≤ hl+1

0 else.

Clearly the functions {ψξ : ξ ∈ Δj} span the space of all bilinear func-
tions of Sj . The functions ψξ have two vanishing moments whenever
ξ ∈ Δj\Δ0 and the support suppψξ is contained in the interior of Γm.
Note that two vanishing moments mean that the ψξ are orthogonal to
“polynomials” of degree less than two, i.e., 〈ψξ, f〉 = 0 for any bilinear
polynomial f ◦ κm over S. The scalar product 〈·, ·〉 is defined by

〈f, g〉 :=
mΓ∑
m=1

∫
S
f(κm(t))g(κm(t)) dt.

Furthermore, the ψξ satisfy the following properties:

Lemma 3.3. i) There exists a constant C > 0 such that, for any j
and any sequence (uξ)ξ∈Δj

, we get

(3.25)
1
C

√ ∑
ξ∈Δj

|uξ|2 ≤
∥∥∥∥ ∑
ξ∈Δj

uξψξ

∥∥∥∥
L2(Γ)

≤ C

√ ∑
ξ∈Δj

|uξ|2.

ii) There exists a constant C > 0 such that the coefficients fξ of
the piecewise bilinear interpolant Pjf =

∑
ξ∈Δj

fξψξ to an arbitrary
function f from the Sobolev space H2(Γ) satisfy

(3.26)
√ ∑
ξ∈Δj

24l|fξ|2 ≤ C
√
j‖f‖H2(Γ),

where l = l(ξ) denotes the level of ξ, i.e., ξ ∈ ∇l := Δl+1\Δl.
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Proof. i) First we consider the square S and the space SS,E
j . For

these, we will show

(3.27)

1
C

√√√√ ∑
τ∈ΔS,E

j

|uτ |2 ≤
∥∥∥∥ ∑
τ∈ΔS,E

j

uτψ
S
τ

∥∥∥∥
L2(s)

≤ C

√√√√ ∑
τ∈ΔS,E

j

|uτ |2.

We set ul :=
∑
τ∈∇S,E

l
uτψ

S
τ and prove

(3.28) |〈ul, ul′〉L2(S)| ≤ Cq|l
′−l|‖ul‖L2(S)‖ul

′‖L2(S),

where q is a fixed constant less than one. To simplify the formulae,
we assume that l < l′, that ul :=

∑
τ∈∇S,E

1,l
uτψ

S
τ , and that ul

′
:=∑

τ∈∇S,E
3,l

uτψ
S
τ . From Lemma 3.1 ii) and i) we conclude

(3.29)

〈ul, ul′〉 =
∫ 1

0

∑
τ1,τ ′

1

ψxτ1(t1)ψ
x
τ ′
1
(t1)

∫ 1

0

[∑
τ2

u(τ1,τ2)ϕ
I
l,τ2(t2)

]

·
[ ∑
τ ′
2

u(τ ′
1,τ

′
2)
ψyτ ′

2
(t2)

]
dt2 dt1

|〈ul, ul′〉| ≤ Cql
′−l

∫ 1

0

∑
τ1,τ ′

1

∥∥∥∥ ∑
τ2

u(τ1,τ2)ϕ
I
l,τ2

∥∥∥∥
· |ψxτ1(t1)|

∥∥∥∥∑
τ ′
2

u(τ ′
1,τ

′
2)
ψyτ ′

2

∥∥∥∥|ψxτ ′
1
(t1)| dt1

≤ Cql
′−l

∫ 1

0

∑
τ1,τ ′

1

√∑
τ2

|u(τ1,τ2)|2|ψxτ1(t1)|

·
√∑

τ ′
2

|u(τ ′
1,τ

′
2)
|2|ψxτ ′

1
(t1)| dt1.

We observe that (3.4) holds also if the ψeven
σ are replaced by |ψxσ|, by

|ψyσ| or by |ϕI
l,σ| if the summation runs over functions of a fixed level.
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Using this, we arrive at

(3.30) |〈ul, ul′〉| ≤ Cql
′−l

√ ∑
(τ1,τ2)

|u(τ1,τ2)|2
√ ∑

(τ ′
1,τ

′
2)

|u(τ ′
1,τ

′
2)|2.

On the other hand, Lemma 3.1 i) and the well-known analogue for the
finite element functions imply
(3.31)∫

S
|ul(t)|2 dt =

∫ 1

0

∫ 1

0

∣∣∣∣ ∑
(τ1,τ2)

u(τ1,τ2)ψ
x
τ1(t1)ϕ

I
l,τ2(t2)

∣∣∣∣
2

dt1 dt2

=
∫ 1

0

∫ 1

0

∣∣∣∣ ∑
τ1

[∑
τ2

u(τ1,τ2)ϕ
I
l,τ2(t2)

]
ψxτ1(t1)

∣∣∣∣
2

dt1 dt2

∼
∫ 1

0

∑
τ1

∣∣∣∣ ∑
τ2

u(τ1,τ2)ϕ
I
l,τ2

(t2)
∣∣∣∣
2

dt2

=
∑
τ1

∫ 1

0

∣∣∣∣ ∑
τ2

u(τ1,τ2)ϕ
I
l,τ2(t2)

∣∣∣∣
2

dt2

∼
∑

(τ1,τ2)

|u(τ1,τ2)|2.

Here the symbol ∼ means that the lefthand side is less than constant
times the righthand side and vice versa. Relation (3.31), the analogues
result for ul

′
, and (3.30) prove (3.28). The estimates (3.28) and (3.31),

however, imply

(3.32)

∥∥∥∥ ∑
τ∈ΔS,E

j

uτψ
S,E
τ

∥∥∥∥
2

=
〈 j−1∑
l=−1

ul,

j−1∑
l′=−1

ul
′
〉

=
j−1∑

l,l′=−1

〈ul, ul′〉

∥∥∥∥ ∑
τ∈ΔS,E

j

uτψ
S,E
τ

∥∥∥∥
2

≤ C

j−1∑
l,l′=−1

q|l−l
′|‖ul‖ ‖ul′‖

≤ C

j−1∑
l=−1

‖ul‖2 ≤ C
∑

τ∈ΔS,E
j

|uτ |2
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which proves the upper estimate in (3.27).

To get the lower estimate, we consider the dual wavelets

(3.33) ψ̃S
τ (t1, t2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̃I
0,τ1(t1)ϕ̃

I
0,τ2(t2) if τ = (τ1, τ2) ∈ ∇S,E

−1

ψ̃xτ1(t1)ϕ̃
I
l,τ2

(t2) if l ≥ 0

and τ = (τ1, τ2) ∈ ∇S,E
1,l ,

ϕ̃I
l,τ1

(t1)ψ̃yτ2(t2) if l ≥ 0

and τ = (τ1, τ2) ∈ ∇S,E
2,l

ψ̃xτ1(t1)ψ̃
y
τ2(t2) if l ≥ 0

and τ = (τ1, τ2) ∈ ∇S,E
3,l ,

where the ϕ̃I
l,σ, ψ̃

x
σ and the ψ̃yσ are the univariate dual functions to

the functions ϕI
l,σ, ψ

x
σ and ψyσ, respectively, cf., the end of Section 3.1.

The univariate duality relations 〈ψ̃xσ, ψxσ′〉 = δσ,σ′ , 〈ψ̃yσ, ψyσ′〉 = δσ,σ′ and
〈ϕ̃I
j,σ, ϕ

I
j,σ′〉 = δσ,σ′ imply the duality relations 〈ψ̃S

τ , ψ
S
τ 〉 = δτ,τ ′ over S.

Applying the arguments leading to the upper estimate of (3.27) to the
dual system, we get

(3.34)
∥∥∥∥ ∑
τ∈ΔS,E

j

vτ ψ̃
S
τ

∥∥∥∥
L2(S)

≤ C

√√√√ ∑
τ∈ΔS,E

j

|vτ |2.

Consequently,
(3.35)∥∥∥∥ ∑

τ∈ΔS
j

uτψ
S
τ

∥∥∥∥
L2(S)

≥ sup
‖
∑

τ∈ΔS
j

vτ ψ̃S
τ ‖≤1

〈
τ∈ΔS

j

uτψ
S
τ ,

∑
τ∈ΔS

j

vτ ψ̃
S
τ

〉

≥ sup√∑
τ∈ΔS

j

|vτ |2≤C−1

∣∣∣∣ ∑
τ∈ΔS

j

uτvτ

∣∣∣∣
≥ C−1

√ ∑
τ∈ΔS

j

|uτ |2,

and (3.27) is proved.

For the proof of (3.25), we observe that the piecewise bilinear prolon-
gation Plf of a univariate function f of level l defined over an edge is
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the tensor product of this f times the finite element ϕR
l+1,0|I or ϕR

l+1,1|I .
Using

(3.36) |〈ϕR
l+1,0|I , ϕR

l′+1,0|I〉| ≤ C2−|l−l′|/2

and (3.4) and repeating the arguments leading to (3.32), we arrive at

(3.37)
∥∥∥∥ ∑
ξ∈κm′ (Δ

S,E
m′

j
)

uξψξ

∥∥∥∥
L2(Γm)

≤ C

√√√√ ∑
ξ∈κm′ (Δ

S,E
m′

j
)

|uξ|2.

From this and (3.27), the upper estimate in (3.25) follows easily. To
get the lower estimate, we conclude from (3.27) that

(3.38)

√√√√ ∑
ξ∈κm(ΔS,Em

j
)

|uξ|2 ≤ C

∥∥∥∥ ∑
ξ∈κm(ΔS,Em

j
)

uξψξ

∥∥∥∥
L2(Γm)

≤ C

∥∥∥∥ ∑
ξ∈Δj

uξψξ

∥∥∥∥
L2(Γm)

+ C

m−1∑
m′=1

∥∥∥∥ ∑
ξ∈κm′ (Δ

S,E
m′

j
)

uξψξ

∥∥∥∥
L2(Γm)

.

Using the just proved upper bound (3.37), we continue

(3.39)

√√√√ ∑
ξ∈κm(ΔS,Em

j )

|uξ|2 ≤ C

∥∥∥∥ ∑
ξ∈Δj

uξψξ

∥∥∥∥
L2(Γm)

+ C
m−1∑
m′=1

√√√√ ∑
ξ∈κm′ (Δ

S,E
m′

j
)

|uξ|2.

Now we substitute (3.39) with m = 1 into the righthand side of (3.39)
with m = 2, substitute the resulting inequality into the righthand
side of (3.39) with m = 3, substitute the obtained inequality into the
righthand side of (3.39) with m = 4, and so on. For m = 1, . . . ,mΓ,
we arrive at

(3.40)
√√√√ ∑

ξ∈κm(ΔS,Em
j

)

|uξ|2 ≤ C

m∑
m′=1

∥∥∥∥ ∑
ξ∈Δj

uξψξ

∥∥∥∥
L2(Γm′ )

.
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Summing up over all m, we obtain the lower estimate of (3.25).

ii) First we recall the well-known estimate

(3.41) ‖f − Pjf‖L2(Γ) ≤ Ch2
j‖f‖H2(Γ)

for the interpolation projection Pj unto the piecewise bilinear functions.
Here the norm ‖ · ‖H2(Γ) is the sum of the H2 Sobolev norms over the
subsurfaces Γm, m = 1, . . . ,mΓ. Now we consider the complementary
space Scompl

j := cl span {ψξ : ξ ∈ Δj′\Δj , j
′ > j} of Sj and denote the

projection of L2(Γ) onto Sj with null space Scompl
j by Qj . From i) we

conclude that Qj is uniformly bounded with respect to j. In view of
(3.41), we get

(3.42)
‖f −Qjf‖L2(Γ) ≤ Ch2

j‖f‖H2(Γ),

‖(Ql −Ql−1)f‖L2(Γ) ≤ Ch2
l ‖f‖H2(Γ).

We set Qjf =
∑
f̃ξψξ. Together with (3.25) we arrive at

(3.43)

√ ∑
ξ∈Δj :l(ξ)=l

|f̃ξ|2 ≤ C2−2l‖f‖H2(Γ),

√ ∑
ξ∈Δj

24l(ξ)|f̃ξ|2 ≤ C
√
j‖f‖H2(Γ).

In order to derive (3.26), with the help of (3.25), (3.41) and (3.42), we
conclude that

(3.44)

√ ∑
ξ∈Δj

|f̃ξ − fξ|2 ≤ ‖Qjf − Pjf‖L2(Γ)

≤ Ch2
j‖f‖H2(Γ)

≤ C2−2j‖f‖H2(Γ).
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Together with inequality (3.43) we arrive at

(3.45)

√ ∑
ξ∈Δj

24l(ξ)|fξ|2 ≤
√ ∑
ξ∈Δj

24l(ξ)|f̃ξ − fξ|2

+
√ ∑
ξ∈Δj

24l(ξ)|f̃ξ|2

≤ 22j

√ ∑
ξ∈Δj

|f̃ξ − fξ|2 + C
√
j‖f‖H2(Γ)

≤ C
√
j‖f‖H2(Γ).

Note that, if ϕj,ξ := ϕξ denotes the finite element function of
Section 2.2, then there holds

(3.46)
1
C

√ ∑
ξ∈Δj

|vξ|2 ≤
∥∥∥∥ ∑
ξ∈Δj

vξϕj,ξ

∥∥∥∥
L2(Γ)

≤ C

√ ∑
ξ∈Δj

|vξ|2.

By Ej we denote the wavelet transform, i.e., the basis transform
mapping the vector (vξ)ξ∈Δj

of coefficients vξ of a function uj ∈ Sj
with respect to the basis {ϕj,ξ} to the vector (uξ)ξ∈Δj

of coefficients uξ
with respect to the basis {ψξ}. Then Lemma 3.3 i) implies that Ej is
invertible and that the l2 operator norms of Ej and E−1

j are uniformly
bounded with respect to j. Finally, we remark that the application
of Ej and E−1

j can be realized by fast pyramid algorithms, cf. [16,
4]. For one application of Ej or E−1

j , no more than O(N2
j ) arithmetic

operations are required.

3.3 The wavelet test functionals. Similarly to the new wavelet basis
ψξ in the trial space Sj , we can introduce a “wavelet” basis for the
space of test functionals. Note that, in view of (2.6), the space of test
functionals is spanned by the Dirac delta functionals δξ, ξ ∈ Δj , where
δξ(f) := f(ξ). The wavelet functionals will be linear combinations
of the delta functionals. To introduce wavelet functionals, we first
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consider the square S. Analogously to (3.20), we set ∇S
−1 := ΔS

0 and

(3.47)

∇S
l =

3⋃
t=1

∇S
t,l,

∇S
1,l := ∇I

l × ΔI
l ,

∇S
2,l := ΔI

l ×∇I
l ,

∇S
3,l := ∇I

l ×∇I
l ,

for l ≥ 0. The basis functionals ϑSτ , τ = (τ1, τ2) ∈ ΔS
j over S are

defined by

(3.48) ϑSτ (f) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(τ )/N0 if τ ∈ ∇S
−1,

(f(τ ) − (1/2){f(τ1 − hl+1, τ2)
+f(τ1 + hl+1, τ2)})/Nl if τ ∈ ∇S

1,l

and l ≥ 0,
(f(τ ) − (1/2){f(τ1, τ2 − hl+1)
+f(τ1, τ2 + hl+1)})/Nl if τ ∈ ∇S

2,l ∪∇S
3,l

and l ≥ 0.

Since the points (τ1 ± hl+1, τ2) belong to ΔS
l for τ ∈ ∇S

1,l, we easily
get that the span of {ϑSτ : τ ∈ ∇S

1,l} ∪ {δτ : τ ∈ ΔS
l } is equal to

the span of {δτ : τ ∈ ΔS
l ∪ ∇S

1,l}. Similarly, for τ ∈ ∇S
2,l ∪ ∇S

3,l,
the points (τ1, τ2 ± hl+1) belong to ΔS

l ∪ ∇S
1,l, and the span of {ϑSτ :

τ ∈ ∇S
2,l ∪ ∇S

3,l} ∪ {δτ : τ ∈ ΔS
l ∪ ∇S

1,l} is equal to the span of
{δτ : τ ∈ ΔS

l ∪∇S
l }. Thus, the span of {ϑSτ : τ ∈ ∇S

l } ∪ {δτ : τ ∈ ΔS
l }

is equal to the span of {δτ : τ ∈ ΔS
l+1} and we have span {δτ : τ ∈

ΔS
j } = span {ϑSτ : τ ∈ ΔS

j }. Now the functionals ϑξ, ξ ∈ Δj over Γ are
defined by ϑξ(f) := ϑSτ (f ◦ κm) where ξ = κm(τ ) and τ ∈ ΔS

j . Clearly,
span {δξ : ξ ∈ Δj} = span {ϑξ : ξ ∈ Δj}.

To prepare the analysis of the corresponding wavelet transform, we
introduce the dual wavelet basis which is some sort of hierarchical basis.
We write t = (t1, t2) and τ = (τ1, τ2), retain the notation of ϕI

l,σ from
Section 3.1 and set

(3.49) χS
τ (t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ϕI

0,τ1(t1)ϕ
I
0,τ2(t2) if τ ∈ ∇S

−1

ϕI
l+1,τ1

(t1)ϕI
l,τ2

(t2) if τ ∈ ∇S
1,l and l ≥ 0

ϕI
l+1,τ1

(t1)ϕI
l+1,τ2

(t2) if τ ∈ ∇S
2,l ∪∇S

3,l

and l ≥ 0.



470 A. RATHSFELD

These functions satisfy ϑSτ (χS
τ ′) = δτ,τ ′ . Now the dual functions χξ,

ξ ∈ Δj over Γ are defined by χξ(κm(t)) := χS
τ (t) where ξ = κm(τ ),

τ ∈ ΔS
j and t ∈ S. Clearly we get ϑξ(χξ′) = δξ,ξ′ for any ξ, ξ′ ∈ Δj ,

and the interpolation projection Pj of (2.7) admits the representation

(3.50) Pjf =
∑
ξ∈Δj

hjf(ξ)ϕj,ξ =
∑
ξ∈Δj

ϑξ(f)χξ.

Now we introduce the “wavelet” transform Rj mapping a vector
of functional values (ϑξ(f))ξ∈Δj

into the vector of function values
(hjf(ξ))ξ∈Δj

. This is nothing else than the basis transform mapping
the vector (uξ)ξ∈Δ of coefficients uξ of a function uj ∈ Sj with respect
to the basis {χξ} to the vector (vξ)ξ∈Δ of coefficients vξ with respect
to the basis {ϕj,ξ}. Though we have the norm equivalence (3.46) for
the functions ϕj,ξ, the estimate (3.25) with ψξ replaced by χξ is not
true and the l2 operator norms of Rj and R−1

j , respectively, are not
uniformly bounded anymore. Instead of (3.25) we have the following
result.

Lemma 3.4. There exists a constant C > 0 such that, for any j, we
get

(3.51)
C−1

√
j ≤ ‖Rj‖L(l2(Δj)) ≤ C

√
j,

C−12j ≤ ‖R−1
j ‖L(l2(Δj)) ≤ C2j .

Proof. Setting uj =
∑
ξ∈Δj

vξϕj,ξ =
∑

ξ∈Δj
uξχξ as well as u :=

(uξ)ξ∈Δj
, v := (vξ)ξ∈Δj

, we get Rju = v. From (3.50), we infer

(3.52) vξ = huj(ξ) =
∑
ξ′∈Δj

uξ′hχξ′(ξ).

The last sum contains no more than C · j terms different from zero and
each term can be estimated by

(3.53) |uξ′ | · h · sup
x

|χξ′(x)| ≤ C|uξ′ |2l(ξ′)−j .
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By the Cauchy-Schwarz inequality, we conclude

(3.54)

|vξ|2 ≤ Cj
∑

ξ′∈Δj :χξ′ (ξ) �=0

22(l(ξ′)−j)|uξ′ |2,
∑
ξ∈Δj

|vξ|2 ≤ Cj
∑
ξ′∈Δj

22(l(ξ′)−j)|uξ′ |2
∑

ξ∈Δj :χξ′ (ξ) �=0

1.

Taking into account that the support of χξ′ contains no more than
C22(j−l(ξ′)) grid points ξ, we continue

(3.55)
∑
ξ∈Δj

|vξ|2 ≤ Cj
∑
ξ′∈Δj

|uξ′ |2.

This proves ‖Rh‖ ≤ C
√
j. For the converse estimate, we choose

uξ′ := 2−l(ξ
′). A simple calculation yields ‖u‖ ≤ C

√
j and ‖v‖ ∼

‖uj‖L2 ≥ ‖uj‖L1 ≥ Cj. Hence, we conclude ‖Rj‖ ≥ C
√
j.

Now we turn to R−1
j . Analogously to (3.52), we arrive at

(3.56) uξ′ =
∑
ξ∈Δj

vξϑξ′(ϕj,ξ).

In this sum the number of terms different from zero is bounded by a
constant. Each term can be estimated by |vξ|2(j−l(ξ′)), and the Cauchy-
Schwarz inequality yields

(3.57)

|uξ′ |2 ≤ C22(j−l(ξ′)) ∑
ξ∈Δj :ϑξ′ (ϕj,ξ) �=0

|vξ|2,
∑
ξ′∈Δj

|uξ′ |2 ≤ C
∑
ξ∈Δj

|vξ|2
∑

ξ′∈Δj :ϑξ′ (ϕj,ξ) �=0

22(j−l(ξ′)).

For fixed ξ ∈ Δj and fixed l, −1 ≤ l ≤ j − 1, the number of ξ′ ∈ ∇l

with ϑξ′(ϕj,ξ) �= 0 is bounded by a constant. Consequently, we obtain

(3.58)

∑
ξ′∈Δj

|uξ′ |2 ≤ C
∑
ξ∈Δj

|vξ|2
j−1∑
l=−1

22(j−l),

‖u‖l2 ≤ C2j‖v‖l2
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and ‖R−1
j ‖ ≤ C2j . On the other hand, choosing vξ := 2−j for one

point ξ = ξ′′ ∈ ∇−1 and vξ := 0 otherwise, we arrive at ‖v‖ ≤ C2−j

and |uξ′′ | ≥ C. In other words, ‖u‖ ≥ C and ‖R−1
j ‖ ≥ C2−j .

Remark 3.1. Suppose that s is a fixed number between 1 and 3/2.
Then there exists a constant C > 0 such that, for any j and any
sequence (uξ)ξ∈Δj

, we get

(3.59)
1
C

√ ∑
ξ∈Δj

22s|uξ|2 ≤
∥∥∥∥ ∑
ξ∈Δj

uξχξ

∥∥∥∥
Hs(Γ)

≤ C

√ ∑
ξ∈Δj

22s|uξ|2.

This result can be proved analogously to [39].

Finally, we remark that the application of Rj can be realized by fast
pyramid algorithms, too. The matrix R−1

j contains no more than three
nonzero entries in each row. Consequently, for one application of Rj or
R−1
j , no more than O(N2

j ) arithmetic operations are required.

3.4. The wavelet algorithm. Using the new wavelet bases from
Sections 3.2 and 3.3, the collocation equation (2.6) is equivalent to

(3.60) ϑξ′(Auj) = ϑξ′(v), ξ′ ∈ Δj , uj =
∑
ξ∈Δj

uξψξ.

The matrix equation Aj(wξ)ξ∈Δj
= (hv(ξ′))ξ′∈Δj

can be replaced by
the equivalent equation Bj(uξ)ξ∈Δj

= (ϑξ′(v))ξ′∈Δj
, where the matrix

Bj is defined as (ϑξ′(Aψξ))ξ′,ξ∈Δj
. This Bj is called the wavelet

transform of Aj , and we get Aj = RjBjEj . Note that we will identify
the operators in L(Sj) with their matrices corresponding to the basis
{ϕj,ξ}. In particular, we get Aj = Aj ∈ L(Sj).

Now the wavelet algorithm looks as follows. We solve the matrix
equation Aj(wξ)ξ∈Δj

= (hv(ξ′))ξ′∈Δj
iteratively, e.g., by GMRes. The

main part of the computation is spent for the multiplication of iterative
solutions z := (zξ)ξ∈Δj

or residual vectors z by the matrix Aj . In the
wavelet algorithm, this step is done by first multiplying z by Ej , then by
Bj and finally by Rj . As has been mentioned near the ends of Sections
3.2 and 3.3, the basis transforms z 	→ Ejz and [BjEjz] 	→ Rj [BjEjz]
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can be realized via fast pyramid type algorithms. For the multiplication
by Bj , we will prove that, due to the moment conditions and the
smallness of the supports of the bases {ϑξ′ , ξ′ ∈ Δj} and {ψξ, ξ ∈ Δj},
the majority of entries in Bj is very small, cf. Lemma 3.5. Thus, setting
these entries equal to zero, we end up with a compressed matrix Cj
and the multiplication by Bj can be replaced by the multiplication
with Cj . The additional error due to compression will be less than the
discretization error of the conventional collocation, cf. Theorem 3.1.
Since the matrix Cj is sparse, the multiplication by Cj is fast. In fact,
cf. Theorem 3.1, no more than O(N2

j [logNj ]4) arithmetic operations
are necessary for the multiplication by the O(N2

j ) × O(N2
j ) matrix

Cj . Hence, if the matrix Cj is already given and if the equation
[RjCjEj ](wξ)ξ∈Δj

(hv(ξ′))ξ′∈Δj
is solved by an iterative algorithm,

e.g., by a cascadic GMRes algorithm, then an approximate solution
uj =

∑
j∈Δj

wξϕj,ξ with an error less than Ch2
j can be computed with

no more than Ch−2
j [log h−1

j ]4 arithmetic operations.

In any case, the main part of the computing time for boundary
element methods is spent for the calculation of the stiffness matrix. For
the wavelet algorithm, we do not need the whole matrices Aj or Bj but
only the compressed matrix Cj which saves a lot of computing time.
However, this reduction in computing time is not so easy to achieve
as it might seem at first glance. In fact, a sophisticated algorithm
of quadrature is needed to guarantee small quadrature errors and to
reduce the amount of work. We will discuss this issue in Section 4.

Remark 3.2. It is possible to solve Bj(uξ)ξ∈Δj
= (ϑξ′(v))ξ′∈Δj

directly. For details we refer to the papers by Dahmen, Kunoth,
Prößdorf and Schneider [11, 14]. In the situation considered in the
present paper, however, the condition number of the original matrix Aj
is uniformly bounded, and we expect the actual value of the condition
number of the wavelet transform Bj to be much worse even if it is
uniformly bounded.

Now we describe the compression algorithm. The results and proofs
are analogous to those given by Dahmen, Prößdorf, Schneider, Peters-
dorff and Schwab [14, 31]. Hence, we present the results and only
those parts of the proofs which are new. We begin with the estimate
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for the entries of Bj .

Lemma 3.5. Suppose ξ ∈ Δj is equal to ξ = κm(τ ) for 1 ≤ m ≤ mΓ

and τ ∈ ΔS,Em

j such that the support of ψξ is contained in the interior
of Γm. Then for this ξ and for ξ′ ∈ Δj, the entry bξ′,ξ := ϑξ′(Aψξ) of
the wavelet transform Bj can be estimated as

(3.61) |bξ′,ξ| ≤ 2−3l(ξ)−3l(ξ′)[dist (suppψξ, conv ϑξ′)]−6,

where suppψξ denotes the support of the function ψξ and conv ϑξ′
stands for the convex hull, in the parameter domain, of the support
of the functional ϑξ′ . By dist (suppψξ, conv ϑξ′) we have denoted the
distance between the sets suppψξ and conv ϑξ′ . The integer l(ξ) denotes
the level of ξ, i.e., ξ ∈ ∇l(ξ) := Δl(ξ)+1\Δl(ξ). For arbitrary ξ, ξ′ ∈ Δj,
the entry bξ′,ξ can be estimated as

(3.62) |bξ′,ξ| ≤ 2−l(ξ)−3l(ξ′)[dist (suppψξ, conv ϑξ′)]−4.

Proof. Instead of repeating the rigorous proof of [14, 31, 39], let us
only explain where the different factors in (3.61) and (3.62) come from.
For analogy reasons, it is sufficient to consider (3.61). One factor 2−l(ξ

′)

is from the scaling factor N−1
l(ξ) in the definition of (3.48). The second

factor 2−2l(ξ′) is due to the third term in the Taylor series expansion of
the kernel function at a point x = κm(t) of conv ϑξ′ . Indeed, applying
ϑξ′ to f := Aψξ and using that ϑξ′ vanishes over linear functions, we
get

(3.63)
f(κm(s)) = f(κm(t)) + ∇f(κm(t)) · (s− t)

+
1
2
∇2f(κm(t′)) · (s− t)2,

(3.64)
|Nl(ξ′)ϑξ′(f)| ≤ C sup |∇2f(κm(t′))| sup

y∈conv ϑξ′
|y − x|2

≤ C sup |∇2f(x′)|2−2l(ξ′).

Similarly, writing ϑξ′(Aψξ) = 〈Aψξ, ϑξ′〉 = 〈ψξ, A∗ϑξ′〉 =
∫
fψξ with

f := A∗ϑξ′ , using the moment conditions of order two for the trial
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wavelet, and choosing x ∈ suppψξ, we conclude, cf. (3.63),

(3.65)

∫
fψξ =

∫
1
2
∇2f(κm(t′)) · (s− t)2ψξ(κm(s)) ds,∣∣∣∣

∫
fψξ

∣∣∣∣ ≤ C sup |∇2f(x′)|
∫

suppψξ

|y − x|2|ψξ(y)| dy

≤ C sup |∇2f(x′)|2−2l(ξ)

∫
suppψξ

|ψξ(y)| dy.

Thus, a factor 2−2l(ξ) in (3.61) is due to the second order moment con-
ditions of the wavelet in the trial space and an additional 2−l(ξ) arises
from the scaling factor Nl(ξ) ∼ 2l(ξ) in the definitions of Sections 3.1
and 3.2, cf., the factor

√
Nl for the univariate wavelet ψR

σ and observe
that the bivariate wavelets are tensor products of univariate wavelets,
and from the measure meas (suppψξ) ∼ 2−2l(ξ). Applying these Taylor
series arguments to the integrand in 〈Aψξ, ϑξ′〉, it remains to estimate
the fourth order derivatives of the kernel function KA(x, y) of the oper-
ator A for x ∈ conv ϑξ′ and y ∈ suppψξ. Applying (2.2), the estimate
of the kernel function leads to the factor [dist (suppψξ, conv ϑξ′)]−6 in
(3.61).

Theorem 3.1. Suppose that the righthand side v of (2.1) belongs
to the Sobolev space H2(Γ) and define the compressed matrix Cj =
(cξ′,ξ)ξ′,ξ∈Δj

by

(3.66) cξ′,ξ :=
{
bξ′,ξ if dist (suppψξ, conv ϑξ′) ≤ (a2jj)2−l(ξ

′)−l(ξ)

0 else,

with a suitable constant a > 1. If a is large enough and if the
collocation method (2.6) is stable, cf. Theorem 2.1, then the operator
Ãj := [RjCjEj ] ∈ L(Sj) is stable, i.e., there is an h̃ > 0 such that,
for any hj < h̃, the operator Ãj is invertible and its inverse Ã−1

j is
uniformly bounded. Additionally, if uj ∈ Sj denotes the solution of
Ãjuj = Pjv, then

(3.67) ‖u− uj‖L2(Γ) ≤ Ch2
j

and the number of nonzero entries in the matrix Cj is less than
Ca2N2

j [logNj ]4 = Ca2h−2
j [log h−1

j ]4.
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Proof. For some details of the proof we again refer to [14, 31, 39].
We only present those parts which are new. In particular, the bound
for the number of nonzero entries can be derived analogously to [14,
31]. For the stability and for the convergence estimate, we have to
prove

(3.68) ‖(Aj − Ãj)ũj‖L2(Γ) ≤ Ca−2h2−s
j

{ ‖u‖H2(Γ) if s = 2
‖ũj‖L2(Γ) if s = 0,

where ũj is the interpolation Pju of the exact solution u to Equa-
tion (2.1).

To prove (3.68), we set Dj := Bj − Cj = (dξ′,ξ)ξ′,ξ∈Δj
and get

Aj − Ãj = RjDjEj . In view of the Lemmas 3.3 and 3.4 we have
to estimate the matrix Ds

j := (dsξ′,ξ)ξ′,ξ∈Δj
∈ L(l2(Δj)) with dsξ′,ξ :=

dξ′,ξ2−sl(ξ). By Schur’s lemma the norm can be bounded as follows

(3.69) ‖Ds
j‖L(l2(Δj)) ≤

√
σ1σ2,

σ1 := sup
ξ′∈Δj

[
2l(ξ

′)
∑
ξ∈Δj

|dsξ′,ξ|2−l(ξ)
]
,

σ2 := sup
ξ∈Δj

[
2l(ξ)

∑
ξ′∈Δj

|dsξ′,ξ|2−l(ξ
′)
]
.

Since the entries dsξ′,ξ with suppψξ contained in the interior of some
Γm can be treated as in [14, 31, 39], we only estimate those parts
σbi of σi, i = 1, 2, where a ξ is involved such that suppψξ intersects
the boundary of some Γm. We denote the set of these ξ by Δb

j and
set a∗ := (a2jj)2−l(ξ

′)−l(ξ) as well as dist := dist (suppψξ, convϑξ′).
Using (3.62) and (3.66), we get
(3.70)

σb1 ≤ C sup
ξ′∈Δj

[
2l(ξ

′)
∑

ξ∈Δb
j
:dist>a∗

2−l(ξ)−3l(ξ′)dist −42−sl(ξ)2−l(ξ)
]

≤ C sup
ξ′∈Δj

[
2−2l(ξ′)

j−1∑
l=−1

2−l(1+s)
∑

ξ∈Δb
j :dist>a∗,l(ξ)=l

dist −42−l(ξ)
]
.
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Applying

(3.71)

∑
ξ∈Δb

j
:dist>a∗,l(ξ)=l

dist −42−l(ξ) ≤ C

∫
{t∈R:|t|>a∗}

|t|−4 dt

≤ Ca−3
∗ ,

we arrive at

(3.72)

σb1 ≤ C sup
ξ′∈Δj

[
2−2l(ξ′)

j−1∑
l=−1

2−l(1+s)a−3
∗

]

≤ C sup
ξ′∈Δj

[
2−2l(ξ′)

j−1∑
l=−1

2−l(1+s)((a2jj)2−l(ξ
′)−l)−3

]

≤ C sup
ξ′∈Δj

[
a−3j−32−3j2l(ξ

′)
j−1∑
l=0

2l(2−s)

]

≤ Ca−3j−22−sj .

On the other hand, similarly to (3.71), we get

(3.73)

∑
ξ′∈Δj :dist>a∗,l(ξ)=l

dist −42−2l(ξ) ≤ C

∫
{x∈R2:|x|>a∗}

|x|−4 dx

≤ Ca−2
∗ ,

and, analogously to (3.72), we conclude
(3.74)

σb2 ≤ C sup
ξ∈Δj

[
2l(ξ)

∑
ξ′∈Δj :dist>a∗

2−l(ξ)−3l(ξ′)dist −42−sl(ξ)2−l(ξ
′)
]

≤ C sup
ξ∈Δj

[
2−sl(ξ)

j−1∑
l=−1

2−2l
∑

ξ′∈Δj :dist>a∗,l(ξ′)=l

dist −42−2l(ξ′)
]

≤ C sup
ξ∈Δj

[
2−sl(ξ)

j−1∑
l=−1

2−2l((a2jj)2−l−l(ξ))−2

]

≤ C sup
ξ∈Δj

[a−2j−22−2j2(2−s)l(ξ)

j−1∑
l=0

1
]

≤ a−2j−12−sj .
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The estimates (3.72) and (3.74), the analogous estimates for the entries
bξ′,ξ, ξ ∈ Δj\Δb

j and (3.69) yield that ‖Ds
j‖L(l2(Δj)) is less than

Ca−2j−1hs
j . This, together with the Lemmas 3.3 and 3.4 implies (3.68).

Remark 3.3. From the Lemmas 3.3 and 3.4, we get ‖Cj‖ =
‖R−1

j ÃjE
−1
j ‖ ∼ 2j and ‖Rj‖ ∼ √

j. Thus, the multiplication of a
certain vector z by RjCjEj can lead to an additional error of O(2j

√
j)

times the numerical error of z.

4. The error and complexity of the quadrature algorithm.

4.1. Assumptions on the parametrization and the kernel function.
Clearly, the assumptions on the parametrization and the kernel func-
tion in Section 2.1 are not necessary for the results of the previous
sections. Indeed, for the kernel KA(x, y) and x �= y, the existence of
continuous derivatives up to the order four (two derivatives with re-
spect to each variable x and y) is sufficient. For the parametrization,
a differentiability up to order three is sufficient. If differentiability is
guaranteed only up to orders less than four and three, then a differ-
ent wavelet algorithm is possible. More precisely, for appropriate real
numbers α ≥ 1, β ≥ 1 and γ > 0 the compressed matrix Cj can be
defined by

(4.1) cξ′,ξ :=

⎧⎨
⎩
bξ′,ξ if dist (suppψξ, conv ϑξ′)

≤ max{2−l(ξ), 2−l(ξ′), (a2jjγ)2−αl(ξ′)−βl(ξ)}
0 else.

The error ‖u−uj‖L2(Γ) for the solution of the corresponding discretized
equation Ãjuj = Pjv will be of order O(hδ), 0 < δ ≤ 2, which should be
the best possible under the weaker differentiability assumptions. The
number of nonzero entries will be of order Nδ′

j , 2 < δ′ ≤ 4. Thus, this
wavelet method is suboptimal since it reduces the number of arithmetic
operations from N4

j for a conventional finite element algorithm to
Nδ′
j > N2

j .

Now we will define our quadrature algorithm for the following situa-
tion:
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i) Suppose the surface is three times continuously differentiable.

ii) Suppose that the surface is given by a finite number of grid points
only, i.e., that the κm are given over the grid ΔS

j .

iii) We replace the true surface by a piecewise polynomial interpolant.
This is given by the parametrizations κm which interpolate the given
values {κm(ξ) : ξ ∈ ΔS

j }.
iv) Suppose that κm is twice continuously differentiable over S

and polynomial over each patch {(t1, t2) : (k − 1)hj ≤ t1 ≤ khj ,
(i−1)hj ≤ t2 ≤ ihj}. Furthermore, suppose that there exists a constant
independent of m and the patch such that

(4.2) sup
t∈S

|∂ακm(t)| ≤ C

for any nonnegative multi-index α = (α1, α2) with |α| := α1 + α2 ≤ 3.

v) To ensure the existence of the singular integrals in the principal
value sense, we suppose that the approximating manifold is continu-
ously differentiable also over the common boundary of two subsurfaces
defined by different parameter representations.

vi) For the kernel function KA(x, y), we require the representation,
cf., e.g., [31],

(4.3) KA(x, y) =
∑

k≤|α|
sα(x, y, ny)(x− y)α|x− y|−2−k,

where k is an odd integer, ny is the unit normal to Γ at y, and the sum
is taken over a finite number of multi-indices α.

vii) Suppose that, for any m = 1, . . . ,mΓ, the functions sα :
Γm × Γm × S2 → R admit continuous extensions to the sets

(4.4)
Γm × {t ∈ C3 : dist (t,Γm) ≤ εA} × S2,

Γm × Γm × {t ∈ C3 : dist (t, S2) ≤ εA},

such that sα is a complex analytic function with respect to the second
and third variable, respectively.

Clearly, the replacement of the true surface by the approximating
piecewise polynomial surface leads to additional errors. Though these



480 A. RATHSFELD

effects require an extra analysis, we will not discuss this issue. If the
interpolation of the thrice differentiable surface is defined, e.g., by ten-
sor product Overhauser interpolation, cf. [29], and by straightforward
modifications at the lines Γm∩Γm′ , then the global continuous differen-
tiability of the new surface can be guaranteed. Moreover, the piecewise
second derivatives of the approximating surface are close to those of
the true surface. Therefore, we conjecture that the compression results
of Section 3 and the results of the present chapter remain true for the
Overhauser interpolation of a three times continuously differentiable
surface.

4.2. The quadrature algorithm. In this section we define the quadra-
ture rules for the computation of the matrix entries cξ′,ξ of the com-
pressed wavelet transform Cj . From (3.48) we conclude that, for each
ξ′ ∈ ∇l, there exist three points ξι of Δl+1 and three real coefficients
λι such that ϑξ′(f) =

∑3
ι=1 λιf(ξι). Clearly for ξ′ ∈ ∇−1, we have

λ2 = λ3 = 0. If the entry cξ′,ξ is not zero, then it is equal to

(4.5)

cξ′,ξ =
3∑
ι=1

λιAψξ(ξι)

=
3∑
ι=1

λι

{
a(ξι)ψξ(ξι) +

∫
Γ

KA(ξι, y)ψξ(y) dyΓ
}
.

Depending on ϑξ′ , we will split Γ into the union of subdomains Γξ
′
i′ ,

i′ ∈ N . Over this partition we will define a composite quadrature rule

(4.6)

∫
Γξ′

i′

f(y) dyΓ ∼
∑

μ∈Mi′

f(xμ)ωμ,

∫
Γ

f(y) dyΓ ∼
∑
i′∈N

∑
μ∈Mi′

f(xμ)ωμ,

=:
∑
μ∈M

f(xμ)ωμ,

M :=
⋃
i′∈N

Mi′ ,

which depends also on ξι ∈ suppϑξ′ . However, before we apply
such a quadrature rule to the computation of the integrals in (4.5),
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we have to perform a singularity subtraction step over some of the
domains Γξ

′
i′ , i.e., for i′ in a certain subset N ′ = N ′(ξ′, ξι) ⊆ N .

Singularity subtraction means the following. We will introduce a main
part KM (x, y) of the kernel function KA(x, y) which has the same
singularity behavior for y → x. In other words, KA(x, y) −KM (x, y)
will have a weak singularity only. Moreover, the function KM (x, y) will
be chosen such that its integration can be performed by an analytic
formula. Using this, we write
(4.7)

cξ′,ξ =
3∑
ι=1

λι

{
a(ξι)ψξ(ξι)

+
∑
i′∈N ′

[ ∫
Γξ′

i′

[KA(ξι, y)ψξ(y)−KM (ξι, y)ψξ(ξ
ξ′,ξi

i′ )] dyΓ

+
∫

Γξ′
i′

KM (ξι, y) dyΓψξ(ξ
ξ′,ξι

i′ )
]

+
∑

i′∈N\N ′

∫
Γξ′

i′

KA(ξι, y)ψξ(y) dyΓ
}
,

where the point ξξ
′,ξι

i′ is chosen to be equal to ξι if ξι ∈ Γξ
′
i′ and where

ξξ
′,ξι

i′ is an arbitrary but fixed point ξξ
′
i′ ∈ Γξ

′
i′ not depending on ξι if

ξι /∈ Γξ
′
i′ . The integrands y 	→ [KA(ξι, y)ψξ(y) − KM (ξι, y)ψξ(ξ

ξ′,ξι

i′ )]
in (4.7) have milder singularities at y = ξι than the corresponding
integrands y 	→ KA(ξι, y)ψξ(y) in (4.5). Applying the rules (4.6) to
(4.7), we arrive at the final formula,

(4.8) cξ′,ξ ∼ c′ξ′,ξ :=
3∑
ι=1

λι

{
a(ξι)ψξ(ξι) +

∑
μ∈M

KA(ξι, xμ)ψξ(xμ)ωμ

+
∑

i′∈N ′:Γξ′
i′ ∩ suppψξ �=∅

[ ∫
Γξ′

i′

KM (ξι, y) dyΓ

−
∑

μ∈Mi′

KM (ξι, xμ)ωμ

]
ψξ(ξ

ξ′,ξι

i′ )
}

It remains to introduce the Γξ
′
i′ , the rule (4.6), the set N ′, and the main

part KM of the kernel.
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First we fix a ξ′ ∈ Δj and we introduce the underlying partition for
the quadrature. Since the quadrature rules are accurate for polynomial
integrands but not for piecewise polynomials, we have to choose the
partition such that all the functions ψξ are polynomials over the
subdomains. We consider the uniform partitions

(4.9)
Γ =

mΓ⋃
m=1

Nl⋃
k,k′=1

Dm,l,k,k′
,

Dm,l,k,k′
:= κm([(k − 1)hl, khl] × [(k′ − 1)hl, k′hl])

of step size hl with l = 0, 1, . . . , j. For the subdomains of these
partitions, we call a function f “polynomial” over Dm,l,k,k′

if f ◦ κm is
a polynomial over [(k − 1)hl, khl] × [(k′ − 1)hl, k′hl]. By Γ = ∪Mj

i=1Γ
j
i

we denote the coarsest partition into subdomains from the partitions
(4.9) such that the restriction to these subdomains of the functions
ψξ, for which cξ′,ξ �= 0, is a “bilinear polynomial”. More exactly,
we define Γ = ∪Mj

i=1Γ
j
i recursively. First we set Γ = ∪M0

i=1Γ
0
i equal

to the partition (4.9) with l = 0. We define Γ = ∪M1

i=1Γ
1
i as the

refinement of Γ = ∪M0

i=1Γ
0
i , where a Γ0

i = Dm,0,k,k′
remains unchanged

if the functions ψξ for which cξ′,ξ �= 0 are “polynomials” over Γ0
j and

where all the other Γ0
i = Dm,0,k,k′

are divided into the four subdomains
Dm,1,2k−1,2k′−1, Dm,1,2k,2k′−1, Dm,1,2k−1,2k′

and Dm,1,2k,2k′
. Next Γ =

∪M2

i=1Γ
2
i is the refinement of Γ = ∪M1

i=1Γ
1
i , where every subdomain

remains unchanged except those Γ1
i = Dm,1,k,k′

for which there exists
a ξ such that cξ′,ξ �= 0 and ψξ is not a “polynomial” over Γ1

i . These Γ1
i

are divided into the four subdomains Dm,2,2k−1,2k′−1, Dm,2,2k,2k′−1,
Dm,2,2k−1,2k′

and Dm,2,2k,2k′
. Proceeding in the same manner, we

finally get the partition Γ = ∪Mj

i=1Γ
j
i .

Unfortunately, this partition is still not sufficiently fine. Indeed, ap-
plying the one point quadrature rule over each Γji , i = 1, . . . ,M j ,
leads to large quadrature errors due to the singularity of the kernel
KA(ξι, y) for y close to ξι. These errors cannot be improved by em-
ploying quadrature rules which are exact for higher order polynomials
since the assumptions iii) and iv) of Section 4.1 admit low order esti-
mates only. The only way to improve the quadrature errors is to work
with smaller step size. Thus, to refine the partition Γ = ∪Mj

i=1Γ
j
i we
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consider a Γji = Dm,l,k,k′
. Obviously, there exists an l′′ such that

(4.10) 2−2l′′ ≤ dist {conv ϑξ′ ,Γ
j
i} < 2−2(l′′−1).

If l′′ < j − l, then we replace Γji = Dm,l,k,k′
by the union of the 22l′′

subdomains Dm,l+l′′,k̃,k̃′
which are contained in Γji . For l′′ ≥ j − l,

we replace Γji = Dm,l,k,k′
by the union of the 22(j−l) subdomains

Dm,j,k̃,k̃′
which are contained in Γji . We denote the final partition

by Γ = ∪i′∈NΓξ
′
i′ .

Now we define the quadrature rule (4.6) for Γξ
′
i′ = Dm,l′,k̃,k̃′

such that
ξι /∈ Γξ

′
i′ . We write

∫
Γξ′

i′

f(y) dyΓ =
∫ k̃hl′

(k̃−1)hl′

∫ k̃′hl′

(k̃′−1)hl′
f(κm(t1, t2))|κ′m(t1, t2)| dt2 dt1

∼
∑

μ∈Mi′

f(xμ)ωμ,(4.11)

where the last quadrature rule is the tensor product of the univariate
nG-point Gauß rule. If l′ < j, then the distance of Γξ

′
i′ = Dm,l,k̃,k̃′

to the
singularity point ξι of y 	→ KA(ξι, y) is sufficiently large and the step
size hl′ sufficiently small such that the one point rule is sufficiently
accurate. Hence, we set nG = 1 for l′ < j. If l′ = j, then κm is
polynomial over Γξ

′
j′ and higher order quadrature rules can be employed.

Hence, for l′ = j, we choose nG to be the smallest integer such that,
cf. [23, Section 2.3],

(4.12) nG ≥ b
j

max(1, log2[dist {ξι,Γξ′i′ }/hj ])

where b is a fixed positive integer.

Next we turn to the definition of the set N ′ of indices i′ ∈ N for
which the singularity subtraction step, cf. (4.5) (4.8) is necessary for
the quadrature over Γξ

′
i′ . If ξι ∈ Γξ

′
i′ , then the integrand y 	→ KA(ξι, y)

is strongly singular and the quadratures do not converge without
singularity subtraction. For Γξ

′
i′ = Dm,l′,k̃,k̃′

with l′ < j, we employ
the low order one point rule. In this case the singularity subtraction
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is also necessary in order to improve the bounds of the derivatives of
the integrand. Only if Γξ

′
i′ = Dm,l′,k̃,k̃′

with l′ = j, then the higher
order quadrature rules are so strong that the singularity subtraction is
redundant. Thus, we introduce N ′ as the set of all i′ ∈ N such that
Γξ

′
i′ = Dm,l′,k̃,k̃′

with l′ < j or such that ξι ∈ Γξ
′
i′ .

For the definition of the main part kernel KM , we observe that the
transformed kernel function takes the form, cf. (4.3),

(4.13)

KA(κm(t),κm(t′))|κ′M (t′)|
=

∑
k≤|α|

sα(κm(t), κm(t′), nκm(t′))

· [κm(t) − κm(t′)]α|κm(t) − κm(t′)|−2−k|κ′m(t′)|.
Hence, we define KM (x, y) by

(4.14)

KM (κm(t), κm(t′))|κ′m(t′)| =
∑

k=|α|
sα(κm(t), κm(t), nκm(t))

· [Dκm(t) · (t− t′)]α

· |Dκm(t) · (t− t′)|−2−k|κ′m(t)|,
where the surface density |κ′m(t)| is |∂t1κm(t) × ∂t2κm(t)| and the
Fréchet derivative Dκm(t) is the matrix (∂t1κm(t), ∂t2κm(t)) ∈ R3×2.

Now it remains to introduce the quadrature over the Γξ
′
i′ with ξι ∈ Γξ

′
i′ .

For definiteness, we suppose ξi = κm((k̃−1)hj , (k̃′−1)hj) and consider
Γξ

′
i′ = Dm,j,k̃,k̃′

. Cutting along the diagonal through ξι, we divide

Dm,j,k̃,k̃′
into the two triangles Dm,j,k̃,k̃′

− and Dm,j,k̃,k̃′
+ given by

(4.15)

Dm,j,k̃,k̃′
+ := κm({(t1, t2) : 0 ≤ [t2 − (k̃′ − 1)hj ]

≤ [t1 − (k̃ − 1)hj ] ≤ hj}),
Dm,j,k̃,k̃′

− := κm({(t1, t2) : 0 ≤ [t1 − (k̃ − 1)hj ]

≤ [t2 − (k̃′ − 1)hj ] ≤ hj}).

Over Dm,j,k̃,k̃′
+ the integrand function takes the form, cf. (4.7),

(4.16)
g(t) := G(κm(t))|κ′m(t)|,
G(y) := KA(ξι, y)ψξ(y) −KM (ξι, y)ψξ(ξι)
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and is known to have a weak singularity of the type

(4.17) g
(
(k̃ − 1)hj + t1, (k̃′ − 1)hj + t2

)
= Φ

(
t1,

t2
t1

)
1
t1

+ · · · ,

where 0 ≤ t2 ≤ t1 ≤ hj , where the function Φ is smooth, and
where the dots stand for smoother terms. By Duffy’s transformation
(t1, t2) = (t′1, t

′
1t

′
2) such a singularity is transformed into a smooth

function and we get

(4.18)
∫ hj

0

∫ t1

0

Φ
(
t1,

t2
t1

)
1
t1
dt2 dt1 =

∫ hj

0

∫ 1

0

Φ(t′1, t
′
2) dt

′
2 dt

′
1.

Consequently, we set
(4.19)∫

Dm,j,k̃,k̃′
+

G(y) dyΓ

=
∫ hj

0

∫ 1

0

g
(
(k̃ − 1)hj + t′1, (k̃

′ − 1)hj + t′1t
′
2

)
t′1 dt

′
2 dt

′
1

∼
∑

μ∈Mi′ :xμ∈Dm,j,k̃,k̃′
+

G(xμ)ωμ,

where the last quadrature rule is the tensor product of the nG-point
Gauß rule applied to the rectangle [0, hj ] × [0, 1]. The order nG of the
univariate Gauß rules is chosen to be greater than or equal to bj with
b the constant from (4.12). If we define the knots xμ and the weights
ωμ in the same fashion for any Dm,j,k̃,k̃′

with ξι ∈ Dm,j,k̃,k̃′
and for

any Dm,j,k̃,k̃′
+ and Dm,j,k̃,k̃′

− , then we arrive at the quadrature rule (4.6)
for the remaining subdomains and the approximate values c′ξ′,ξ for the
nonzero values cξ′,ξ in (4.8) are completely defined.

Finally, for the computation of
∫
Γξ′

i′
KM (ξι, y) dyΓ, cf. (4.8), in case
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of |α| = 1 and k = 1, cf. (4.3), we mention the formulae∫ a′

a

∫ b′

b

cx+ dy

{ex2 + fxy + gy2}3/2
dy dx

= − 2gc− fd√
g[4eg − f2]

{
arsh

2gb′ + fa′

a′[4eg − f2]
− arsh

2gb′ + fa

a[4eg − f2]

− arsh
2gb+ fa′

a′[4eg − f2]
+ arsh

2gb+ fa

a[4eg − f2]

}

− 2ed− fc√
e[4eg − f2]

{
arsh

2ea′ + fb′

b′[4eg − f2]
− arsh

2ea′ + fb

b[4eg − f2]

− arsh
2ea+ fb′

b′[4eg − f2]
+ arsh

2ea+ fb

b[4eg − f2]

}
,

0 < a < a′, 0 < b < b′, f2 < 4eg,

∫ a′

0

∫ b′

b

cx+ dy

{ex2 + fxy + gy2}3/2
dy dx

= − 2gc− fd√
g[4eg − f2]

{
arsh

2gb′ + fa′

a′[4eg − f2]
− arsh

2gb+ fa′

a′[4eg − f2]
− log

b′

b

}

− 2ed− fc√
e[4eg − f2]

{
arsh

2ea′ + fb′

b′[4eg − f2]
− arsh

2ea′ + fb

b[4eg − f2]

}
,

0 = a < a′, 0 < b < b′, f2 < 4eg,∫ h

0

∫ h

0

cx+ dy

{ex2 + fxy + gy2}3/2
dy dx

= p.f. lim
ε→0

∫ ∫
{(x,y)∈[0,h]2:ex2+fxy+gy2≥ε2}

· · ·

= − 2gc− fd√
g[4eg − f2]

{
1 − log

h[e+ f + g]√
g

− arsh
2g + f

[4eg − f2]
+ arsh

f

[4eg − f2]

}

− 2ed− fc√
e[4eg − f2]

{
1 − log

h[e+ f + g]√
e

− arsh
2e+ f

[4eg − f2]
+ arsh

f

[4eg − f2]

}
,

f2 < 4eg.
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Note that the kernel of the singular integral equation corresponding
to the oblique derivative boundary value problem, cf. [27, 25, 28],
admits a representation (4.3) with |α| = k = 1. Further details of the
algorithm for the assembling of the matrix are discussed in [35].

Remark 4.1. To reduce the number of quadrature knots for the
computation of the singular integrals, i.e., for (4.19), it is possible to
choose different Gauß orders nG,1 for the t′1 direction and nG,2 for the
t′2 direction. It is sufficient to take nG,1 ≥ b and nG,2 ≥ bj.

4.3. The error of the quadrature. We introduce the compressed and
discretized matrix C ′

j := (c′ξ′,ξ)ξ′,ξ∈Δj
, where the nonzero entries c′ξ′,ξ

are given in (4.8). By A′
j we denote the operator in L(Sj) whose

matrix with respect to the basis {ϕj,ξ : ξ ∈ Δj} is RjC ′
jEj . Thus,

the quadrature algorithm for the stiffness matrix Aj leads to the fully
discretized equation A′

juj = Pjv.

Theorem 4.1. Suppose that the righthand side v of (2.1) belongs
to the Sobolev space H2(Γ) and that the compressed collocation method
including the approximate operator Ãj is stable, cf. Theorem 3.1. If
the compression parameter a, cf. (3.66), and the quadrature parameter
b, cf. (4.12), are sufficiently large, then the operators A′

j ∈ L(Sj) are
stable. Additionally, if the second order estimate of Theorem 3.1 is
valid, and if uj ∈ Sj denotes the solution of A′

juj = Pjv, then

(4.20) ‖u− uj‖L2(Γ) ≤ Ch2
j log hj .

The number of nonzero entries for the matrix C ′
j is the same as that

for Cj, i.e., it is less than CN2
j [logNj ]4.

For the proof, we need the following two estimates of the quadrature
error.

Lemma 4.1. i) [18] Consider the square [a, b] × [c, d] of the size
h = b − a = d − c. Suppose that f is twice continuously differentiable
over [a, b]×[c, d] and that GR(f) stands for the tensor product of the one
point Gauß rule, i.e., the midpoint rule, applied to f over [a, b]× [c, d].
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Then it is not hard to see that

(4.21)
∣∣∣∣
∫ b

a

∫ d

c

f(t1, t2) dt2 dt1 −GR(f)
∣∣∣∣

≤ Ch4 sup
β∈{(2,0),(0,2)}
a≤t1≤b,c≤t2≤d

|∂βt f(t1, t2)|,

where the constant C is independent of [a, b] × [c, d] and f .

ii) [17, 31]. Now consider a rectangle [a, b]× [c, d], set h := b−a and
h′ := d− c, and suppose that f is analytic over [a, b]× [c, d]. Moreover,
suppose that f admits complex analytic extensions to the sets

{(t1, t2) ∈ R × C : a ≤ t1 ≤ b, |t2 − c| + |t2 − d| ≤ (�+ �−1)h′/2},
{(t1, t2) ∈ C × R : c ≤ t2 ≤ d, |t1 − a| + |t1 − b| ≤ (�+ �−1)h/2},

where � > 1. We denote the ellipse {t1 ∈ C : |t1 − a| + |t1 − b| =
(� + �−1)h/2} by E�(a, b), define E�(c, d) similarly and consider the
tensor product of the univariate nG-point Gauß rule GR(f) applied to
f over [a, b]× [c, d]. Then, for a constant C independent of [a, b]× [c, d]
and f , we get, cf. [17], Equation (4.6.1.11) and [31, Proposition 4.3 ]

(4.22)
∣∣∣∣
∫ b

a

∫ d

c

f(t1, t2) dt2 dt1 −GR(f)
∣∣∣∣

≤ Chh′�−2nG

{
max

t2∈E�(c,d)
a≤t1≤b

|f(t1, t2)| + max
t1∈E�(a,b)
c≤t2≤d

|f(t1, t2)|
}
.

Proof of Theorem 4.1. i) First we suppose that the integrals over
the subdomains Γξ

′
i′ = Dm,l′,k̃,k̃′

with l′ = j are computed exactly
and consider the quadrature errors over the domains Γξ

′
i′ = Dm,l′,k̃,k̃′

with l′ < j. For any function ũj =
∑
ξ∈Δj

ũξψξ ∈ Sj , we introduce

the functions ũl :=
∑

ξ∈Δl
ũξψξ =

∑l−1
l′=−1

∑
ξ∈∇l′

ũξψξ and their
coefficients w̃l,ξ defined by ũl =

∑
ξ∈Δl

w̃l,ξϕl,ξ. We will represent
Ãj −A′

j = Rj(Cj − C ′
j)Ej ∈ L(Sj) as

(4.23) (Ãj −A′
j)ũj =

∑
ξ′∈Δj

{ j∑
l=0

∑
ξ∈Δl

eξ′,(l,ξ)w̃l,ξ
+

∑
ξ∈Δj

eξ′,ξũξ

}
χξ′ .
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This representation will have similar properties as the matrix of the
compression error, i.e., it permits the application of a Schur lemma
argument. We will show the sparsity pattern of this representation
and, later, we will derive a bound for Ãj − A′

j by estimating eξ′,(l,ξ)
and eξ′,ξ. To get (4.23), we suppose that ξ′ is fixed. Then the coefficient
of χξ′ in (4.23) is the sum of the quadrature errors over the domains
Γξ

′
i′ = Dm,l′,k̃,k̃′ ⊆ Γji = Dm,l,k,k′

corresponding to the integrand
functions

(4.24)

y 	−→ ϑξ′(KA(·, y)ũξ′j (y) −KM (·, y)ũξ′j (ξξ
′
i′ ))

:=
3∑
ι=1

λι(KA(ξι, y)ũ
ξ′
j (y) −KM (ξι, y)ũ

ξ′
j (ξξ

′
i′ )),

where
ũξ

′
j :=

∑
ξ∈Δj :cξ′,ξ �=0

ũξψξ.

We consider a fixed subdomain Γji = Dm,lD ,k,k
′

containing sets of the
form Γξ

′
i′ = Dm,l′,k̃,k̃′

with l′ < j. From the definition of the Γji we
observe that there exists a ψξ′′ such that cξ′,ξ′′ �= 0, l(ξ′′) = lD−1, and
suppψξ′′ ∩Γji �= ∅ (otherwise the partition step leading to Γji would be
redundant). In view of (3.66) we get

(4.25)
dist {conv ϑξ′ , suppψξ′′} ≤ aj2j−l(ξ

′)−(lD−1),

dist {conv ϑξ′ ,Γ
j
i} ≤ C2−(lD−1) + aj2j−l(ξ

′)−(lD−1).

Consequently, if j is sufficiently large, then, for any ψξ with l(ξ) < lD−1
and suppψξ ∩ Γji �= ∅, we arrive at

(4.26)
dist {conv ϑξ′ , suppψξ} ≤ C2−(lD−1) + aj2j−l(ξ

′)−(lD−1)

≤ aj2j−l(ξ
′)−l(ξ).

This means cξ′,ξ �= 0. In other words, the restriction ũξ
′
j |Γj

i
is equal to

the ũlD−1 plus some of the terms ũξψξ with ξ ∈ ∇lD−1. The quadrature
error corresponding to (4.24) over Γji is equal to the quadrature error
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corresponding to the function

(4.27)

y 	−→
∑

ξ∈Δl
D−1

w̃lD−1 ,ξϑξ′
(
KA(·, y)ϕlD−1 ,ξ(y)

−KM (·, y)ϕlD−1 ,ξ(ξ
ξ′
i′ )

)
+

∑
ξ∈∇l

D−1 :cξ′,ξ �=0

ũξϑξ′
(
KA(·, y)ψξ(y)

−KM (·, y)ψξ(ξξ
′
j′ )

)
.

The entry eξ′,(l,ξ) is now the sum over all quadrature errors for the
integrand functions

y 	−→ ϑξ′(KA(·, y)ϕl,ξ(y) −KM (·, y)ϕl,ξ(ξξ
′
i′ ))

taken over all subdomains Γji = Dm,lD,k,k
′

with lD − 1 = l and
suppϕl,ξ ∩ Γji �= ∅. Similarly, for cξ′,ξ �= 0, the entry eξ′,ξ is defined as
the sum over all quadrature errors of the functions

y 	−→ ϑξ′(KA(·, y)ψξ(y) −KM (·, y)ψξ(ξξ
′
i′ ))

taken over all subdomains Γji = Dm,lD ,k,k
′

with lD − 1 = l(ξ) and
suppψξ ∩ Γji �= ∅. For cξ′,ξ = 0, we set eξ′,ξ = 0.

Note that eξ′,(l,ξ) = 0 and eξ′,ξ = 0 is possible also if there is no Γji
with lD−1 = l, suppϕl,ξ∩Γji �= ∅ and lD−1 = l(ξ), suppψξ∩Γji �= ∅,
respectively. More precisely, eξ′,(l,ξ) �= 0 implies the existence of
Γji = Dm,lD ,k,k

′
such that lD − 1 = l and suppϕl,ξ ∩Γji �= ∅. From the

definition of Γji , we infer cξ′,ξ′′′ = 0, for all the ψξ′′′ such that ψξ′′′ |Γj
i

is not polynomial. Hence, for suppψξ′′′ ∩ Γji �= ∅ and l(ξ′′′) = lD, we
get cξ′,ξ′′′ = 0. This implies, cf. (3.66),

dist (conv ϑξ′ ,Γ
j
i ) ≥ min dist (conv ϑξ′ , suppψξ′′′) > aj2j−l(ξ

′)−lD .

Consequently, eξ′,(l,ξ) �= 0 implies

(4.28) dist (conv ϑξ′ , suppϕ(l,ξ)) > Caj2j−l(ξ
′)−l.
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Similarly, we get that eξ′,ξ �= 0 implies

(4.29) dist (conv ϑξ′ , suppψξ) > Caj2j−l(ξ
′)−l(ξ).

Having derived the sparsity pattern of representation (4.23), we turn
to the estimate of its entries. From the definition of ϑξ′ , we infer the
existence of an x′ ∈ conv ϑξ′ such that, cf. (3.64),

(4.30) ϑξ′(KA(·, y)ϕl,ξ(y) −KM (·, y)ϕl,ξ(ξξ′i′ ))
= 2−3l(ξ′)∂αx [KA(x′, y)ϕl,ξ(y) −KM (x′, y)ϕl,ξ(ξ

ξ′
i′ )],

where ∂αx denotes a certain second order derivative (directional deriva-
tive) with respect to x. Applying the composite tensor product one
point Gauß rule GR to this integrand over the square Γji = Dm,l+1,k,k′

of side length 2−(l+1) and using the second order convergence estimate
(4.21), we conclude

(4.31) |eξ′,(l,ξ)| ≤ C2−3l(ξ′)2−4l

·
∑

Γj
i
:Γj

i
⊆suppϕl,ξ

sup
β:|β|=2

y∈Dm,l+1,k,k′

|∂βy ∂αx [KA(x′, y)ϕl,ξ(y)

−KM (x′, y)ϕl,ξ(ξ
ξ′
i′ )]|.

The scaling factor Nl ∼ 2l in the definition of ϕl,ξ, an additional factor
Nl ∼ 2l for each derivative of ϕl,ξ, the estimate (2.2), and a similar
estimate for the kernel KM lead to

(4.32) |eξ′,(l,ξ)| ≤
2∑

k=0

C2−3l(ξ′)−3l+kldist {conv ϑξ′ , suppϕl,ξ}−6+k.

Analogously, we obtain

(4.33) |eξ′,ξ| ≤
2∑

k=0

C2−3l(ξ′)−3l(ξ)+kl(ξ)dist {conv ϑξ′ , suppψξ}−6+k.

The sparsity patterns (4.28) and (4.29) as well as the estimates (4.32)
and (4.33) together with a Schur lemma argument similar to (3.69)
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imply that the l2(∪Δl ∪ Δj) → l2(Δj) norm of the matrix with the
entries eξ′,(l,ξ) and eξ′,ξ is less than Ca−2j−3/2. Using Lemmas 3.3 and
3.4, we get

(4.34)

√√√√ j∑
l=1

∑
ξ∈Δl

|w̃l,ξ|2 +
∑
ξ∈Δj

|ũξ|2 ≤
√ ∑
ξ∈Δj

(j + 1 − l(ξ))|ũξ|2

≤ C
√
j‖ũj‖L2(Γ),

and ‖Ãj − A′
j‖ ≤ Ca−2j−1/2. Hence, for sufficiently large a or j, the

operator A′
j is a small perturbation of Ãj . Together with Ãj , also A′

j

has a uniformly bounded inverse.

Now we return to the error estimate (4.20). First we will show

(4.35) ‖(Ãj −A′
j)ũj‖L2(Γ) ≤ Ch2

j log hj ,

where ũj = Pju = PjA
−1v. From Lemma 3.4 we infer

(4.36)

∥∥∥∥ ∑
ξ′∈Δj

vξ′χξ′

∥∥∥∥
L2(Γ)

≤ C
√
j

√ ∑
ξ′∈Δj

|vξ′ |2

≤ C
√
j

√ ∑
ξ′∈Δj

2−2l(ξ′) sup
ξ′∈Δj

|2l(ξ′)vξ′ |

≤ Cj sup
ξ′∈Δj

|2l(ξ′)vξ′ |.

Hence it suffices to estimate the quadrature errors of 2l(ξ
′)ϑξ′(Ãjũj) =

2l(ξ
′)ϑξ′(Ajũ

ξ′
j ) for each ξ′ separately. In order to apply (4.21) we

have to estimate the second order derivatives with respect to y of the
integrand function, cf. (4.24) and (4.30),

(4.37) y 	−→ 2−3l(ξ′)∂αx [KA(x′, y)ũξ
′
j (y) −KM (x′, y)ũξ

′
j (ξξ

′
i′ )]

= 2−3l(ξ′)∂αx [[KA(x′, y) −KM (x′, y)]ũξ
′
j (y)

+KM (x′, y)[ũξ
′
j (y) − ũξ

′
j (ξξ

′
i′ )]] .

The kernel functions KA and KM , however, satisfy (2.2) and

(4.38) |∂βy ∂αx [KA(x, y) −KM (x, y)]| ≤ C|x− y|−1−|α|−|β|.
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Moreover, Lemma 3.3 ii) implies

(4.39)

ũξ
′
j (x) − ũξ

′
j (y) =

∑
uξ[ψξ(x) − ψξ(y)]

|ũξ′j (x) − ũξ
′
j (y)| ≤ C

∑
|uξ|22l(ξ)|x− y|

≤ C
√∑

24l(ξ)|uξ|2
√√√√√

∑
ξ:ψξ(x) �=0
or ψξ(y) �=0

1 |x− y|

≤ Cj|x− y|.

Similarly, we get |ũξ′j (x)| ≤ C
√
j and |∂βx ũξ

′
j (x)| ≤ Cj where |β| = 1.

Note that the higher derivatives with β = (2, 0) or β = (0, 2) vanish
since ũξj is bilinear. Using these estimates and applying (4.21) to the

quadrature error for the integration of (4.37) over Γξ
′
i′ = Dm,l′,k̃,k̃′ ⊆

Γji = Dm,l,k,k′
, we arrive at the bound

(4.40) C2−4l′2−3l(ξ′)jdist {conv ϑξ′ ,Γ
ξ′
i′ }−5.

In view of (4.10), we have 2−2l′ = 2−2(l+l′′) ≤ 2−2ldist {conv ϑξ′ ,Γ
j
i}.

Summing up (4.40) over all Γξ
′
i′ ⊆ Γji , we get the bound∑

Γξ′
i′ :Γ

ξ′
i′ ⊆Γj

i

C2−2l′2−2l2−3l(ξ′)jdist {conv ϑξ′ ,Γ
j
i}−4

= C2−4l2−3l(ξ′)jdist {conv ϑξ′ ,Γ
j
i}−4

for the quadrature error over Γji . Hence, the quadrature error for
2l(ξ

′)ϑξ′(Ãjũj) is less than

(4.41) Cj2−2l(ξ′)
j−1∑
l=0

2−2l
∑

Γj
i
:Γj

i
=Dm,l,k,k′

dist {conv ϑξ′ ,Γ
j
i}−42−2l.

We observe, from the definition of the Γji , that cξ′,ξ = 0 for all ξ with
suppψξ ∩ Γji �= ∅ and l(ξ) ≥ l (otherwise Γji would have been divided
in further steps). In view of (3.66) this means that

(4.42) dist {conv ϑξ′ ,Γ
j
i} ≥ aj2j−l(ξ

′)−l.
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Using (3.73), we estimate (4.41) by

(4.43) Cj2−2l(ξ′)
j−1∑
l=0

2−2l(aj2j−l(ξ
′)−l)−2 ≤ Ca−22−2j .

This together with (4.36) proves that the L2 norm of the quadrature
error is less than Cj2−2j . The estimate (4.35) is proved. Now equation
(4.20) follows easily from this estimate, the corresponding consistency
estimate (3.68) and the boundedness of the inverses A′

j .

ii) Next we suppose that the integrals over the subdomains Γξ
′
i′ =

Dm,l′,k̃,k̃′
with l′ < j or with the singularity point ξι in Γξ

′
i′ are

computed exactly and consider the quadrature errors over the domains
Γξ

′
i′ = Dm,l′,k̃,k̃′

with l′ = j and ξi /∈ Γξ
′
i′ . We fix a ϑξ′ , a ψξ

and a Γξ
′
i′ = Dm,j,k̃,k̃′

. For these, we estimate the quadrature error
dξ′,ξ = cξ′,ξ − c′ξ′,ξ over Γξ

′
i′ with the help of (4.22). Thus,

(4.44)

f(t) =
3∑
ι=1

λιKA(ξι, κm(t))|κ′m(t)|ψξ(κm(t)),

KA(ξι, κm(t)) =
∑

k≤|α|
sα

(
ξι, κm(t),

∂t1κm(t) × ∂t2κm(t)
|∂t1κm(t) × ∂t2κm(t)|

)

· (ξι − κm(t))α|ξι − κm(t)|−2−k.

From the analyticity assumption on the sα, cf. the analyticity domains
(4.4), and the boundedness of the derivatives of the parametrization, cf.
(4.2), we observe that the function f |κ−1

m (Dm,j,k̃,k̃′ ) extends to a complex

analytic function over a neighborhood {t : dist {t, κ−1
m (Dm,j,k̃,k̃′

)} ≤
εB}. Here we have to require εB ≤ εA/C for the analyticity of t 	→
sα(ξι, κm(t), . . . ) and εB ≤ dist {ξι, Dm,j,k̃,k̃′}/C for the analyticity of
t 	→ |ξι − κm(t)|−2−k. Thus, the assumptions of Lemma 4.1 ii) are
satisfied if we choose

(4.45) � := 1 + dist {ξι, Dm,j,k̃,k̃′}/[C ′hj ]

with a sufficiently large constant C ′. To get a bound for f over [a, b]×
E�(c, d) and E�(a, b)× [c, d], we observe that |KA(ξι, κm(t))| is less than
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Cdist {ξι, Dm,j,k̃,k̃′}−2, that |κ′m(t)| is bounded by a constant, and that
the absolute value of the bilinear extension of ψξ(κm(·))|κ−1

m (Dm,j,k̃,k̃′ )

is less than C2l(ξ)[2l(ξ)dist {ξι, Dm,j,k̃,k̃′} + 1]2. Using these bounds,
dist {ξι, Dm,j,k̃,k̃′} ≥ 2−j , and |λι| ≤ C2−l(ξ

′), cf. (3.48), we get that
the quadrature error for the integration of f over Dm,j,k̃,k̃′

is less than

(4.46)
3∑
ι=1

C2−l(ξ
′)2−2j�−2nGdist {ξι, Dm,j,k̃,k̃′}−2

· 2l(ξ)[2l(ξ)dist {ξι, Dm,j,k̃,k̃′} + 1]2 ≤ C2j�−2nG .

We have to sum up over all Γξ
′
i′ = Dm,j,k̃,k̃′ ⊆ suppψξ. The number of

subsquares Dm,j,k̃,k̃′
is less than 22j and we arrive at

(4.47) |dξ′,ξ| ≤
3∑
ι=1

C23j�−2nG .

We will show that the l2 norm of the matrix (dξ′,ξ)ξ′,ξ is less than
C2−2j , where C is a constant. If this is done, then the norm of Ãj−A′

j is
less than C

√
jN−2

j , cf. (3.51), and the convergence rate (4.35) is proved.
Moreover, since the operators A′

j and |A′
j |−1 are small perturbations of

the bounded operators Ãj and [Ãj ]−1, respectively, they are uniformly
bounded. The estimate (4.20) follows as in point i) of this proof.

Clearly to show the norm estimate for (dξ′,ξ)ξ′,ξ, it suffices to prove
that the l2 norm of the matrix entries (Frobenius norm) is less than
the desired bound. Hence, we only have to show |dξ′,ξ| ≤ C2−4j . In
view of (4.47) and (4.45) it remains to prove the uniform boundedness
of
(4.48)

C23j�−2nG24j ≤ C27j�−2nG ≤ C28j−2 log2{1+dist {ξι,D
m,j,k̃,k̃′}/[C′hj ]}nG .

The last expression, however, is bounded if

(4.49)

nG ≥ 4j
log2{1 + dist {ξι, Dm,j,k̃,k̃′}/[C ′hj ]}

≥ C
j

max{1, log2[dist {ξι, Dm,j,k̃,k̃′}/hj ]}
.
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This is fulfilled if b is sufficiently large, cf. (4.12).

iii) Now we suppose that the integrals over the subdomains Γξ
′
i′ =

Dm,l′,k̃,k̃′
with l′ < j or with the singularity point ξι not in Γξ

′
i′ are

computed exactly and consider the quadrature errors over the domains
Γξ

′
i′ = Dm,l′,k̃,k̃′

with l′ = j and ξι ∈ Γξ
′
i′ . We proceed analogously to

the step ii). For fixed ϑξ′ , ψξ, and Γξ
′
i′ = Dm,j,k̃,k̃′

, we estimate the
quadrature error dξ′,ξ = cξ′,ξ − c′ξ′,ξ over Γξ

′
i′ with the help of (4.22).

Thus, cf. (4.19),

(4.50)

f(t) = f(t1, t2)

= λιg((k̃ − 1)hj + t1, (k̃′ − 1)hj + t1t2)t1,
t ∈ [0, hj ] × [0, 1].

Due to the subtraction of singularity and due to Duffy’s transformation,
there is no singularity in the integrand anymore. From the analyticity
assumption on the sα, cf. the analyticity domains (4.4), and the
boundedness of the derivatives of the parametrization, cf. (4.2), we
observe that the function f |[0,hj ]×[0,1] extends to a complex analytic
function over the analyticity sets of Lemma 4.1 ii), if �hj ≤ εA/C
and �[1 − 0] ≤ εA/C. Thus we choose � := 1/C ′ with a sufficiently
large constant C ′. To get a bound for f over [0, hj ] × E�(0, 1) and
E�(0, hj) × [0, 1], we observe that |f(t)| is less than constant times
|λι| times the supremum norm of the extended polynomials (t1, t2) 	→
ψξ(κm(t1, t1t2)) and of their first order derivatives. We get |f(t)| ≤
C2−l(ξ

′)22j as well as the bound

C2−j�−2nG2−l(ξ
′)22j ≤ C2j�−2nG

for the quadrature error of f over Dm,j,k̃,k̃′
, cf. (4.22). We have to sum

up over all Dm,j,k̃,k̃′ ⊆ suppψξ with ξι ∈ Dm,j,k̃,k̃′
, i.e., over no more

than four sets for each Γm. Consequently, we arrive at

(4.51)

|dξ′,ξ| ≤ C2j�−2nG

24j |dξ′,ξ| ≤ C25j�−2nG

≤ C26j−2 log2{1/C′}nG .

The last expression, however, is bounded if

(4.52) nG ≥ 3j
log2{1/C ′} ,
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which is fulfilled for sufficiently large b.

4.4. The complexity. Clearly the number of arithmetic operations for
the computation of the stiffness matrix in the form of its discretized
and compressed wavelet transform is bounded by a constant multiple
of the number of quadrature knots.

Theorem 4.2. The number of quadrature knots for the quadrature
algorithm in Section 4.2 is less than CN

8/3
j [logNj ]4/3.

Proof. First we fix a ϑξ′ and count the quadrature knots for the
computation of ϑξ′(A′

juj). To count the points contained in Γji =
Dm,l,k,k′

, we observe, cf. (4.10), (4.25) and (4.42),

(4.53)
2−2l′′ ∼ dist {suppϑξ′ ,Γ

j
i}

∼ aj2j−l(ξ
′)−l,

l′′ ∼ [l + l(ξ′) − j − log2 j − C]/2.

Thus l′′ < j − l holds if and only if l < j − [l(ξ′)− log2 j −C]/3. For a
fixed l with l < j− [l(ξ′)− log2 j−C]/3, the subdomains Γji = Dm,l,k,k′

are contained in a domain of size aj2j−l(ξ
′)−l, cf. (4.53), and are divided

into square Γξ
′
i′ of size 2−l−l

′′ ∼ 2−l−[l+l(ξ′)−j−log2 j−C]/2. In each Γξ
′
i′

there is exactly one quadrature knot. Hence, the number of quadrature
knots contained in all these Γji is equal to the number of subdomains
Γξ

′
i′ in the union of the Γji , i.e., less than

(4.54) C

[
aj2j−l(ξ

′)−l

2−l−[l+l(ξ′)−j−log2 j−C]/2

]2

≤ Cj2j−l(ξ
′)+l.

On the other hand, all the subdomains Γji = Dm,l,k,k′
with l ≥ j −

[l(ξ′) − log2 j − C]/3 are contained in a domain of size
aj2j−l(ξ

′)−{j−[l(ξ′)−log2 j−C]/3}, cf. (4.53), and are divided into square
Γξ

′
i′ of size 2−j . Moreover, for the O(n) subdomains Γξ

′
i′ = Dm,j,k̃,k̃′

which satisfy dist {ξι,Γξ
′
i′ } ∼ n2−j and which are contained in the set

of all these Γji = Dm,j,k,k′
with l ≥ j − [l(ξ′) − log2 j − C]/3, we get

nG ∼ Cj/(1 + logn). The maximal number of such n is

(4.55) nmax = aj2j−l(ξ
′)−{j−[l(ξ′)−log2 j−C]/3}/2−j ≤ Cj2/32j−2l(ξ′)/3.
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Now the number of all quadrature knots in the union of all Γji =
Dm,j,k,k′

with l ≥ j − [l(ξ′) − log2 j − C]/3 is bounded by, cf. [23,
Section 6],

nmax∑
n=1

Cn

[
Cj

1 + log n

]2

≤ Cj2n2
max

/
[log nmax]2.

Using log nmax ∼ j, we arrive at the bound Cn2
max. Consequently, the

number of quadrature points for a fixed ϑξ′ is less than, cf. (4.55) and
(4.54),

(4.56) Cj4/322j−4l(ξ′)/3 +
j−[l(ξ′)−log2 j−C]/3∑

l=0

Cj2j−l(ξ
′)+l

≤ Cj4/322j−4l(ξ′)/3.

Now we sum up the quadrature knots over all ξ′ ∈ Δj and arrive at
the bound

(4.57)
j−1∑

l(ξ′)=1

22l(ξ′)Cj4/322j−4l(ξ′)/3 ≤ Cj4/328j/3.

Remark 4.2. Suppose that, in addition to the assumption iv) of Sec-
tion 4.1, the parametrizations κm are thrice continuously differentiable
over S and four times over the domains κ−1

m (Dm,j,k,k′
). Then the sec-

ond term in the asymptotics of the kernel function KA can be included
into KM such that, compare (4.38),

(4.58) |∂βy ∂αx [KA(x, y) −KM (x, y)]| ≤ C|x− y|−|α|−|β|.

Moreover, suppose that, for these KM , the integrals
∫
KM (x, ·)ψξ can

be computed by analytic formulae. Then we set {Γξ′i′ : i′ ∈ N} :=
{Γji : i = 1, . . . ,M j}, i.e., no further partition of the domains Γji is
required, and define the quadrature rule over this partition analogously
to Section 4.2. The discretized entries of the compressed stiffness
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matrix can be computed as

(4.59) cξ′,ξ ∼ c′ξ′,ξ :=
3∑
ι=1

λι

{
a(ξι)ψξ(ξι) +

∑
μ∈M

KA(ξι, xμ)ψξ(xμ)ωμ

+
∑

i′∈N ′:Γξ′
i′ ∩suppψξ �=∅

[ ∫
Γξ′

i′

KM (ξι, y)ψξ(y) dyΓ

−
∑

μ∈Mi′

KM (ξι, xμ)ψξ(xμ)ωμ

]}
.

This algorithm leads to a stable and fully discretized method such that
the assertion of Theorem 4.1 remains valid. The number of arithmetic
operations is less than N2

j times a power of logNj . The proof for this
almost optimal algorithm is analogous to those of Theorems 4.1 and
4.2.

Remark 4.3. Suppose that, in addition to the assumption iv) of
Section 4.1, the parametrizations κm are bounded and analytic over
small neighborhoods of S. Then the singularity subtraction step is
necessary only for the domains Dm,j,k,k′

containing the singularity
points ξι. Setting {Γξ′i′ : i′ ∈ N} := {Γji : i = 1, . . . ,M j} and
defining the quadrature rule as the tensor product Gauß rule over this
partition with the Gauß order nG from (4.12), we again arrive at an
algorithm such that the assertion of Theorem 4.1 remains valid and
that the number of arithmetic operations is less than N2

j times a power
of logNj .
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