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ABSTRACT. We consider the equation x = V x + f with
a nonlinear Volterra operator V in a large class of spaces.
We prove that it has a local solution if V is continuous and
compact or (in case of a regular space) condensing.

We study the connection of local and global solutions and
gain in particular an abstract extension principle and some
results on global solutions for a ‘nonlinear Fredholm’ case and
for the case of positively homogeneous operators.

Moreover, we show that compact linear Volterra operators
in (not necessarily regular) ideal spaces have spectral radius
zero, which generalizes a result of Zabrejko.

The algebraic definition of ‘Volterra operator’ in the article
matches a much wider class of operators than the classical
Volterra operators. This more general notion leads to new
results, even when applied to the classical linear Volterra
operator in Lp.

We also give some applications to differential equations in
Banach spaces.

0. Introduction. We are concerned with the Volterra equation of
the second kind, x = V x+f with a nonlinear Volterra operator V . Here
the term Volterra operator is defined in an abstract way: in Section 1
we give the precise definition. Although this technical definition is of a
purely algebraic nature, it ‘catches’ the typical behavior of Volterra
operators. In Sections 2 and 3 we study the existence of ‘local,’
respectively ‘global,’ solutions of the Volterra equation. Since the
results in these sections are rather involved, we summarize the most
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important special cases in Section 4. In the final Section 5 we give
some applications to differential equations in Banach spaces. Because
we develop a special theory for Volterra operators ‘of Uryson type,’ we
are able to generalize Zabrejko’s result [28] that compact linear Volterra
operators in regular ideal spaces or in L∞ have spectral radius zero to
all ideal spaces. This can be considered as one of the main results of
this article; a proof in a more specific setting would not be much easier.
Moreover, we may generalize this result to iterates of Volterra operators
in regular spaces. It is hard to see how such a generalization could be
gained without our abstract approach. Hence, our algebraic definition
of ‘Volterra operator’ not only allows us to treat the most important
generalizations of the ‘classical Volterra operator’ in a unified way, but
really yields new results, even for the classical linear Volterra operator
in Lp.

1. Basic definitions. One of the main advantages of Volterra
equations compared with more general integral equations is that it
makes sense to speak of local solutions. We will define abstract Volterra
operators in such a way that we keep this advantage. In the abstract
case a local solution shall mean a solution in a certain subspace of the
corresponding projected equation. Thus, we shall consider an increasing
(and in some sense exhausting) chain of subspaces, which we assume
to be given as the ranges of projection operators Pi.

Let Z be a linear space. Let I be a linearly ordered index set with a
smallest element 0. For any i ∈ I, let Pi : Z → Z be a linear projection
operator, i.e., P 2

i = Pi, with the property that PiPj = PjPi = Pi for
i ≤ j. This means that the ranges of Pi are nondecreasing, PiZ ⊆ PjZ
for i ≤ j, and that the null spaces of Pi are nonincreasing. Moreover,
Pji = Pj − Pi, j ≥ i, is a projection. Let P i = id − Pi, P ji = id − Pji

denote the complementary projections.

We assume P0 = 0 and that x ∈ Z is characterized by its values
Pix, i.e., the intersection of the null spaces of Pi is trivial (this does
not imply that the union of the ranges of Pi is Z, if I has no maximal
element).

To get an idea, one should think of Z as a space of functions and that
Pix describes the behavior of x before the time i. Then Pjix describes
x between the times i and j.
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Definition 1.1. We call a (nonlinear) operator V : D ⊆ Z → Z
a 0-Volterra operator, with respect to the family of projections Pi, if
PiV x depends only on Pix, i.e.,

(1) Pix = Piy =⇒ PiV x = PiV y, x, y ∈ D.

We call V a Volterra operator if V additionally is partially additive,
i.e., if

(2) V (Pix+ P iy) + V (P ix+ Piy) = V x+ V y

holds for all x, y, for which this equation makes sense, i.e., if x, y,
Pix+ P iy, P ix+ Piy ∈ D.

Roughly speaking, a 0-Volterra operator V describes a system whose
current state does not depend on the future. If we properly want to
define the term local solution of x = V x+ f at time i = 0, this can be
done only if V is a 0-Volterra operator. The next proposition will show
that the partial additivity is a natural assumption. In order to define
the term local solution of x = V x + f at time i for any i in a sense
which really deserves this name, it is necessary and sufficient that V
be a Volterra operator.

A 0-Volterra operator V is characterized by the equation

(3) PiV = PiV Pi, i ∈ I,

where in case PiD �⊆ D, the characterization means that we may use
(3) to define PiV Pi on D (well-defined). In the following we shall use
this fact without comment.

In case PiD, P iD ⊆ D, the partial additivity just means

(4) V Pi + V P i = V + V 0, i ∈ I.

In case PiD ⊆ D, we put Vi = V − V Pi. If V is a 0-Volterra operator,
then (3) implies PiVi = 0. Roughly speaking, Vix describes the
behavior of V x if we ignore (subtract) how x behaves before the time
i. Now we prove the announced simpler characterization of Volterra
operators.
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Proposition 1.1. If PiD ⊆ D, then V : D → Z is a Volterra
operator if and only if PjiVix depends only on Pjix, i.e.,

(5) Pjix = Pjiy =⇒ PjiVix = PjiViy, x, y ∈ D, j ≥ i.

Proof. Observe that (5) is equivalent to

PjiVix = PjiVi(Pjix+ P jiy)

for all x, y ∈ Z with x, Pjix+ P jiy ∈ D. For a 0-Volterra operator V ,
we have

Pji[Vix− Vi(Pjix+ P jiy)]

= Pji[V x− V Pix− V (Pjix+ P jiy) + V Piy]
= Pj [V x− V Pix− V Pj(Pjix+ P jiy) + V Piy]
− Pi[V x− V Pix− V Pi(Pjix+ P jiy) + V Piy]

= Pj [V x− V Pix− V Pj(P ix+ Piy) + V Piy]
= Pj [V x− V Pix− V (P ix+ Piy) + V Piy].

Together, this implies that (5) is for a 0-Volterra operator V equivalent
to

(6) V Pix+ V (P ix+ Piy) = V x+ V Piy.

Thus, if V is a Volterra operator, then (2) applied to Piy instead of y
shows that (6) and thus (5) is satisfied. Conversely, if (5) holds, then
we find for i = 0 that V is a 0-Volterra operator, whence (6) is satisfied.
Interchanging the roles of x and y, this implies

V Piy + V (Pix+ P iy) = V y + V Pix.

Adding this equation to (6), we gain (2).

One might, of course, discuss whether the partial additivity should
already be included in the definition of the term Volterra operator. As
a matter of fact, even for 0-Volterra operators which are not partially
additive it is possible to define the term local extension of a solution of
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x = V x+ f at time i in a reasonable sense. However, the condition (5)
will allow us a definition of the term local solution of x = V x+f at time
i, which is easier to apply. Indeed, (5) means that Vi is a 0-Volterra
operator with respect to the family P̃j = Pji, j ∈ Ii := {j ∈ I : j ≥ i}.
(Observe that i ∈ Ii is the smallest element of Ii, whence i takes the
role of 0. We remark that the values P̃jx do not characterize x but
only characterize P ix; but this is inessential for our purposes.) This
observation allows us for Volterra operators V to reduce the definition
of the term local solution at i to that of local solution at 0, and so we
get a ‘homogeneous’ definition.

Whenever possible we formulate our results already for (not neces-
sarily partially additive) 0-Volterra operators V . We only break this
rule for the principles in Section 3 which allow us to conclude from
the existence of ‘local solutions’ to the existence of ‘global solutions,’
because we want to formulate them in a manner which is most suitable
for our applications. However, by the same methods of proof the reader
should have no difficulties in formulating corresponding principles for
0-Volterra operators which allow us to conclude from ‘local extensibility
of a solution’ to the existence of ‘global solutions.’

The reason why we did not use (5) as the definition of a Volterra
operator is that (5) only makes sense if PiD ⊆ D, otherwise Vi need
not be defined. Similarly, as before, we may (even in case PjiD �⊆ D)
characterize (5) by

(7) PjiVi = PjiViPji, j ≥ i.

In other words if PiD ⊆ D, then Volterra operators are characterized
by the single equation (7).

Let us briefly compare our definition with the one of Gohberg and
Krĕın for linear Volterra operators. The Pi in [10] correspond to our
complementary projections P i. In [10, Chapter 1] linear Volterra
operators are characterized by the fact that the ranges Ri of P i are
a chain of invariant subspaces. This corresponds to our definition. If
V : Z → Z is a 0-Volterra operator with V 0 = 0, then V Ri ⊆ Ri.
Conversely, if V : Z → Z satisfies V Ri ⊆ Ri and is partially additive,
then V is a 0-Volterra operator (whence even a Volterra operator).
Note, however, that our definition even in the linear case is essentially
different. Gohberg and Krĕın define Volterra operators to be linear
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and compact with spectral radius zero (in contrast, we will prove that
compact linear Volterra operators have spectral radius zero).

We remark that Ṽ = id − V is also a Volterra operator, so that in
particular for abstract Volterra operators it is just a matter of taste
whether we formulate our results for the equation x = V x + f of the
second kind or for the Volterra equation Ṽ x = f of the first kind.
However, quite often we will assume that V is small in some sense, e.g.,
compact, so that for the ‘classical’ Volterra equation of the first kind
just a few of our results are applicable (although there are some).

Our model situation is the following, still very abstract, example.

Example 1.1. Let Z be a linear space of functions x : S →W with
some set S and some linear space W . Let S = ∪Si with Si ⊆ Sj for
i ≤ j, S0 = ∅. We let Pix(s) = χSi

(s)x(s).

We have a similar situation, if S is a measure space, all Si are
measurable, W is a Banach space, and Z consists of (classes of)
(strongly Bochner) measurable functions x : S →W .

V is a 0-Volterra operator if and only if the values of V x on the set
Si depend only on the values of x on this set. V is a Volterra operator
if and only if the values of Vix on the set Sj\Si depend only on the
values of x on this set, assuming PiD ⊆ D.

The situation in this example is the appropriate setting to describe
Volterra operators in ideal spaces [27, 29] as, e.g., in the Lebesgue (-
Bochner) spaces Lp(S,W ) or in Orlicz spaces. We are mainly interested
in this situation. However, many important results are also available
in, e.g., spaces of continuous functions (we will give some examples), if
we define the projections differently.

Example 1.2. Let Z, S, Si,W be as in the previous example. For
i > 0, let πi : S → Si be mappings with πi(s) = s on Si, and
ci : S → R be mappings with ci(s) = 1 on Si. Moreover, assume
that πi(πj(s)) = πi(s) for j > i > 0. Then Pix(s) = ci(s)x(πi(s)),
P0 := 0, is a family of projections with all desired properties.

If S is a topological space, the Si ⊆ S are classed and ci are continuous
(and bounded) it may quite often be arranged that πi is continuous on
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the support of ci, i.e., that πi retracts supp ci onto Si, see [4]. In case of
a topological vector space W , this implies that the projection Pi maps
the space of continuous (and bounded) functions into itself.

Moreover, if Si ⊆ Rn are ‘good,’ it may additionally be arranged that
πi(s) is ‘near’ to an element of Si with smallest distance to s and that
ci : S → [0, 1] vanishes outside a ‘small’ neighborhood of Si so that Pi

maps also, e.g., the space of continuous functions with compact support
into itself. This in particular is the case in the following examples.

In the above settings we have the classical nonlinear Volterra oper-
ator. (Integrals occurring in the examples of this article are always
meant in the sense of Bochner-Lebesgue, although in most cases the
results carry over to other notions of integrals like Pettis integrals or
the Cauchy mean value, too.)

Example 1.3. Let S be some interval, t0 ∈ S, I = [0,∞] and
Si = S ∩ [t0 − i, t0 + i], S0 := ∅. Then

(8) V x(t) =
∫ t

t0

g(t, s, x(s)) ds

is a Volterra operator. It may happen that Pi = Pj for i �= j in this case,
which is not very natural; this can be avoided. If, e.g., S = [t0, t0 + a)
or S = [t0, t0 + b], we may just put I = [0, a) or I = [0, b]. Also for
other intervals we may proceed similarly: If e.g. S = [t0 − 1, t0 + 2),
we may put I = [0, 2); for S = (t0 − 1, t0 + 2] we may redefine, e.g.,
Si = [t0 − i, t0 + 3i] and put I = [0, 1). For the setting of Example 1.1
we could also have chosen open or half-open intervals for the definition
of Si. For the setting of Example 1.2 we define of course πi(s) as the
element of Si with the smallest distance to s, i.e.,

πi(s) =

⎧⎨
⎩
s if t0 − i ≤ s ≤ t0 + i,
t0 − i if s < t0 − i,
t0 + i if s > t0 + i.

Observe that also the cases t0 = ±∞ can be treated similarly.

However, our definition is made to deal with natural generalizations.
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Example 1.4. Let S = J × T with some interval J , t0 ∈ J ,
and a σ-finite (unsigned) measure space T . Put I = [0,∞] and
Si = S ∩ ([t0 − i, t0 + i] × T ), S0 �= ∅. Then

(9) V x(t, τ ) =
∫ t

t0

G(t, τ, s, x(s, ·)) ds

is a Volterra operator (G takes values in a Banach spaceW , and the last
argument of G is a function y : T →W ). Similarly, as in Example 1.3,
we may redefine I and Si also to have Pi �= Pj for i �= j or to treat the
cases t0 = ±∞. The most important special case of (9) is that G is an
integral functional,

(10) V x(t, τ ) =
∫ t

t0

∫
T

g(t, τ, s, σ, x(s, σ)) dσ ds,

since thus V is a Uryson operator, whence it is usually compact.

Be aware that if we identify functions which coincide almost every-
where, V in general is not well-defined by (9), but if it is well-defined,
it is a Volterra operator. However, this problem obviously does not
occur in (10).

We remark that ‘formally’ (10) might be considered as a special case
of (8), if we assume that x and g in (8) take values in an appropriate
Banach space of functions y : T → W and if we identify x(t)(τ ) =:
x(t, τ ). However, whether the corresponding Volterra equations really
are equivalent depends on the considered spaces. For results in this
direction in Lp, see, e.g., [12, pp. 68 70] or (for special cases in C and
Lp) [9]; for more general ideal spaces we refer to [27].

Equation (10) contains in particular the generalization of Example 1.3
for S ⊆ RN ,

V x(t) =
∫
{s∈S:‖s−t0‖≤‖t‖}

g(t, s, x(s)) ds,

if we put T = RN−1 (for N = 1 let T = {0}).
But even Example 1.4 may be generalized.

Example 1.5. With the notation of Example 1.4, the operator

(11) V x(t, τ ) =
∫ t

t0

G(t, τ, s, x(s, ·)) dμt,τ(s)
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is a Volterra operator. Here μt,τ is a σ-finite and, without loss of
generality, positive measure on [t0, t], respectively [t, t0]. Equation (11)
in particular includes the nonlinear partial integral operator of Volterra
type

(12)

V x(t, τ ) = g0(t, τ, x(t, τ )) +
∫

T

g1(t, τ, σ, x(t, σ)) dσ

+
∫ t

t0

g2(t, τ, s, x(s, τ)) ds

+
∫ t

t0

∫
T

g3(t, τ, s, σ, x(s, σ)) dσ ds.

To see this, let μt,τ be the sum of the point measure concentrated at t
and of the Lebesgue measure, and put

G(t, τ, s, y) =
{
g0(t, τ, y(τ )) +

∫
T
g1(t, τ, σ, y(σ)) dσ if s = t,

g2(t, τ, s, y(τ )) +
∫

T
g3(t, τ, s, σ, y(σ)) dσ if s < t.

Again, (12) is well-defined, even if functions coinciding almost every-
where on S (with respect to the Lebesgue measure on J) are identified.
For the general theory of partial integral operators, we refer to [2, 6,
14, 22] and the references therein, and for the linear Volterra case in
particular to [15, 30]. Note that the partial integral operator (12)
usually is not compact.

Operators such as (10) arise naturally in the theory of integro-
differential equations of Barbashin type [3, 9], and operators such as
(12) in generalized equations [5].

Most of our results will be applicable to operators of the form (11) of
the previous example. In this connection it is important to note that
this example includes all operators that occur typically in the study
of functional differential equations which arise from practical problems
like differential equations with memory or other delay equations.

Example 1.6. If we chose T = {0} in the previous example, then
(11) may with the obvious identification, ignoring the trivial second
argument of x, be written in the form

(13) V x(t) =
∫ t

t0

g(t, s, x(s)) dμt(s),
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where μt is a measure on [t0, t], respectively [t, t0]. Operators with
retarded argument, as, e.g., of the form

V x(t) =
n∑

k=1

fk(t, x(θk(t))) +
∫ t

t0

f0(t, s, x(s)) ds,

t0 ≤ θk(t) ≤ t, are of the form (13), i.e., they are special cases of
the previous example. To see this, let μt be the sum of the measure
concentrated at the points of {θk(t) : k = 1, . . . , n} and of the Lebesgue
measure, and put

g(t, s, y) =
{∑

k:θk(t)=s fk(t, y) if the sum is not empty,
f0(t, s, y) otherwise.

Observe that in all previous examples V is partially additive, since
it is some sort of Uryson operator. In Section 5 we will see, however,
that it is very useful that we do not restrict our attention to Uryson
operators (although we are mainly interested in those).

An example of a 0-Volterra operator which is (usually) not a Volterra
operator is an operator of the form

(14) V x(t) = G

( ∫ t

0

g(t, s, x(s)) ds
)
.

As a final example, we give another abstract Volterra-Uryson operator
in Banach spaces.

Example 1.7. Let Z be a Banach space with a (Schauder) base
(en)n. Let I = N and Pi(

∑
anen) =

∑
n≤i anen. Then the ‘Uryson’

operator

V

( ∑
anen

)
=

∑
n

( ∑
k

gnk(ak)
)
en

is a Volterra operator if and only if gnk = 0 for k > n, i.e., if the second
sum is finite and taken over the values k = 1, . . . , n.

Of course, by our definition, any operator can be written as a Volterra
operator with P0 = 0, P1 = id. But, for ‘reasonable’ Volterra operators
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as in the previous examples, the projections Pji become small in some
sense, and it is advantageous to consider the ‘local’ behavior of V on
the corresponding ranges, which usually is much easier to study.

2. Local solvability. Let Y ⊆ X ⊆ Z be subspaces of Z, and
let V : D ⊆ X → Y be a 0-Volterra operator. We shall not assume
that PiD ⊆ D. However, we will assume that PiX ⊆ X for all i. In
the setting of Example 1.1 one should think of Z as a ‘large’ space
like the space of all (measurable) functions and of X as a ‘good’ space
like spaces of summable or (essentially) bounded functions; it is not
excluded so far that Y and D contain only smooth functions, e.g.,
V : C(S,W ) → C(S,W ).

Since for the study of local solutions it is inessential whether x is
characterized by its values Pix, we drop this assumption in this section.
We only require that I be nontrivial, i.e., that there is some i > 0.

Definition 2.1. We say that V is locally solvable at 0 for some f ∈ X
if there exists some x ∈ D and some i > 0 such that Pix = Pi(V x+ f).

We call V uniformly locally solvable at 0 for some F ⊆ X if there is
some i > 0 such that Pix = Pi(V x + f) has for each f ∈ F a solution
x ∈ D.

In the setting of Example 1.1 a solution of Pix = Pi(V x + f) is a
solution x ∈ D on Si. Let ‖ · ‖ be a norm on X (and thus also on Y ).

Our key to local solvability is the following technical property.

Definition 2.2. We call V locally invariant at 0 for f ∈ X if there
exists some i > 0, some nonempty, bounded, convex and closed in X
set K ⊆ D and some g ∈ X with Pig = Pif such that g + PiV K ⊆ K.
Similarly, we say that V is uniformly locally invariant at 0 for F ⊆ X
if i can be chosen independently of f ∈ F .

If we know that V is locally invariant at 0, we can apply Schauder’s
fixed point theorem to prove that V is locally solvable at 0. Let us
formulate a more general result.

We say that B : D → X has the fixed point property, if the fact that
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Ax = Bx+f (with some f ∈ X) maps a closed bounded and convex set
K ⊆ D into itself implies that A has a fixed point in K. In particular,
if X is a Banach space, any compact and continuous B has the fixed
point property by Schauder’s fixed point theorem.

Proposition 2.1. Assume that each PiV has the fixed point property.
If V is (uniformly) locally invariant at 0, then it is (uniformly) locally
solvable at 0.

Proof. Choose K as in Definition 2.2. Then the operator Ax =
PiV x+ g maps K into itself, whence it has a fixed point x ∈ K : x =
PiV x+ g. Thus, Pix = Pi(PiV x+ g) = Pi(V x+ f).

Note that we have even found a solution x ∈ K.

First, some words on the fixed point property of PiV .

We call V : D → Y compact, if it maps bounded sets into precompact
sets, i.e., if for any bounded sequence xn ∈ D the sequence V xn

contains a Cauchy subsequence (observe that we require neither Y nor
X to be complete, nor V to be continuous).

Recall that the Hausdorff measure of noncompactness γ of a set
M ⊆ X is defined as the infimum of all ε > 0 such that M has a finite
ε-net in X (if X is important, we write γX instead). The Kuratowski
measure ψ of noncompactness is the infimum of all δ > 0 such that
M has a finite covering of sets with diameter less than δ. An operator
A : D ⊆ X → Y is called

1. q-condensing (usually with q < 1), if

γY (AM) ≤ qγX(M), M ⊆ D,

2. strictly q-condensing, if it is q-condensing and

γY (AM) < qγX(M), M ⊆ D bounded but not precompact,

3. condensing, if it is strictly 1-condensing.

Analogously, we may replace γ by ψ. If it is important, whether
we consider γ or ψ, we write, e.g., ψ-condensing or q-γ-condensing.
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Darbo’s generalization of Schauder’s fixed point theorem [7] states that
whenever a continuous condensing operator A : D ⊆ X → X maps a
closed, bounded, and convex subset M �= ∅ of a Banach space into
itself, it has a fixed point in M .

Proposition 2.2. Let X be a Banach space. Then PiV has the fixed
point property if it is continuous and condensing. This is the case if V
is continuous and strictly q-condensing with q‖Pi‖ ≤ 1.

The second part is a simple consequence of the fact that each bounded
linear operator P is ‖P‖-condensing (with respect to γ and ψ).

It is a natural question whether we may replace the completeness
of X by that of Y . Let us first try to replace the completeness of X
in Proposition 2.2 by the weaker condition that PiY is contained in
a complete subspace of X, i.e., that the closure PiY of PiY in X is
complete. If PiV is continuous and ψ-condensing, in particular, also if
V is compact, this indeed is possible. PiY is closed in the completion
of X, whence also the linear hull Xf of PiY and some given f ∈ X,
see, e.g., [23, Theorem 1.42]. Thus, Xf ⊆ X is a Banach space. If
Ax = PiV x + f maps a nonempty closed and convex set K ⊆ D
into itself, we have K ⊆ AD ⊆ Xf . Whence, by Darbo’s fixed point
theorem, A has a fixed point in K, if A is continuous and condensing
on K, with respect to the space Xf . For ψ this is satisfied, since
ψX(M) = ψXf

(M) for any M ⊆ Xf . The Kuratowski measure of
noncompactness of M depends only on the metric space induced by
M , not on the underlying space. However, for the Hausdorff measure
γ of noncompactness this need not be true.

Example 2.1. Let X = L∞([0, 2]), X0 = {x ∈ X : x ∈ C([0, 2]),
x|[1,2] = 0}, and M = {x ∈ X0 : x([0, 2]) ⊆ [0, 1]} ⊆ X0. Then
γX(M) ≤ 1/2 (the 1/2-net is given by the constant function x(s) ≡
1/2), but in X0 obviously there exists no finite ε-net for ε < 1 (for any
given finite net in X0 a function in M which is 1 on [0, 1 − δ] has for
sufficiently small δ > 0 distance bigger than ε), whence γX0(M) ≥ 1.
This example matches in the previous context for, e.g., Y = X0,
Pix(s) = χ[0,i](s)x(s), since then Xf = X0 for i ≥ 1 and f ∈ Y .
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We have shown that (for the Kuratowski measure ψ of noncompact-
ness), the completeness of X in Proposition 2.2 may be replaced by the
completeness of PiY . One might guess that this condition is satisfied
if Y is complete (which implies Y = Y ), at least if Pi is bounded. The
following discouraging example shows that this need not hold, even if
Pi is an orthogonal projection.

Example 2.2. Let Z be a separable Hilbert space with orthonormal
base (en)n and Y the closed linear span of the vectors e2n + ne2n+1.
Define a projection by P (

∑
akek) =

∑
a2ne2n. Let X be the linear

span of Y and PY . We claim that neither X nor PY (the closure taken
in X) is complete, since both spaces are not closed in Z. Indeed, PY
is a space containing each of the vectors e2n, whence PY is dense in
the closed linear span of these vectors. In particular, z =

∑
n−1e2n

belongs to the closure of PY (and of X) in the space Z. On the other
hand, z does not belong to X. Since X is the direct sum of Y and PY ,
it obviously suffices to check that z does not belong to PY , and this is
easily verified.

For condensing or compact 0-Volterra operators V , Proposition 2.2
reduced the problem of finding a local solution at 0 to the problem of
proving that V is locally invariant at 0. We show now that a compact
0-Volterra operator V usually is automatically locally invariant at 0.
Indeed, in this case we do not have to find a bounded invariant subset
(which of course is the crucial condition in Definition 2.2).

We write Kr(x0) for the closed ball {x ∈ X : ‖x − x0‖ ≤ r} and let
Kr(F ) = ∪f∈FKr(f).

Lemma 2.1. Let V : D → Y be a 0-Volterra operator. Let F,G ⊆ X
and M ⊆ D be convex and closed in X such that, for each i > 0 and
each f ∈ F there is some g ∈ G with Pig = Pif and g + PiVM ⊆M .

Moreover, assume that ‖Pi‖ ≤ C and that there are r > 0, B ⊆ X,
y0 ∈ X, N ≥ 0 such that, for K0 = M ∩Kr(G) we have V K0 ⊆ B,

(15) inf
i>0

‖Pi(y − y0)‖ ≤ N, y ∈ B,

and C(γB(V K0)+‖y0‖+N) < r. Then V is uniformly locally invariant
at 0 for F (with K = M ∩Kr(g), provided K �= ∅).
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Proof. We show first that, for any K ⊆ K0,

(16) m(K) = inf
i>0

sup
x∈K

‖PiV x‖ ≤ C(γB(V K) + ‖y0‖ +N).

ChooseH > γB(V K), N1 > N arbitrary. Let y1, . . . , yn ∈ B be a finite
H-net for V K. By (15) there exist ik > 0 with ‖Pik

(yk − y0)‖ ≤ N1.
For i = min{i1, . . . , in} this implies ‖Pi(yk − y0)‖ ≤ CN1. Given
some x ∈ K there exists some k ∈ {1, . . . , n} with ‖Pi(V x − yk)‖ ≤
C‖V x− yk‖ ≤ CH, whence

‖PiV x‖ ≤ CH + ‖Piyk‖ ≤ CH + C‖y0‖ + CN1.

Thus m(K) ≤ C(H + ‖y0‖ +N1), which implies (16).

Now we apply (16) for K = K0 and find some i > 0 with ‖PiV x‖ ≤ r
for all x ∈ K0. This is the desired i. Indeed, for given f and
corresponding g, we have with K = M ∩ Kr(g) that g + PiV K ⊆
g + PiV K0 ∈M ∩Kr(g) = K.

For easier reference we write down the most important special case:

Lemma 2.2. Let V : D → Y be a 0-Volterra operator. Let F,G ⊆ X
and M ⊆ D be convex and closed in X such that, for each i > 0 and
each f ∈ F , there is some g ∈ G with Pig = Pif and g + PiVM ⊆M .

Moreover, assume that ‖Pi‖ ≤ C and that there are VM ⊆ B ⊆ X,
y0 ∈ X, with

(17) inf
i>0

‖Pi(y − y0)‖ = 0, y ∈ B.

Let r > C‖y0‖ be such that K0 = M ∩ Kr(G) satisfies CγB
(V K0) <

r − C‖y0‖. Then V is uniformly locally invariant at 0 for F (with
K = M ∩Kr(g), provided K �= ∅).

The typical application of the lemma is meant for the case D = X
and either B = Y or B = V X. In this case we may put M = X and
G = F . Assume that (17) holds with y0 = 0. We will define a large
class of spaces where this is satisfied. In other spaces this is no principal
restriction, since we may rewrite the equation x = V x+ f in the form
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x = (V x − y0) + (f + y0) and consequently replace V by V − y0 (this
is still a 0-Volterra operator) and F by F + y0; however, observe that
in case B = V X this transformation changes the condition (17) (and
in case D �= X even more).

In this situation the lemma reads as follows. If (17) holds and
CγB

(V Kr(F )) < r, then V is locally invariant at 0 for F (with K =
Kr(f)). In particular, if each PiV has the fixed point property there is
some i > 0 such that, for each f ∈ F , the equation Pix = Pi(V x + f)
has a solution x ∈ X with ‖x− f‖ ≤ r.

In view of the last inequality, it is of interest that r > 0 may be chosen
arbitrarily small for bounded F ⊆ X, if V is compact. But also, under
different conditions, the inequality CγB

(V Kr(F )) < r is satisfied. For
example, in the important case F = {f}, we have γX(Kr(F )) ≤ r, even
with equality for infinite-dimensional X, see [1, Theorem 1.1.6], whence
it suffices that V is strictly q-γ-condensing as a mapping from X into
B, where qC ≤ 1. Then, for F = {f}, the inequality CγB

(V Kr(F )) < r
holds for arbitrarily small r > 0.

If V is even q-γ-condensing with qC < 1, then the inequality
CγB

(V Kr(F )) < r holds for bounded F , if r is chosen sufficiently large.

The previous discussion showed that, for compact 0-Volterra opera-
tors we reduced the problem of finding local solutions to the crucial
condition (17). We are going to show now that this condition is usually
satisfied. We will consider two situations. Either the space X is ‘nice,’
or the operator V is ‘of Uryson type.’ The first assumption is almost
trivial.

Definition 2.3. We call a set M ⊆ X regular at 0 (with respect to
the family Pi) if

inf
i>0

‖Pix‖ = 0, x ∈M.

If B is regular at 0, then (17) holds with y0 = 0.

All regular ideal spaces [27, 29] such as Lp(S,W ), 1 ≤ p < ∞,
over an atomic-free measure space S are regular at 0 for appropriate
(nontrivial) Pix(s) = χSi

(s)x(s) (and any M). But there are also
other examples. In particular, ideal spaces in the sense of Nguyen [20],
including the most general form of RN -valued Orlicz spaces [19, 21]
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fall into this class, if they are regular and the underlying measure space
S is atomic-free.

In contrast to the Lp-case, in many ideal spaces there exist nontrivial
sets which are regular at 0, although the whole space need not be
regular in 0. This is the case, for example, for all Orlicz spaces,
where the generating Young function is finite but does not satisfy a
Δ2-condition [16]. So it is important that in (17) we do not assume
the whole space X to be regular at 0, but assume this only for B.

Now we turn to the other condition, which implies (17). To get an
idea, observe that the condition (17) forB = VM reads infi>0 ‖Pi(V x−
y0)‖ = 0, which in case PiM ⊆ D can be rewritten as infi>0 ‖Pi(V Pix−
y0)‖ = 0. If ‖Pi‖ is uniformly bounded, it thus suffices that

(18) inf
i>0

‖V Pix− y0‖ = 0, x ∈M.

This motivates the following definition. For the remainder of this
section we will restrict ourselves to 0-Volterra operators V as described
in the setting of Example 1.1 (or of Example 1.2) with a topological
space W .

Definition 2.4. We call V : D → Y of Uryson type at 0, if there
is some y0 ∈ Y such that for any x ∈ D there exists some sequence
i1 ≥ i2 ≥ · · · > 0 with the following property. For all, respectively
almost all, t ∈ S, we have

lim
n→∞V Pin

x(t) = y0(t).

Example 2.3. Consider the setting of Example 1.1. If PiD ⊆ D,
the operators of Examples 1.3 and 1.4 are of Uryson type at 0 with
y0 = V 0; the same holds for Example 1.5, if we either may identify
functions coinciding almost everywhere, or if {t0}∩J is a null set with
respect to μt,τ .

It suffices to prove this for the most general Example 1.5. To consider
Bochner integrals, we assume here that (W, | · |) is a Banach space.
Fix x ∈ D. If μt,τ ({t0} ∩ J) �= 0, we may assume x(t0, ·) = 0
without loss of generality. For all (almost all) (t, τ ) ∈ S, we have



336 M. VÄTH

that V x(t, τ ) and y0(t, τ ) = V 0(t, τ ) is defined, whence m(s) =
G(t, τ, s, x(s, ·)) − G(t, τ, s, 0) is integrable with respect to μt,τ . Let
En be defined by S1/n = En × T , i.e., En is the first component
of S1/n. Since En is a decreasing sequence with ∩En = {t0} ∩ J ,
Lebesgue’s dominated convergence theorem (with dominating function
|m|) implies

|V P1/nx(t, τ ) − y0(t, τ )|
≤

∫
En

|G(t, τ, s, x(s, ·))−G(t, τ, s, 0)| dμt,τ (s)

−→
∫
{t0}∩J

|G(t, τ, s, x(s, ·))−G(t, τ, s, 0)| dμt,τ (s)

= 0 as n→ ∞.

For the last equality we used that either x(t0, ·) = 0 or μt,τ ({t0}∩J) =
0.

We remark that an analogous result holds for the setting of Exam-
ple 1.2 only under restrictive additional conditions on V and D, even
in the case of a classical linear operator V . For this reason the follow-
ing results are of practical interest only in the setting of Example 1.1
(although they hold more general).

Definition 2.5. We call the norm in Y compatible with pointwise
convergence if, for any Cauchy sequence xn ∈ Y which converges
pointwise, respectively almost everywhere to 0, we have ‖xn‖ → 0.

All ‘natural’ normed function spaces are compatible with pointwise
convergence. Typical spaces of measurable functions like Lp(S,W )
or Orlicz spaces or, more generally, all ideal spaces [27, 29] or ideal
spaces in the sense of Nguyen [20] have this property. Other examples
are C(S,W ), Cm(S,W ) or Wm(S,W ), and its various generalizations.
Moreover, the norm in Y is compatible with pointwise convergence if
it is a subspace of a space with this property. However, there exist
pathological spaces without this property. An example is given by the
preideal space Y = X of all measurable functions x : [0, 1] → R with
finite norm ‖x‖ =

∫ 1

0
|x(s)| ds + ess lim sups→0 |x(s)|, the norm of the

Cauchy sequence xn = χ(0,n−1] does not tend to 0.
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Lemma 2.3. Let ‖Pi‖ ≤ C, M,PiM ⊆ D ⊆ X, V : D → Y be
of Uryson type at 0 and the norm in Y be compatible with pointwise
convergence. If V is compact, then (17) is satisfied with B = VM .

Proof. Fix x ∈ D and choose in as in Definition 2.4. By the
compactness of V , the sequence yn = V Pin

x contains a Cauchy
subsequence ynk

. Since ynk
(t) → y0(t) for all (almost all) t, we have

‖ynk
− y0‖ → 0. Thus (18) holds, which implies (17) as shown above.

Although Lemma 2.3 is almost the best we can say for abstract
Volterra operators, in nonregular spaces, for many concrete operators
the compactness is not needed for (17).

Example 2.4. Consider the ‘classical’ Volterra operator (8) in
X = L∞(S,W ). Observe that X is as ‘nonregular’ as possible. It
seems natural to assume that, for any x ∈ D, we have V x(t) → 0
essentially as t → t0. For the Pi of Example 1.3, this already implies
that ‖PiV x‖ → 0 for i → 0, i.e., (17) is satisfied with y0 = 0 (and
B = V D).

However, even the linear Volterra operator V x(t) = t−1
∫ t

0
x(s) ds

fails to satisfy (17) in X = L∞, observe that thus Lemma 2.3 already
implies that V is not compact in X.

3. Global solvability. For global solvability of x = V x + f it
is usually not enough that V is compact and continuous, contrasting
with the case of local solvability. In typical cases, the solvability of
x = V x + f for all f ∈ D implies that V may not grow too fast near
∞.

Example 3.1. Let S = [0, 1], W = R and D contain the constant
functions. Let V be the autonomous Volterra operator

V x(t) =
∫ t

0

g(x(s)) ds.

Assume that g is continuous and on some interval J = [y0,∞) positive
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with ∫
J

du

g(u)
<∞.

Then x = V x+f is not solvable for some f ∈ D. Indeed, choose y > y0
with

∫ ∞
y
g(u)−1 du < 1, and put f(s) ≡ y. Then x = V x + f has no

solution. By the continuity of g, such an x would be continuously
differentiable and solve the initial value problem x′ = g(x), x(0) = y.
Then x(t) ≥ y for all t (if t0 is the infimum of all t with x(t) < y, we
have x(t0) = y, x′(t0) = g(x(t0)) = g(y) > 0, a contradiction). Thus
x(t) ∈ J implies x′(t) > 0, whence x is strictly increasing, and so

1 =
∫ t

0

x′(s)
g(x(s))

ds =
∫ x(1)

y

du

g(u)
,

which is not possible.

A similar result for the nonlinear Abel operator V x(t) =
∫ t

0
(t −

s)α−1g(x(s)) ds under more restrictive conditions on g can be found
in [11, Chapter 13, Theorem 5.4].

On the other hand, it is well known that linearly bounded differential
equations have global solutions.

We present some principles that allow us to prove the existence
of global solutions. As we already remarked, these principles could
be formulated more general for 0-Volterra operators which are not
necessarily partially additive (including, e.g., operators like (14)), but
for simplicity we intend to use the following notion of local solutions.

Recall that if V is a Volterra operator and PiD ⊆ D, then Vi =
V −V Pi is a 0-Volterra operator with respect to the sequence P̃j = Pji

(for the index set Ii = {j : j ≥ i}; observe that i is the smallest element
in this set, i.e., in our previous notation we have i = 0). If this operator
is locally solvable at 0, we call V locally solvable at i.

Definition 3.1. The Volterra operator V : D → Z with PiD ⊆ D
is locally solvable at i with respect to f0 and a set E ⊆ D if, for any
f ∈ f0 + V PiE there exists some j > i such that Pjix = Pji(Vix + f)
has a solution x ∈ E or if i = max I.

Similarly we say V has at most one local solution at i if, for any
f ∈ f0 + V PiE and corresponding two local solutions x, y ∈ E at i
there exists some j > i such that Pjix = Pjiy, or if i = max I.
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If x = V x + f has a solution x, then V is locally solvable at each i
with respect to each E ⊇ {x}. However, if x /∈ E it is not necessarily
true that V is locally solvable at i.

For differential equations it is well known that under weak assump-
tions the existence of local solutions implies the existence of a maximal
solution (on a maximal interval of existence). For abstract Volterra
equations we need some notions whose meaning is obvious for differen-
tial equations.

Definition 3.2. We call a set M full for D if, for any family
xi ∈ D, i ∈ I, with Pixi = Pixj , i ≤ j, there exists some x ∈ M
with Pix = Pixi.

We call D decomposable in M if, for any x, y ∈ D, i ∈ I, there is
some z ∈M with Pjz = Pj(Pix+ P iy), j ≥ i.

We say that i0 is a closure point of I0 ⊆ I if x, y ∈ Z and Pix = Piy,
i ∈ I0, implies Pi0x = Pi0y.

We call I0 ⊆ I interval if, i, j ∈ I0 and i < i0 < j implies i0 ∈ I0.

We call Pi dense if, for each interval 0 ∈ I0 � I there exists i0 = sup I0
and i0 is a closure point of I0.

There exists a set M full for D if and only if Z is full for D.

This means that Z should be chosen ‘sufficiently large.’ In Exam-
ple 1.1 the space Z of all (measurable) functions is full for any D ⊆ Z.
For S = R, I = [0,∞], Si = [−i, i] intervals are usual intervals, and the
closure points of I0 are the points in the least closed interval containing
I0 and 0. In all our examples the family Pi is dense. One should have
this case in mind, now.

Proposition 3.1 (Extension principle). Assume the axiom of choice.
Let D be decomposable in D, PiD ⊆ D and M be full for D. Let V be
locally solvable at any i with respect to f and E = D. Then there exists
a maximal solution x ∈ M of x = V x + f , i.e., there is some interval
I0 ⊆ I, I0 � {0} with the property that, for all i ∈ I0, the element Pix
belongs to D and is a solution of Pix = Pi(V x + f). Either I0 = I or
I0 is maximal in the sense that if i0 = sup I0 exists and is a closure
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point of I0, then Pi0x /∈ D, i.e., there is no y ∈ Z, Piy = Pix for i ∈ I0
with Pi0y ∈ D.

Proof. Let X be the set of all pairs (Pix, i) with x ∈ M , i > 0, such
that Pix ∈ D is a solution of Pix = Pi(V x+ f). X is partially ordered
by the relation (x, i) ≤ (y, j) for i ≤ j and Pix = Piy. Applying the
local solvability for i = 0, X is nonempty. By Hausdorff’s maximality
principle, see, e.g., [24, Appendix], there exists a maximal linearly
ordered subset H ⊆ X. Let I0 be the union of all i for which there
is some xi ∈ Z with (Pixi, i) ∈ H. We have Pixi ≤ Pixj for i ≤ j,
whence there is some x ∈M with Pix = Pixi for i ∈ I0. In particular,
H = {(Pix, i) : i ∈ I0}.

Let i0 = sup I0 be a closure point of I0. If y = Pi0x ∈ D, then
Piy = Pi(V y + f) for i ∈ I0 implies Pi0y = Pi0(V y + f), whence
(y, i0) ∈ X. Since (y, i0) ≥ (Pix, i) for all i ∈ I0, the maximality of H
implies (y, i0) ∈ H.

If i0 = max I, we thus have I0 = I and are done. Otherwise, since
V is locally solvable at i0, there exists some j > i0 and some y0 ∈ D
with Pji0y0 = Pji0(Vi0y0 + V Pi0x+ f). Since D is decomposable in D
and Pjy0, Pi0x ∈ D, also z = Pji0y0 + Pi0x belongs to D. Moreover,
Pji0z = Pji0(Vi0z+V Pi0x+f) = Pji0(Vi0z+V Pi0z+f) = Pji0(V z+f)
and Pi0z = Pi0y = Pi0(V y + f) = Pi0(V z + f), which together
implies Pjz = Pj(V z + f), whence (z, j) = (Pjz, j) ∈ X. Since
(z, j) ≥ (y, i0) ≥ (Pix, i) for all i ∈ I0, the maximality of H implies
(z, j) ∈ H, whence j ∈ I0, contradicting j > i0 = sup I0.

The axiom of choice is not needed if Pix = Pi(V x+ f) has for each i
at most one solution in PiM . In this case the order on X in the proof
is linear, and so the choice H = X is possible. This uniqueness is of
interest anyway.

Lemma 3.1. Let V : D → Z with PiD ⊆ D have at most one local
solution at i with respect to f and E = D. Assume that Pi is dense.
Then Pix = Pi(V x+ f) has for each i at most one solution in PiZ.

Proof. Let x, y ∈ PiZ be different solutions of Pix = Pi(V x+ f). Let
I0 be the interval of all j such that Pjx = Pjy and i0 = sup I0. Since
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i0 is a closure point of I0, we have z = Pi0x = Pi0y (and thus i0 < i).
Both x and y are solutions of the equation Pii0x = Pii0(Vi0x+V z+ f)
since Pix = Pi(V x + f) = Pi(Vi0x + V z + f) and analogously Piy =
Pi(Vi0y + V z + f). Since V has at most one local solution at i0, we
thus have Pji0x = Pji0y for some j > i0, which implies Pjx0 = Pjy0,
contradicting the maximality of i0.

Now we turn to a principle that yields global solutions, which is
somewhat related to the extension principle. In some applications it
may be hard to say something a priori about Pi0x if i0 = sup I0 is
a closure point of I0 and Pix = Pi(V x + f), i ∈ I0. However, it
might be possible to say something useful, if we know even more that
Pix = Pi(V x+ f), i ∈ I0, has a solution for each f in a set F .

Definition 3.3. Let V : D → Z be a 0-Volterra operator. Let Pi be
dense and (Ai) be statements with the following property. Whenever
(Ai) is true for all i in some interval 0 ∈ I0 � I, then (Ai0) is true for
i0 = sup I0.

We say that V is of Fredholm type for F ⊆ Z if there exist such
statements (Ai) and sets Ei ⊆ D such that, for each i the following
alternative holds. Either

1. (Ai) holds and Pix = Pi(V x+ f) has for each f ∈ F a solution in
Ei, or

2. (Ai) fails and Pix = Pi(V x + f) has for some f ∈ F no solution
in D.

A typical example of such a statement (Ai) is (let f0, y0 ∈ Z be fixed
for all i): Each solution of Pix = Pi(V x+ f0) satisfies Pix = Piy0.

In the case f0 = y0 = 0 and linear V : X → X, X being a linear
space with PiX ⊆ X, the alternative becomes the classical Fredholm
alternative for id − PiV with F = Ei = X; we show a refinement (for
bounded F and Ei) in the proof of Theorem 5.2.

Definition 3.4. The Volterra operator V : D → Z with PiD ⊆ D is
uniformly locally solvable at i with respect to F and a set Ei ⊆ D if, for
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any f ∈ F +V Ei, there exists some j > i such that Pjix = Pji(Vix+f)
has a solution, or if i = max I.

Proposition 3.2 (First uniform principle). Let V be a Volterra
operator of Fredholm type for F . Let Pi be dense, D decomposable
in D and PiD ⊆ D. Assume that V is uniformly locally solvable at
each i with respect to F and the set Ei for each i.

Then for each f ∈ F and each i, the equation Pix = Pi(V x+ f) has
a solution in Ei.

Proof. Let I0 be the set of all i for which the first alternative applies.
We have to prove that I0 = I.

Assume the contrary. 0 ∈ I0 � I is an interval. If i ≤ j, j ∈ I0, then
i ∈ I0. Indeed, for each f ∈ F , the equation Pjx = Pj(V x + f) has a
solution x ∈ Ej whence Pix ∈ D is a solution of Pix = Pi(V x+ f).

The Fredholm condition implies i0 ∈ I0 for i0 = sup I0. Indeed, since
(Ai) is true for all i ∈ I0, also (Ai0) is true.

Now choose j > i0 such that Pji0x = Pji0(Vi0x + V z + f) has for
each z ∈ Ei0 , f ∈ F , a solution x ∈ D. Since Pi0x = Pi0(V x + f) has
a solution z ∈ Ei0 , the same argument as in the proof of the extension
principle shows that y = Pji0x+Pi0z is a solution of Pjx = Pj(V x+f),
contradicting the maximality of i0.

Observe that if max I exists, then the conclusion says that x = V x+f
has a solution in D. If max I does not exist, but Z is full for D, then we
still have a (unique) x ∈ Z such that Pix ∈ D solves Pix = Pi(V x+f),
provided that either

1. V is uniquely locally solvable at each i, for all f ∈ F , or that

2. in the first case of the Fredholm alternative, we always have a
unique solution of Pix = Pi(V x+ f) in PiZ.

Now we turn to yet another principle. For a differential equation
the idea is just to partition the interval I into a finite, or countable,
number of subintervals and to solve the equation on each subinterval.
However, for abstract Volterra equations, where I may be ‘large,’ there
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is no reason to restrict to a countable number of subintervals. The
number of intervals can be any ordinal number.

Definition 3.5. A partition U is a mapping from an ordinal number
α into I with U(k) ≤ U(m) for k ≤ m, U(0) = 0, such that x ∈ Z
is characterized by the values PU(k)x, i.e., the intersection of the null
spaces of PU(k) is trivial.

Given a partition U , we write Qk = PU(k+1)U(k) = PU(k+1) − PU(k).

In the situation of Example 1.1, we may define
∑
Qkxk pointwise

without any notion of convergence since all except one term vanish.
Generalizing this idea yields

Definition 3.6. If U : α → I is a partition and xk ∈ D, then
there exists at most one x ∈ Z with Qkx = Qkxk for all k. We write∑
Qkxk := x.

If, for any xk ∈ D, we have that
∑
Qkxk is defined and belongs to

M , we call D summable in M .

Since x is characterized by PU(k)x, uniqueness is trivial.

Let us briefly address the question, when D is summable in M .
For a finite partition, i.e., α < ω, it obviously is sufficient that D
is decomposable in M ; for a countable partition α = ω, it suffices that
M additionally is full for D, and in general, a transfinite induction
shows that it suffices that additionally M is full for M .

Now assume PiD ⊆ D. For a set E ⊆ D and a partition U : α → I,
let U [E] denote the set of all sums of the form

∑
k<k0

Qkxk, k0 ∈ α, xk ∈ E,

(we assume that these sums exist). Observe that the inequality k < k0

is strict (in case k0 = 0, we let the empty sum be 0, as usual).
We assume that U [E] ⊆ D. In the most important case of a finite
or countable partition α ≤ ω, our assumptions are satisfied if D is
decomposable in D.
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Definition 3.7. We call V uniformly locally solvable with respect to
f0 and some set E ⊆ D if there exists a partition U with the following
property. For any k and any f ∈ f0 + V U [E] there exists a solution
x ∈ E of the equation Qkx = Qk(VU(k)x+ f).

If x = V x + f has a solution x, then V is uniformly locally solvable
with each E ⊇ {x}. It turns out that also the converse is true.

We now require additionally that E be summable in some M and
that, for each sum x, each projection PU(k)x belongs to D. For a finite
partition this is satisfied, for M = D, if E is decomposable in D. For
a countable partition it suffices that additionally E is summable in M ,
e.g., additionally M is full for E.

Proposition 3.3 (Second uniform principle). Let V be uniformly
locally solvable with respect to f and some E �= ∅. Then there is some
x ∈ M such that Pix ∈ D is a solution of Pix = Pi(V x + f) for all
i ≤ U(k), k ∈ α.

Proof. At first we define xk ∈ E by transfinite induction. Assume xk

is already defined for all k < k0. Then we put

fk0 = f + V

( ∑
k<k0

Qkxk

)
,

and let xk0 ∈ E be a solution of

Qk0xk0 = Qk0(VU(k0)xk0 + fk0).

The desired solution is now given by x =
∑
Qkxk. Indeed, as is

easily checked, PU(k0)x has the properties required in the definition
of

∑
k<k0

Qkxk, i.e.,

PU(k0)x =
∑
k<k0

Qkxk.

Putting y = PU(K)x, K ∈ α arbitrary, this implies
Qk0y = Qk0 [V y − V PU(k0)y + (f + V PU(k0)y)]

= Qk0(V y + f)

for all k0 < K, and thus our claim is obvious.
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Observe that the proof tacitly used the α-axiom of dependent choices,
see, e.g., [13], where α is the ordinal number used as the domain of U .
We needed this for the assumption that xk is a family (we have to
recursively ‘choose’ one solution xk for each k). But this is no severe
restriction. The (countable) axiom of dependent choices is usually
assumed in analysis anyway, and if one uses uncountable α, one will
probably assume even the axiom of choice (in its most general form).

To apply this principle, it is usually a good idea to consider (re-
finement) sequences of partitions Un and to check the assumptions for
sufficiently large n. Let us give two sample examples.

For simplicity, let D = X ⊆ Z be a Banach space with PiX ⊆ X,
Y ⊆ X be a subspace and V : X → Y a Volterra operator.

In the following we will consider (refinement) sequences of partitions
Un. We will assume that these partitions are either finite or countable.
In the first case we put M = D, in the second we assume that M ⊆ Z
is full for D. We say that x is a global solution for x = V x + f with
respect to the given partition sequence, if x ∈ M , and if there is one
partition U = Un, such that Pix ∈ X solves Pix = Pi(V x + f) for all
i ≤ U(k). The second uniform principle implies that x = V x+ f has a
global solution if V is uniformly locally solvable with respect to f and
E = X for some partition U = Un.

We say that V is F -onto with respect to a partition sequence Un if
the fact that Q(n)

k x = Q
(n)
k (V x+ f) has a solution in X for each f ∈ F

implies that it even has a solution in X for each f ∈ λF , λ ≥ 1. For
example, if V satisfies V (λx) = λV x for all λ > 0, then V is F -onto
for any F and any partition sequence Un.

Similarly, as in Lemma 2.2, we can now prove

Theorem 3.1. Let in the above situation V be Kδ(0)-onto for some
δ > 0 and ‖Q(n)

k ‖ ≤ C. Assume, moreover, that

(19) lim
n→∞ sup

k
‖Q(n)

k y‖ = 0, y ∈ Y.

Let V be continuous and q-γ-condensing as a mapping from D = X
into Y , where q < 1/(C +C2). Then x = V x+ f has a global solution
for each f ∈ Z with Pif ∈ X, i ∈ I.
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Proof. Choose r > 0 with qC(1 + C)r + δ < r and ε > 0
with q(1 + C)r < ε such that ρ = r − (Cε + δ) > 0. Put G =
V Kr(0)−V KCr(0). We have γY (G) ≤ γY (V Kr(0))+γY (V KCr(0)) ≤
q(γX(Kr(0))+γX(KCr

(0))) = q(1+C)r < ε. Thus there exists a finite
ε-net ym ∈ Y for G. For sufficiently large n we have ‖Q(n)

k ym‖ ≤ ρ for
all k and m. We claim that each such partition U = Un the solution
Qkx = Qk(V x + f) has for each f ∈ Kδ(0) (whence even for each
f ∈ X) a solution in X. By the second uniform principle for E = X,
this proves the statement.

Indeed, let f ∈ Kδ(0) and k be given. Then Ax = QkVU(k)x+f maps
Kr(0) into itself. Given x ∈ Kr(0), we have VU(k)x ∈ G. Whence there
exists some m with ‖VU(k)x−ym‖ ≤ ε. Then ‖Qk(VU(k)x−ym)‖ ≤ Cε,
whence

‖Ax‖ ≤ Cε+ ‖Qkym‖ + ‖f‖ ≤ Cε+ ρ+ δ = r.

Next observe that A is continuous in X and condensing (even q(C +
C2)-condensing) since γX(AK) ≤ CγY (VU(k)K) ≤ C (γY (V K) +
γY (V PU(k)K)) ≤ Cq(γX(K) + γX(PU(k)K)) ≤ qC(1 + C)γX(K). By
Darbo’s fixed point theorem A has a fixed point x ∈ Kr(0), i.e.,
Qkx = QkAx = Qk(VU(k)x+ f).

Roughly speaking, we replaced the condition that B is regular in X
in Lemma 2.2 by the ‘uniform regularity’ condition (19) and adopted
the proof of Lemma 2.2 to show that V is uniformly locally solvable
with respect to f and some appropriate partition U = Un.

Observe that if maxUn (= max I) exists for all n, a global solution
x of x = V x + f is indeed a solution in X of this equation. In
many cases there exist such partitions Un satisfying (19). Consider
the setting of Example 1.1 with a σ-finite atomic-free measure space,
S. If Y is a regular ideal space (in the usual sense [27, 29] or, in
the sense of Nguyen [20]) it is easy to check that, for ‘sufficiently
dense’ Pi (in particular for the Pi used in Examples 1.3 1.5 with
I = [0,∞]) there exist even finite partitions Un satisfying (19). For
example, for S = R, Si = [t0 − i, t0 + i], we may let Un take the values
0, 2−n, 2 · 2−n, 3 · 2−n, . . . , n,∞.

Sadly, by the method of proof in the previous theorem, it is not
possible to consider spaces which are not regular. The difficulty is that
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in transferring the condition (15), respectively (17), from the single
operator V to the family VUn(k), the ranges of these operators differ with
n and k (in the previous proof, we just included them straightforwardly
in Y ).

However, by a refinement of our technique, it is also possible to
transfer the condition (15), if we additionally assume that V is compact
and the family Q

(n)
k VUn(k) is equicontinuous. The idea is the simple

observation that if a compact operator A maps a bounded set H into
itself, it also maps the precompact set H ∩ AH into itself. And in
compact sets, the pointwise limit (20) becomes a uniform limit due to
the equicontinuity of the family Q(n)

k VUn(k).

Theorem 3.2. Consider the situation described in front of The-
orem 3.1. Assume there is a precompact set G ⊆ X such that each
V Kr(0) is contained in some positive multiple of G. Let V be F -onto,
where F is the closed and convex hull of G, 0, and some given f ∈ X.
Let ‖Q(n)

k ‖ ≤ C, and assume that the family Q(n)
k VUn(k) is equicontin-

uous on compact sets. Assume, moreover, that

(20) lim sup
n→∞

sup
k

‖Q(n)
k VUn(k)x‖ ≤ N <∞, x ∈ X.

Then x = V x+ f has a global solution.

Proof. By the second uniform principle, it suffices to prove that V
is uniformly locally solvable with respect to f and E = X for each
partition U = Un with sufficiently large n. At first we determine those
n:

1. Since F is compact, we have F ⊆ Kr(0) for some r > 0.
Choose δ > 0, N1 > N and R ≥ Cr + N1 + δ. The set H =
conv (V KR(0) − V KCR(0) + F ) is compact. By assumption, there
exists some e > 0 such that

(21)
‖x− y‖ ≤ ε =⇒ ‖Q(n)

k VUn(k)x−Q
(n)
k VUn(k)y‖ ≤ δ

x, y ∈ H.

Moreover, H contains a finite ε-net xm ∈ H. For all U = Un with
sufficiently large n, we have ‖QkVU(k)xm‖ ≤ N1 for all k andm, whence

(22) sup
k

‖QkVU(k)x‖ ≤ N1 + δ, x ∈ H.
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2. Fix g ∈ F . The operator Ax = Qk(VU(k)x + g) maps the
set K = KR(0) ∩ QkH into itself: let x ∈ K. On the one hand,
x ∈ KR(0) implies Ax ∈ QkH. On the other hand, there is some
y ∈ H with x = Qky whence Ax = Qk(VU(k)y + g), and (22) implies
‖Ax‖ ≤ N1 + δ + C‖g‖ ≤ R, i.e., Ax ∈ KR(0). Together we have
Ax ∈ K as stated.

3. Since K is nonempty, 0 ∈ K, convex and compact (because H is
compact), Schauder’s fixed point theorem implies that A has a fixed
point x ∈ K. Thus Qkx = QkAx = Qk(VU(k)x+ g).

4. We have shown that for each g ∈ F the equation Qkx =
Qk(VU(k)x+ g) has a solution x ∈ X. Since V is F -onto, the equation
even has a solution for each g ∈ λF , λ ≥ 1. Since V X ⊆ ∪λ>0λG,
we have ∪λ≥1λF ⊇ f + V X. In particular, the equation Qkx =
Qk(VU(k)x+ g) has for each g ∈ f +V X a solution in X, which we had
to prove.

The first two conditions of Theorem 3.2 are satisfied if V is compact
and V (λx) = λV x, λ > 0. In this case one may, e.g., choose G as the
convex hull of 0 and V K1(0).

The equicontinuity assumption in Theorem 3.2 is satisfied if V is
uniformly continuous on balls. Indeed, by ‖Q(n)

k ‖ ≤ C, the fam-
ily V Q

(n)
k and thus also Q

(n)
k V Q

(n)
k is equicontinuous on compact

sets, and it remains to observe that Q(n)
k VUn(k) = Q

(n)
k VUn(k)Q

(n)
k =

Q
(n)
k (V Q(n)

k − V 0).

We emphasize that Theorem 3.2 is not the most general theorem
that we may obtain by this method of proof. Observe in particular
that δ > 0 was chosen arbitrarily in the proof, so that we did not
need the full strength of both, the compactness of H and of the
equicontinuity of Q(n)

k VUn(k) for the estimate (21). If we can gain such
an estimate for all y of a finite ε-net on H by other means, e.g., by an
appropriate combination of a Lipschitz or Hölder condition and some
condensing condition for V , we could proceed similarly also for other V ,
in particular for certain noncompact V (in the third step of the proof
we then will have to assume some fixed point property and replace K
by K; observe that AK ⊆ K implies AK ⊆ K for continuous A).

Similarly, as (15), the condition (20) is usually even satisfied with
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N = 0; this is the case, of course, if V X is ‘uniformly regular,’ i.e., if
(19) holds. But this is also satisfied for Volterra operators, which are
‘uniformly of Uryson type,’ as can be seen analogously to Lemma 2.3.

Lemma 3.2. Consider the setting of Example 1.1 with a topological
space W in the above situation. Let the norm in Y be compatible with
pointwise convergence and ‖Q(n)

k ‖ ≤ C. Assume for each x ∈ X we
have for all, respectively almost all, t ∈ S, that

(23) lim
n→∞V Q

(n)
k x(t) = V 0(t), uniformly in k.

If V is compact, then (20) holds with N = 0.

Proof. Assume the contrary. Then there are x ∈ X, δ > 0 and, for
each n some kn such that ‖Q(n)

kn
VUn(kn)x‖ > δ. Since yn = Q

(n)
kn

(x)
is bounded, the sequence zn = VUn(kn)yn = Vyn

− V 0 has a Cauchy
subsequence. Since, by assumption, zn converges pointwise to 0, this
subsequence must converge to 0 in norm. But by ‖Q(n)

k ‖ ≤ C this
implies that also a subsequence of Q(n)

kn
zn = Q

(n)
kn
VUn(kn)x converges to

0 in norm, a contradiction.

Similarly, as in Example 2.3, one may check that the crucial condition
(23) holds for the operators of the Examples 1.3 and 1.4, I = [0,∞],
with an appropriate sequence of (even finite) partitions Un. We may,
e.g., let Un take the values 0, 2−n, 2 · 2−n, 3 · 2−n, . . . , n,∞.

Although Theorems 3.1 and 3.2 seem to be applicable mainly for just
linear operators, we may also use them for certain nonlinear operators.

Example 3.2. Let X be an ideal space of real functions over some
(bounded or unbounded) interval S. Let

V x(t) =
∫ t

t0

k(t, s)|x(s)| ds

act in X, the cases t0 = ±∞ are not excluded. Assume that V is
compact. Alternatively, assume that V is q-γ-condensing with q < 1/2
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as a mapping from X into a regular ideal subspace Y ⊆ X. Then, for
any f ∈ X, there exists some x ∈ X with x = V x+ f .

Indeed, if V acts in X, also the linear integral operator Ax(t) =∫ t

t0
k(t, s)x(s) ds acts in X (writing x = x+ − x− with x+, x− ≥ 0

we have Ax = V x+ − V x−). This implies that A is bounded [27]
(for X = Lp, see, e.g., [17]). Whence, V is Lipschitz continuous with
constant ‖A‖. Now apply Theorem 3.2, respectively 3.1.

4. Summary of main results. Let us first summarize the most
important special cases that guarantee local solutions (at 0). Let
V : D → Y be a 0-Volterra operator, where Y is a subspace of some
normed linear space X ⊇ D. Assume PiX ⊆ X and, moreover, that
the linear projections Pi : X → X are bounded. By Lemma 2.2, with
G := F for simplicity, we have for regular spaces:

Theorem 4.1. Let Y ⊆ X be regular at 0 (Definition 2.3). Let
X be a Banach space. Let M �= ∅ be convex and closed in X with
f + PiVM ⊆ M , i > 0. Assume that V is continuous and strictly
q-γ-condensing as a mapping from D ⊆ X into Y where q‖Pi‖ ≤ 1.

Then x = V x + f has a local solution at 0 in M , i.e., Pix =
Pi(V x+ f), for some i > 0.

If even q‖Pi‖ ≤ c < 1, then V is uniformly locally solvable at 0 for
any bounded F ⊆ X, i.e., i may be chosen independently of f ∈ F ,
provided that F + PiVM ⊆M , i > 0.

In case D = X one may, of course, choose M = X.

If V D is not regular at 0, we assume that V is of Uryson type at 0,
Definition 2.4. Recall that all Volterra operators in Examples 1.3 1.5,
for Example 1.5 with the restriction given in Example 2.3, have this
property.

Then Lemma 2.2 and Lemma 2.3 imply:

Theorem 4.2. Let V be of Uryson type at 0, continuous and
compact. Assume that PiD ⊆ D and that X is a Banach space. Let
M �= ∅ be convex and closed in X with F + PiVM ⊆ M for some
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bounded F ⊆ X. Let ‖Pi‖ ≤ C be uniformly bounded and the norm in
Y be compatible with pointwise convergence.

Then V is uniformly locally solvable at 0 for F .

For the classical Volterra operator in ideal spaces the previous theo-
rems mean the following:

Corollary 4.1. Let X be a (vector-valued) ideal space over some
interval S, e.g., X = Lp(S,W ), 1 ≤ p ≤ ∞, and t0 ∈ S, t0 = ±∞ is
not excluded. Assume that the Volterra-Uryson operator

(24) V x(t) =
∫ t

t0

g(t, s, x(s)) ds

acts from X into X and is compact and continuous. If X is regular,
p <∞, V need not be compact but only γ-condensing.

Then, for any f ∈ X there are a neighborhood of t0 and x ∈ X such
that x(t) = V x(t)+f(t) holds for almost all t ∈ S in this neighborhood.
Moreover, if either X is regular and V is q-γ-condensing with q < 1,
or if V is compact, the neighborhood may be chosen independently of f
in bounded subsets of X.

In the space X = C(S,W ) of bounded continuous functions with
the sup-norm we assume that the range of V is even contained in the
subspace Y = C0(S,W ) of functions vanishing at t0, i.e., x(t) → 0
for t → t0. In case t0 ∈ S this already follows from V : X → X, if
one understands the definition of V in the sense that V x(t) is given
by (24) for any t (but observe that sometimes it may be convenient
to weaken this convention by allowing V x to be modified on, e.g., null
sets to get a continuous image; in this case V X ⊆ Y is an additional
requirement, of course). Since, for the projections of Example 1.2, the
set Y = C0(S,W ) is regular at 0, we have

Corollary 4.2. Let, with the notation of the previous corollary
X=C(S,W ) or X=C0(S,W ) and V : X→C0(S,W ) be γ-condensing.
Then, for any f ∈ X there are a neighborhood of t0 and x ∈ X such that
x(t) = V x(t) + f(t) holds for all t ∈ S in this neighborhood. Moreover,
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if V is q-γ-condensing with q < 1, the neighborhood may be chosen
independently of f in bounded subsets of X.

Analogous results hold of course also for the more general Volterra
operators of Examples 1.4 and 1.5, in particular for (10).

To our knowledge, Corollary 4.1 is new in this generality. In the
literature it only had been observed that certain compactness criteria
give invariant subsets for the application of Schauder’s fixed point
theorem for Volterra equations, see, e.g., [26] or the proofs of [11,
Chapter 12, Theorems 4.1 4.4]. But we showed that already the
compactness itself is the reason for this. The reader may find it
enlightening trying to prove Corollary 4.2 straightforwardly by Darbo’s
fixed point theorem. To find an invariant subset for the operator
Ax = Pi(V x + f) one has to employ the fact that the image of V
is ‘almost equicontinuous at t0’ on bounded subsets. This is what we
have done implicitly by Lemma 2.2.

Concerning global solvability, we consider now the extension princi-
ple. Let us assume now that PiD ⊆ D. The crucial assumption is of
course that Vi = V −V Pi must be locally solvable at any i. For this, we
may use our previous results, if we replace V by Vi (and the projections
Pi by Pji). Thus, we define corresponding to Definition 2.3,

Definition 4.1. We call a set M ⊆ X regular (with respect to the
family Pi) if, for each i ∈ I, i �= max I,

inf
j>i

‖Pjix‖ = 0, x ∈M.

Each regular ideal space (in the usual sense [27, 29], or in the sense of
Nguyêñ [20]) over some S ⊆ Rn is regular in the sense of Definition 4.1
for the projections used in Examples 1.3 1.5.

Theorem 4.3. Let Y be regular. Let X be a Banach space. Suppose
that, for each y ∈ V D and any i �= max I there is some M �= ∅ (convex
and closed in X) with PjViM + y + f ⊆ M , j > i. Assume that each
Vi is continuous and strictly q-γ-condensing as a mapping from D ⊆ X
into Y , where q‖Pji‖ ≤ 1.



ABSTRACT VOLTERRA EQUATIONS 353

Then V is locally solvable at each i with respect to f and E = D.

If even q‖Pji‖ ≤ ci < 1 and Ei, F ⊆ X are bounded such that, for any
i �= max I there is some M with PjViM +F +V PiEi ⊆M , i < j, then
V is uniformly locally solvable (Definition 3.4) at each i with respect to
F and Ei.

Similarly we say that V is of Uryson type, if each Vi, i �= max I,
is of Uryson type at 0 with respect to the family P̃j = Pji. As in
Example 2.3, it can be checked that all operators of Examples 1.3 1.5
are of Uryson type, for Example 1.5 under the restriction that functions
coinciding almost everywhere are identified.

Theorem 4.4. Let V be of Uryson type, continuous and compact.
Assume that X is a Banach space, PjiD ⊆ D, ‖Pi‖ ≤ C is uniformly
bounded, and the norm in Y is compatible with pointwise convergence.
Suppose that, for each y ∈ V D and any i �= max I there is some M �= ∅

(convex and closed in X) with PjViM + y + f ⊆M , j > i.

Then V is locally solvable at each i with respect to f and E = D.
If Ei, F ⊆ X are bounded such that, for any i �= max I there is some
M with PjViM + F + V PiEi ⊆ M , i < j, then V is uniformly locally
solvable at each i with respect to F and Ei.

To apply the extension principle, we will assume that Z is full for D
and that the Pi are dense (Definition 3.2). This is in particular satisfied
for the projections occurring in Examples 1.3 1.5. We will also assume
that D is decomposable in D (Definition 3.2) which is natural in these
examples, if we let D ⊆ X be the natural domain of definition.

Theorem 4.5. Let, in the above situation, V be locally solvable at
each i with respect to f ∈ X and E = D. Assume the axiom of choice.

Assume that we know a priori that, for any x ∈ Z with the property
that Pix ∈ D is a solution of Pix = Pi(V x+f) for all i in some interval
0 ∈ I0 � I, we have for i0 = sup I0 that Pi0x ∈ D.

Then x = V x+ f has a (global) solution x ∈ Z, i.e., Pix ∈ D solves
Pix = Pi(V x+ f) for all i. If max I exists, x = V x+ f has a solution
x ∈ D.
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If V is even uniquely locally solvable, then the axiom of choice is not
needed and, moreover, the solution is unique in Z.

In Example 1.3 and S = [0,∞) the a priori assumption is much more
restrictive, if I = [0,∞] than if I = [0,∞). Observe that in the second
case max I does not exist!

In many cases, e.g., for ideal spaces, X is full for bounded subsets of
X. In these cases the a priori assumption is satisfied, if for any interval
0 ∈ I0 � I and any x ∈ Z with Pix ∈ D, Pix = Pi(V x+ f) for i ∈ I0,
we have that ‖Pix‖ is uniformly bounded for i ∈ I0. In particular,
a priori estimates lead to global existence results (as for differential
equations).

But we emphasize that, in contrast to differential equations, a priori
estimates are usually not the best way to prove global existence results
for abstract Volterra equations. Quite often it is more convenient to
use one of the two uniform principles instead, cf. also Theorems 3.1 and
3.2.

5. Applications. At first we give some applications to differential
equations in Banach spaces. Although these applications are well
known in principle, cf., e.g., [8], we are able to drop some conditions,
which usually are imposed. The proofs might throw some light on our
abstract approach.

By a solution of the initial value problem

(25) x′(t) = g(t, x(t)), x(t0) = y ∈W

in a Banach space W on some interval S � t0, we mean by definition a
continuous solution of the Volterra equation x = V x+ f on S, where

V x(t) =
∫ t

t0

g(s, x(s)) ds, f(t) ≡ y.

Theorem 4.5 implies together with Theorem 4.3, respectively 4.4,

Theorem 5.1. Let S be compact and V act from X = Lp(S,W ),
1 ≤ p ≤ ∞, into Y = C(S,W ). Let V : X → X be continuous and
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each Vi : X → X be γ-condensing. In case p = ∞, let V : X → X even
be compact. Assume the axiom of choice.

If we know a priori that each continuous local solution of (25) is
(uniformly) bounded on its interval of existence, then (25) has a global
continuous solution.

Proof. Since a solution of x = V x + f by the acting property of
V automatically belongs to Y , we only have to look for solutions of
x = V x+ f in X. In view of Theorem 4.3, respectively 4.4, it remains
to check the a priori condition of Theorem 4.5. Here we have the slight
difficulty that we only know something about continuous local solutions
of x = V x+ f .

However, if we have a solution x ∈ X of Pix = Pi(V x+ f) for all i in
some interval I0, the acting property of V implies that x is continuous in
the interior of the corresponding existence interval. Thus, our a priori
assumption yields that x is essentially bounded on this interval, and
thus that Pi0x ∈ X for i0 = sup I0.

We could, of course, also have replaced X by any other regular (for
compact V even general) ideal space that contains C(S,W ).

Observe that, under our weak assumptions, the existence of even
local solutions is far from being trivial for general W since g might be
very badly behaved, in particular, sup|u|≤|x(t)| |g(t, u)| need not even
by integrable.

If we want to restrict the domain D of V , for X = L∞(S,W ), say,
we may not use Theorem 4.3, respectively 4.4, without severe technical
difficulties. In this case it is usually more convenient to assume the
local invariance a priori, e.g.,

|V x(t) − V x(s)| −→ 0 for t→ s

locally uniformly in x ∈ D for open D (then Ax = f0 + PjiVix maps
for j > i, j sufficiently near to i, a ball Kr(f0) into itself, when
f0 ∈ D), and to apply a fixed point theorem directly. Observe that
D is decomposable in D, if D is the natural domain of V , i.e., if D
consists of all functions x ∈ X such that Gx(s) = g(s, x(s)) is almost
everywhere defined and integrable.
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We remark that compactness, condensing and continuity conditions
for V : X → C(S,W ) have been considered by the author in [25].

It should be observed that the continuity of g with respect to both
variables is not enough for Theorem 5.1 to hold. This is sufficient, of
course, if W has finite dimension (apply the Arzela-Ascoli criterion).
But otherwise we not only have the problem that V need not be
compact, even if g is continuous and locally Lipschitz continuous
(whence the problem is locally uniquely solvable) it may happen that
the local solution x has a (uniformly) bounded extension to a maximal
interval [t0, T ) but that x(t) does not tend to a limit for t→ T , see [8,
Example 1.1]. This is due to the fact that g need not map bounded
sets into bounded sets, and thus V need not act from X into Y .

A standard application of Gronwall’s lemma yields

Example 5.1. Let g be continuous, and assume that there exist
continuous functions a, b with |g(s, u)| ≤ a(s) + b(s)|u|. Assume,
moreover, that the mapping V : Lp(S,W ) → Lp(S,W ), 1 ≤ p ≤ ∞,
is continuous for each compact interval S and that Vi is condensing.
Assume the axiom of choice. Then the initial value problem (25) has a
continuous global solution.

For p = ∞ we only need that Vi is condensing this time, and we may
also allow V to be ψ-condensing, since by our growth estimate local
solutions are no problem (as sketched above, we have local invariance,
and so we just need to apply Darbo’s fixed point theorem).

Example 5.1 should be contrasted with Example 3.1.

We are going to show now that, even in the linear case, we have
new results. At first we obtain some generalizations of Zabrejko’s
result, that compact linear (classical) Volterra operators in regular ideal
spaces, in L∞, or in C have a trivial spectrum [28]. In particular,
we generalize this to arbitrary ideal spaces. Using the second uniform
principle we already found related results in Theorems 3.1 and 3.2. But
we will give yet another approach, using the first uniform principle.

For the remainder of this section we will assume that X is a Banach
space, Pi : X → X is bounded, and that V : X → Y ⊆ X is a linear
continuous Volterra operator. We define the spectral radius r(V ) of V
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by the Gel’fand formula

r(V ) = lim
n→∞ ‖V n‖1/n = inf

n
‖V n‖1/n.

Observe that this definition also makes sense, if X is real.

Theorem 5.2. Let Y be regular and V be q-γ-condensing where
‖Pi‖q < 1 for all i. Let each Vi be qi-γ-condensing with qi‖Pji‖ ≤ ci <
1. Assume that Pi is dense and max I exists. Then r(V ) < 1.

Proof. If X is real, it is straightforward to check that all assumptions
are satisfied for the complexification, cf., e.g., [1, Section 2.6.1], of X
and V . Thus, without loss of generality, we will assume that X is
a complex Banach space. If the statement is false, id − λV is not
one-to-one or onto for some 0 < |λ| ≤ 1. Since Ṽ = λV satisfies all
assumptions, too, we may assume λ = 1 and have to prove that id− V
is one-to-one and onto.

It remains to prove that x = V x + f has for each f ∈ X a unique
solution x ∈ X. Observe that PiV is ‖Pi‖q-γ-condensing. By [1,
Theorem 2.3.7], id−PiV thus is either one-to-one and onto, or neither
one-to-one nor onto. In the first case, we put Ei = (id − PiV )−1F
(F = Kρ(0) with fixed ρ > 0; by the open mapping theorem, Ei

is bounded), and in the second case we choose arbitrary bounded
Ei. Then V is of Fredholm type, Definition 3.3, for F , Ei and the
statements (Ai) = ‘id − PiV is one-to-one’.

Indeed, let (Ai) hold for all i in some interval 0 ∈ I0 � I and
i0 = sup I0. If (Ai0) fails there is some x �= 0 with x = Pi0V x. Then
Pi0x = Pi0V x �= 0 implies that there is some i ∈ I0 with Pix �= 0, since
Pi is dense. But then Pix �= 0 solves x = PiV x, whence (Ai) fails, a
contradiction.

Also the alternative holds. If (Ai) is true, then id − PiV is onto,
whence for each f ∈ F there is some solution in Ei. Conversely, if (Ai)
fails, then there is some f ∈ X (since PiV is homogeneous also some
f ∈ F ) such that x = PiV x+ f has no solution.

By the first uniform principle it thus suffices to prove that V is
uniformly locally solvable at each i with respect to F and Ei. But
this is a consequence of Theorem 4.3.
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Since γY (ViK) ≤ γY (V K) + γY (V PiK) ≤ qγX(K) + qγX(PiK) ≤
q(1 + C)γ(K), the previous theorem implies:

Corollary 5.1. Let Y be regular and V be q-γ-condensing, where
q < 1/(C + C2) and ‖Pji‖ ≤ C. Assume that Pi is dense and max I
exists. Then r(V ) < 1.

This result should be compared with Theorem 3.1.

If Y is not regular, we use Theorem 4.4 instead of Theorem 4.3 (for
Y = V X):

Theorem 5.3. Let V be of Uryson type and the norm in V X be
compatible with pointwise convergence. Let V be compact and ‖Pi‖ ≤ C
be uniformly bounded. Assume that Pi is dense and max I exists. Then
r(V ) = 0.

The proof is completely analogous to the previous one (now with
λ �= 0). This theorem should be compared with Theorem 3.2.

Summarizing special cases of the previous results, we state the an-
nounced generalization of Zabrejko’s result (observing that if λV has
spectral radius less than 1 for any λ > 0, then V has spectral radius
0):

Corollary 5.2. Assume that Pi is dense, max I exists and ‖Pi‖ ≤ C
is uniformly bounded. Let V : X → X be compact. Then r(V ) = 0, if
either

1. V X is regular, or

2. V is of Uryson type, and the norm in V X is compatible with
pointwise convergence.

Even for the classical linear Volterra operator in nonregular ideal
spaces, this is a new result.

Example 5.2. Let X be any ideal space of (classes of) functions
x : S → W with a Banach space W and a (bounded or unbounded)
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interval S, and t0 ∈ S (the cases t0 = ±∞ are allowed). If the ‘classical’
linear Volterra integral operator

(26) V x(t) =
∫ t

t0

k(t, s)x(s) ds

acts in X and is compact, then it has spectral radius r(V ) = 0. An
analogous result holds for the more general operator of Example 1.5
with linear G(t, τ, s, y) = K(t, τ, s)y,

V x(t, τ ) =
∫ t

t0

K(t, τ, s)x(s, ·) dμt,τ(s),

provided it is well-defined on the ideal space X (here X consists of
classes of functions x : S →W where S = J × T ).

We emphasize that cases like X = Lp([t0,∞)) are included, which is
also new to our knowledge.

For the spaces X = C(S,W ) and X = C0(S,W ) we assume that
V X ⊆ C0(S,W ) (which in case t0 ∈ S is not really an additional
assumption; recall the remarks in front of Corollary 4.2). Observing
that Y = C0(S,W ) is regular for the projections of Example 1.2, we
have

Example 5.3. Let, with the notation of the previous example,
either X = C(S,W ) or X = C0(S,W ). Assume that V acts in X
and V X ⊆ C0(S,W ). If V : X → X is compact, then it has spectral
radius r(V ) = 0.

But Corollary 5.2 is even more powerful. It is clear that, if some
iterate V n of V has spectral radius r(V n) = 0, then V has spectral
radius r(V ) = 0, too. Thus, if V n is a compact Volterra operator then
r(V ) = 0. If we define the term ‘Volterra operator’ in the classical sense
(26), then the condition that V n again be a Volterra operator is rather
involved. Even in X = L2([0, 1]) the iterate of an integral operator
need not be an integral operator again [18, Chapter 4] (an exception
are the ‘regular’ integral operators [17]).

However, for our abstract definition of Volterra operators, we may
avoid this difficulty.
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Lemma 5.1. If V is an additive Volterra operator and W is a
Volterra operator, then Z = VW is a Volterra operator. Moreover,
Zi = VWi = ViWi (if Vi and Wi are defined on the same set as V ,
respectively W , and if V 0 = 0).

Proof. Trivially, Z is a 0-Volterra operator, and if W is partially
additive, VW must also be partially additive. For the second state-
ment, observe that PiWi = Pi(W − WPi) = PiW − PiWPi = 0,
hence Zi = Z − ZPi = V (W − WPi) = VWi = (Vi + V Pi)Wi =
ViWi + V PiWi = ViWi + V 0. We remark that this equality again
implies (5).

In particular, any iterate V n of a linear Volterra operator V is again
a linear Volterra operator (and (V n)i = (Vi)n). Thus,

Theorem 5.4. Assume that Pi is dense, max I exists and ‖Pi‖ ≤ C
is uniformly bounded. Let V be a linear Volterra operator with a
compact iterate V n. Assume that some iterate of V has regular range
V mX. Then r(V ) = 0.

Proof. The operator V k, k = max{m,n}, is compact, and V kX ⊆
V mX is regular. Thus, r(V k) = 0 by Corollary 5.2.

If V mX is not regular, the situation is more difficult. It is not clear
whether the iterate of a Volterra operator of Uryson type must again
be of Uryson type.

Acknowledgments. The author thanks J. Appell, P.P. Zabrejko,
and a referee for valuable comments and suggestions.

REFERENCES
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