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AN INTEGRAL OPERATOR SOLUTION
TO THE MATRIX TODA EQUATIONS

HAROLD WIDOM

ABSTRACT. In previous work the author found solutions
to the Toda equations that were expressed in terms of de-
terminants of integral operators. Here it is observed that a
simple variant yields solutions to the matrix Toda equations.
As an application another derivation is given of a differential
equation of Sato, Miwa and Jimbo for a particular Fredholm
determinant.

During the last 20 years, beginning with [2], many connections
have been established between determinants of integral operators and
solutions of differential equations. A result proved in [2] can be shown
to be equivalent to one concerning the integral operator K on L2(R+)
with kernel

e−t(u+u−1+v+v−1)/4

u + v
.

It is that the function τ := log det(I − λ2K2) has the representation

(1) τ = −1
2

∫ ∞

t

s

((
dϕ

ds

)2

− sinh2 ϕ

)
ds,

where ϕ = ϕ(t; λ) satisfies the differential equation

(2)
d2ϕ

dt2
+

1
t

dϕ

dt
=

1
2

sinh 2ϕ

with boundary condition

ϕ(t; λ) ∼ 2λK0(t) as t −→ ∞.

(Here K0 is the usual modified Bessel function.) The differential
equation for ϕ, the cylindrical sinh-Gordon equation, is reducible to
a special case of the Painlevé III equation. The result of [2] was the
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first of several in which special integral operators were shown to have
determinants expressible in terms of Painlevé functions.

The proof in [2] was combinatorial in nature and quite difficult.
Simpler proofs of a somewhat stronger result have been obtained since
then. Note that differentiating (1) twice and using the equation (2)
gives the equivalent relation

(3)
d2τ

dt2
+

1
t

dτ

dt
= − sinh2 ϕ.

It follows from results in [1], see also [4], that if we define τ± :=
log det(I ± λK), then

d2τ±

dt2
+

1
t

dτ±

dt
=

1 − e±2ϕ

4
,

where ϕ solves (2). Adding the two equations give (3).

Subtracting the two equations and comparing with (2) shows that

ϕ = log det(I + λK) − log det(I − λK)

solves (2). Another proof of this fact was given in [5]. Here families
of operators Gk (with k ∈ Z) depending on parameters x and y were
produced such that the functions qk := log det(I −Gk+1)− log det(I −
Gk) satisfy the Toda equations

∂2qk

∂x∂y
= eqk−qk−1 − eqk+1−qk , k ∈ Z.

In a special case det(I − Gk) was a function of the product xy and
Gk(t/4, t/4) was equal to (−1)kλK with K as given above. Equation
(2) followed from these facts and the observation that q0 = ϕ, q−1 =
q1 = −ϕ. Notice that these solutions of the Toda equations are 2-
periodic in the sense that qk+2 = qk.

The purpose of this note is to give a “Toda” proof of a generalization
of the first-mentioned result which was established in [3]. Here a
parameter θ was introduced into the kernel of K, so that it equals

(
u

v

)θ/2
e−t(u+u−1+v+v−1)/4

u + v
.
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It was shown that, if we define

τ := log det(I − λ2KK ′),

′ is the transpose, then (3) holds, where ϕ now satisfies

(4)
d2ϕ

dt2
+

1
t

dϕ

dt
=

1
2

sinh 2ϕ +
θ2

t2
tanhϕ sech 2ϕ

with boundary condition,

ϕ(t; λ) ∼ 2λKθ(t) as t −→ ∞.

This can also be reduced to a special case of the Painlevé III equation.

Since the determinant of I − λ2KK ′ is equal to the determinant of
the operator matrix (

I λK

λK′ I

)
,

it is not surprising that this fact can be proved by extending the results
of [5] to obtain solutions of the 2-periodic matrix Toda equations by
means of operators with matrix-valued kernels. Notice that in the scalar
case described above, if we set Qk := eqk then the Toda equations
become

(5)
∂

∂y

(
∂Qk

∂x

/
Qk

)
=

Qk

Qk−1
− Qk+1

Qk
.

The matrix Toda equations are the generalizations of this given by

(6)
∂

∂y

(
∂Qk

∂x
Q−1

k

)
= QkQ−1

k−1 − Qk+1Q
−1
k ,

where the Qk are now matrix functions of x and y.

We shall now be more explicit about the relevant result of [5] and
its matrix extension. Define E(u) := e−(xu+yu−1) and let p(u) be a
suitable function on R+. (It is only required that the operators which
occur are trace class.) Define G to be the integral operator on L2(R+)
with kernel

(7) G(u, v) =
p(u)E(u)p(v)E(v)

u + v
,



366 H. WIDOM

set Gk := (−1)kG and assume that the operators I −Gk are invertible.
Then a (clearly 2-periodic) solution of the Toda system (5) is given by

(8) Qk =
det(I − Gk+1)
det(I − Gk)

.

Moreover, we also have

Qk = 1 + (−1)k(pE0, (I − Gk)−1pE−1),

where we define Ei(u) := uiE(u).

An examination of the derivation of this reveals that, with only
trivial changes, one can establish the following matrix version: In the
formula (7) replace p(u) and p(v) by matrix functions p(u) and q(v),
respectively. Then a solution to (6) is given by

(9) Qk = I + (−1)k(qE0, (I − Gk)−1pE−1),

where the inner product is interpreted as matrix multiplication (in the
order indicated) followed by integration. We also have

(10) detQk =
det(I − Gk+1)
det(I − Gk)

,

which is the replacement of (8).

Next we state a fact about these solutions which could easily have
been derived in [5] but was not. This is that for the (scalar) solutions
of (5) we have

− ∂2

∂x∂y
log det(I − Gk) =

Qk

Qk−1
− 1,

and more generally for the (matrix) solutions of (6) we have

(11) − ∂2

∂x∂y
log det(I − Gk) = tr (QkQ−1

k−1 − I).

At the end of this note, we shall explain how this is proved.
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We consider the special case where

p(u) =
(

f(u) 0
0 g(u)

)
, q(u) =

(
0 g(u)

f(u) 0

)
.

For the present f and g are general although eventually they will be
the functions u±θ/2. We shall take k = 0 and write Q for Q0. The
kernel of G is

G(u, v) =
(

0 f(u)E(u)g(v)E(v)/(u + v)
g(u)E(u)f(v)E(v)/(u + v) 0

)

=
(

0 A
B 0

)
,

say. Since

(12) I ± G =
(

I ±A
±B I

)
,

we have

(13) det(I ± G) = det(I − AB),

so (10) gives

(14) detQk = 1.

From (12), the form of the matrices p and q and (9), we easily see
that the diagonal elements of Q1 are equal to those of Q = Q0 while
the off-diagonal elements are the negatives of each other. Similarly,
interchanging f and g has the same effect on I − G as left and right-
multiplying by the matrix

(
0 1

1 0

)
, and from this it follows that the

two diagonal entries of Q, as well as the two off-diagonal entries,
are obtained from each other by interchanging the roles of f and g.
Denoting the effect of this interchange by a tilde, we see that we may
write our matrices as

Q =
(

1 + b a
ã 1 + b̃

)
, Q1 =

(
1 + b −a
−ã 1 + b̃

)
.
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Observe that (14), which gives the identity

(15) b + b̃ + bb̃ = aã,

also gives

Q−1 =
(

1 + b̃ −a
−ã 1 + b

)
, Q−1

1 =
(

1 + b̃ a
ã 1 + b

)
.

And from these and (11) with k = 0, we obtain

(16) − ∂2

∂x∂y
log det(I − G) = 4aã.

Let us see what the matrix Toda equations (6) give. When k = 0,
the equation is

∂2Q

∂x∂y
Q−1 +

∂Q

∂x

∂Q−1

∂y
= QQ−1

1 − Q1Q
−1.

Comparing the entries of these matrices gives the four equations (we
use subscript notation now for partial derivatives)

(i) bxy(1 + b̃) − axyã + bxb̃y − axãy = 0,

(ii) b̃xy(1 + b) − ãxya + b̃xby − ãxay = 0,

(iii) axy(1 + b) − abxy + axby − bxay = 4a(1 + b),

(iv) ãxy(1 + b̃) − ãb̃xy + ãxb̃y − b̃xãy = 4ã(1 + b̃).

Equations (i) and (ii) may be written

(bx(1 + b̃) − axã))y = 0, (b̃x(1 + b) − ãxa))y = 0,

and since all our functions vanish as y → +∞, we deduce

(17) bx(1 + b̃) = axã, b̃x(1 + b) = ãxa.

We derive analogous identities for y-derivatives as follows. Denote by
T the unitary operator defined by Th(u) = u−1h(u−1), and denote by
a carat the effect of the replacements f(u) → f(u−1), g(u) → g(u−1).
Then (we now display the dependence of everything on the parameters
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x and y) we find that TG(x, y)T = Ĝ(y, x), T (qE0(x, y)) = q̂Ê−1(y, x),
T (pE−1(x, y)) = p̂Ê0(y, x). Thus, if we set

U := (qE0, (I − G)−1pE−1), V := (qE−1, (I − G)−1pE0),

then U(x, y) = V̂ (y, x). On the other hand, the symmetry of G
(the fact that its kernel satisfies G(u, v)′ = G(v, u)) implies that
V ′ = (p′E0, (I − G)−1q′E−1). We have, using the same tilde notation
as before and setting

S :=
(

0 1
1 0

)
,

p′ = q̃S, q′ = Sp̃, SGS = G̃,

and from this we deduce that V ′ = Ũ . Combining this with the already
established U(x, y) = V̂ (y, x), we deduce Ũ(x, y) = Û ′(y, x), in other
words,

a(x, y) = â(y, x), ã(x, y) = ˜̂a(y, x)

b(x, y) = ˜̂
b(y, x), b̃(x, y) = b̂(y, x).

Combining these with (17) for the operator Ĝ, we obtain

b̃y(1 + b) = ayã, by(1 + b̃) = ãya.

Eliminating bxy and b̃xy from equations (i) and (iii), and (ii) and (iv),
respectively, and using our formulas for the derivatives of b and b̃ as
well as (15), we find the equations

(18)
axy =

ã

1 + aã
axay + 4a(1 + aã),

ãxy =
a

1 + aã
ãxãy + 4ã(1 + aã).

These equations hold whatever the functions f and g. We now
use them to obtain the cited result of [3]. By (13) we see that the
determinant in question is equal to det(I−G) evaluated at x = y = t/4
in the case where

f(u) =
√

λuθ/2, g(u) =
√

λu−θ/2.
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Observe first that â = ã in this case, so that ã(x, y) = a(y, x). We now
show that

(19)
a(x, y) = (x/y)θ/2a(

√
xy,

√
xy),

ã(x, y) = (y/x)θ/2ã(
√

xy,
√

xy).

For this, we take any r > 0 and use the unitary operator T now
defined by Th(u) = r1/2h(ru). Denote now by a carat the result of
the replacement (x, y) → (rx, y/r). Since TGT−1 = Ĝ and

T (qE0) = r1/2

(
r−θ/2 0

0 rθ/2

)
qÊ0,

T (pE−1) = r−1/2pÊ−1

(
rθ/2 0
0 r−θ/2

)
,

we deduce

Q =
(

r−θ/2 0
0 rθ/2

)
Q̂

(
rθ/2 0
0 r−θ/2

)
,

which gives the asserted identities upon setting r =
√

y/x.

We also deduce from TGT−1 = Ĝ in the same way that det(I − G)
is a function of xy, and we shall eventually set x = y = t/4. Since, for
a function of t = 4

√
xy,

∂2

∂x∂y
= 4

(
d2

dt2
+ t−1 d

dt

)
,

the left side of (3) equals 1/4 times the left side of (16) evaluated at
x = y = t/4. Thus, if we set c(t) := a(t/4, t/4) = ã(t/4, t/4) and define
ϕ by sinh ϕ = c, then (3) holds and it remains to verify (4). Using (19)
we find that either equation in (18) becomes at x = y = t/4,

d2c

dt2
+

1
t

dc

dt
=

c

1 + c2

(
dc

dt

)2

+ c(1 + c2) +
θ2

t2

(
c − c3

1 + c2

)
,

and (4) follows upon substituting c = sinh ϕ.

Remark. In [1], differential identities were found, by different meth-
ods, for the quantities we called a, ã, b, b̃. These identities do not seem
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to give our equations (18). A general result was also stated there which
would imply in particular that (2) holds rather than (4) for the opera-
tor kernel with general θ. The authors are aware of the error in their
paper and plan to publish an erratum.

Appendix

We derive (11) here. Taking the logarithmic derivative of (10) with
respect to x gives

tr
(

∂Qk

∂x
Q−1

k

)
=

∂

∂x
log det(I − Gk+1) − ∂

∂x
log det(I − Gk),

and so taking traces in (6) gives

∂2

∂x∂y
log det(I − Gk+1) − ∂2

∂x∂y
log det(I − Gk)

= tr (QkQ−1
k−1 − Qk+1Q

−1
k ).

Suppose it were true (which it certainly is not) that Gk → 0 in trace
norm and Qk → I as k → +∞. Then replacing k successively by
k, k + 1, . . . in the above relation and adding would give (11).

In order to make this argument work, we use a family of operator
solutions to (5), depending on parameter ω, these also being special
cases of those derived in [5]. We assume that ω belongs to

Ω := {ω ∈ C\R+ : �ω < 1,�ω−1 < 1},

set E(ω, u) := e−[(1−ω−1)xu+(1−ω)yu−1]/2, define G to be the operator
on L2(R+) with kernel

p(u)E(ω, u)p(v)E(ω, v)
u − ωv

,

and set Gk := ωkG. Then

Qk = 1 + ωk(pE0, (I − Gk)−1pE−1)

(where we now define Ei(u) := uiE(ω, u)) satisfies (5) and (8) whenever
these make sense, i.e., when the operators I − Gk that appear in the
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expressions are invertible. In the matrix version, the factors p(u) and
p(v) are replaced by the matrix functions p(u) and q(v), the constant 1
in the definition of Qk is replaced by I, and (6) and (10) hold. Notice
that we are interested in the case ω = −1.

Let W be any open set whose closure is a compact subset of {ω ∈ Ω :
|ω| < 1}. Then for some k′ all the operators Gk with k ≥ k′ will have
norm less than 1 when ω ∈ W and so the I − Gk will be invertible.
(We think of x and y as lying in fixed intervals bounded away from 0.)
Now let k0 be arbitrary. For fixed x and y, removing a finite set from
W will ensure that all I −Gk with k ≥ k0 are invertible. If x and y are
confined to sufficiently small intervals, there will still be a nonempty
open subset W0 of W such that all I − Gk with k ≥ k0 and ω ∈ W0

are invertible. Moreover, since |ω| < 1 in W0, it is clear that Gk → 0
in trace norm and Qk → I as k → +∞, so the argument given above
shows that (11) holds in this case for all k ≥ k0. But both sides of the
identity are analytic functions of ω ∈ Ω and, taking a suitable path in
Ω running from a point in W0 to ω = −1, we deduce (11) for ω = −1,
in other words, for our given operator.
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J. Math. Phys. 18 (1977), 1058 1092.

3. M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields IV, Publ. RIMS,
Kyoto Univ. 15 (1979), 871 972.

4. C.A. Tracy and H. Widom, Fredholm determinants and the mKdV/ sinh-
Gordon hierarchies, Comm. Math. Phys. 179 (1996), 1 10.

5. H. Widom, Some classes of solutions to the Toda lattice hierarchy, Comm.
Math. Phys., to appear.

Department of Mathematics, University of California at Santa Cruz,
Santa Cruz, CA 95064, USA
E-mail address: widom@math.ucsc.edu


