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ON WELL-POSEDNESS OF ONE-SIDED
NONLINEAR BOUNDARY VALUE PROBLEMS

FOR ANALYTIC FUNCTIONS

S.V. ROGOSIN

ABSTRACT. We consider two model “one-sided” nonlin-
ear boundary value problems for analytic functions, namely,
the power type Riemann-Hilbert problem and the modulus
problem.

Our main question is how to make the problems well-posed,
i.e., to find classes of functions in which these problems possess
a unique solution. These classes are those with prescribed
collections of zeros in the domains and/or on their boundaries.

1. Introduction. Linear boundary value problems for analytic
functions are well-studied due to numerous applications in different
branches of mathematics, mechanics, queueing theory, etc. (background
expositions can be found in [1], [6]). The corresponding nonlinear
problems which also occur in a lot of applications are less investigated
because of the much more complicated technique that needs to be used.
For a description of the results in the area, we refer to the surveys [7],
[9], [11] and to the books [3], [5], [12] and to the literature cited
there. Among the approaches presented are those of a constructive
nature (see e.g. [5, [7], [9] where the analytic methods applied in the
linear case are generalized). The latter methods cannot always be
generalized for the nonlinear case especially if we consider so-called
“one-sided” problems posed for one unknown function analytic in the
domain satisfying certain conditions on the boundary.

This article is connected with the paper [10] in which the classes of
analytic functions were found in order for the nonlinear conjugation
problem to be uniquely solvable. These are classes of functions with
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prescribed zeros in the domains or on their boundaries (cf. also [2]).
The solutions of one-sided problems do not always have an explicit
form. Therefore, in order to describe main ideas rather than all
situations that occur, we mainly restrict our study to the problems
posed on the unit disc.

We show, in particular, that solutions of nonlinear one-sided problems
can have a denumerable collection of zeros (this is not the case for the
nonlinear conjugation problem (cf. [10]).

We develop, in part, the methods proposed in [8], [9].

Lastly, we have to note that our results can be reformulated for
nonlinear integral equations equivalent to the problems studied in the
paper.

2. Homogeneous nonlinear Riemann-Hilbert problem of
power type. Let λ : T → C, T := {t ∈ C : |t| = 1} be a given Hölder-
continuous function, p �= 0 a given, in general complex, constant.
The homogeneous nonlinear Riemann-Hilbert problem of power type
consists in finding a function φ ∈ C+(D) := A(D) ∩ C(cl D), analytic
in the unit disc D := {z ∈ C : |z| < 1}, continuous up to its boundary
T, satisfying the following boundary condition:

(2.1) 
{λ(t)φp(t)} = 0, t ∈ T.

We suppose that

(2.2) λ(t) �= 0, t ∈ T.

Hence, dividing the condition (2.1) on |λ(t)| one can always assume
that |λ(t)| ≡ 1 on T.

We are looking for solutions of (2.1) with the prescribed zeros in D
and/or on T. It should be noted that, if

(2.3) 
p < 0,

then the problem (2.1) has no solution, neither with zeros on the
boundary nor with an infinite set of zeros in the domain D. In the case
of a finite set of zeros in D, one can use absolutely the same arguments
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for p having negative and positive real part (with appropriate change
of the coefficient). Therefore, we can suppose that

(2.4) 
p ≥ 0.

The solvability of (2.1) has to be described in the following three
principally different cases for p:

(i) p is a positive integer,

(ii) p is positive irrational,

(iii) p is purely imaginary.

All other cases can be reduced to these cases.

Case (a) p = m ∈ N. Following [8] we introduce the following classes
of analytic functions (cf. also [5]).

Ak ⊂ C+ is the subclass of functions from C+ with k zeros in the
domain and nonvanishing boundary function;

Ãk ⊂ C+ is the subclass of functions from A+ with k zeros in the
domain whose boundary function can have zeros on T.

Let the solution φ of the problem (2.1) have exactly k zeros in D with
k ∈ N0 being a subject for further determination. Then, by selecting
k arbitrary points z1, . . . , zk ∈ D, one can reduce the problem (2.1) to
the following

(2.5) 
{µ(t)ψp(t)} = 0, t ∈ T,

with respect to a new unknown function

(2.6) ψ(z) := φ(z)
( k∏

j=1

z − zj

1 − zjz

)−1

:= φ(z)(B(z))−1 ∈ A0, z ∈ D.

The coefficient of the problem (2.5) has the form

(2.7) µ(t) = λ(t)(B(t))−p, t ∈ T.

The function

(2.8) ω(z) := ψp(z), z ∈ D,
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is also analytic and nonvanishing into the unit disc D. Therefore, one
can consider the following auxiliary linear Riemann-Hilbert problem
for the unit disc in the class A0 (or Ã0):

(2.9) 
{µ(t)ω(t)} = 0, t ∈ T,

or, which is equivalent, the problem

(2.10) 

{
ω exp{−iT(arg µ)(t)}

tχ0

}
= 0, t ∈ T,

where

(2.11) T(ν)(z) :=
1

2π

∫ 2π

0

ν(σ)
eiσ + z

eiσ − z
dσ.

The solvability of the latter problem depends on its index (cf., e.g., [1]):

(2.12) χ0 := χ− kp = windTλ− kp.

(i) if χ0 < 0, then the problem (2.9) has no solution in A0;

(ii) if χ0 = 0, then the unique solution of the problem (2.9) in the
class A0 can be delivered by the formula

(2.13) ω(z) = iC0 exp{iT(arg µ)(z)},

where C0 �= 0 is an arbitrary real constant;

(iii) if χ0 > 0, then the analytic solutions of (2.9) are given by the
formula (cf., e.g., [1])

(2.14) ω(z) = iC0 exp{iT(arg µ(σ) − χ0σ)(z)}Q2χ0(z),

where

Q2χ0(z) = zχ0

(
Pχ0 − Pχ0

(
1
z̄

) )
,

and Pχ0 is an arbitrary polynomial, degPχ0 = χ0. As Q2χ0 has certain
symmetry, namely,

Q2χ0

(
1
z̄

)
= 0 ⇐⇒ Q2χ0(z) = 0,
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then Q2χ0 has no zero in D if and only if all its zeros lie on the unit
circle T, i.e.,

Q2χ0(z) = Cχ0

2χ0∏
j=1

(z − tj), tj = eisj , j = 1, . . . , 2χ0;Cχ0 = ρeiθ.

Substituting it into the boundary condition (2.9), one gets the following
identity to be satisfied:



{
t̄
χ0ρeiθ

2χ0∏
j=1

(t− eisj )
}

= ρ22χ0 cos
(
θ +

1
2

2χ0∑
j=1

sj

) 2χ0∏
j=1

sin
s− sj

2
≡ 0.

The latter takes place if and only if θ is chosen as (cf. [8]),

θ := −1
2

2χ0∑
j=1

sj +
(
n +

1
2

)
π, for certain n ∈ Z.

Hence, the polynomial Q2χ0 should be taken in the form

(2.15) Q2χ0(z) = ±ρ

2χ0∏
j=1

(z − tj)tj
1/2

.

At last, the exponential term in (2.14) can be rewritten on the basis of
the following identity

T(arg λ(σ) − p argB(σ) − χ0σ)(z)

≡ T(argλ(σ) − χ0σ)(z) − 2ip log
k∏

j=1

(1 − zjz).

Combining these results with the previous notations, one gets the
description of solvability of the initial problem (2.1) in the classes Ak

and Ãk.

Proposition 1. Let p be a positive integer number.
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(i) If the winding number of the coefficient λ is negative, i.e., χ < 0,
then the problem (2.1) has no solution in any class Ak and Ãk.

(ii) If χ = 0, then the problem (2.1) has a solution only in the class
A0. It is delivered by the formula

(2.16) φ(z) = ρe{(4m±1)/(2p)πi} exp
{
i

p
T(arg λ)(z)

}
, z ∈ D,

ρ > 0 is an arbitrary positive constant, m ∈ Z. The branch of
corresponding multi-valued function can be chosen arbitrarily.

(iii) If χ > 0, then the problem (2.1) has a solution in the class Ak

with k := (χ/p) if and only if (χ/p) ∈ N. This solution is presented by
the formula

(2.17)

φ(z) = ρe{(4m±1)/(2p)πi} exp
{
i

p
T(argλ)(z)

}

·
k∏

j=1

(z − zj)(1 − zjz), z ∈ D,

where zj are certain fixed points in D and the branch of exponential
function can be chosen arbitrarily.

(iv) If χ > 0, then the problem (2.1) has a solution in any class Ãk

with 0 ≤ k ≤ [χ/p] if (χ/p) /∈ N. This solution is presented by the
formula
(2.18)

φ(z) = ρe{(4m±1)/(2p)πi} exp
{
i

p
T(arg λ(σ) − (χ− kp)σ)(z)

}

·
k∏

j=1

(z−zj)(1−zjz) ·
2(χ−kp)∏

j=1

(z−tj)1/ptj
(1/2p)

, z ∈ D,

where tj are certain fixed points on T, the branch of exponential
function can be chosen arbitrarily, the branch of any function (z−tj)1/p

is chosen arbitrarily in the plane which is cut along the ray {z ∈ C :
z = reisj , 1 < r < ∞}.

(v) If χ > 0, then the problem (2.1) has no solution either in any
class Ak or in any class Ãk with k > [χ/p].
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Case (b) p ∈ R+\Q. Let us choose a number k ∈ N and k arbitrary
points z1, . . . , zk ∈ D. Now we have to change our scheme used in case
(a) since the function Bp(t) in (2.7) is necessarily discontinuous on T
for p being the irrational number. Thus, we introduce a new unknown
function ψ in the following way:

(2.19) φ(z) :=
k∏

j=1

(z − zj)ψ(z) =: B̃(z)ψ(z), z ∈ D,

and rewrite the boundary condition (2.1) in the form

(2.20) 

{
tkpλ(t)

( k∏
j=1

(
1 − zj

t

))p

ψp

}
= 0, t ∈ T.

In the latter equality ψ is zero-free in the domain. Hence, one can take
ψp(t) to be boundary values of any single-valued branch of ψp(z). The
product has all its branching points 0, z1, . . . , zk inside D. Therefore,
its pth power is single-valued outside certain lines connecting these
points. Thus the restriction of (

∏k
j=1(1−(zj/z)))p to T is a continuous

function. Besides,

(2.21) windT

( k∏
j=1

(
1 − zj

t

))p

= 0.

At last, the function tkp is by no doubt discontinuous at a certain point
of T because the cut connecting the branching point of corresponding
multi-valued functions evidently intersects T. Consequently, the prob-
lem (2.1) in the class Ãk is equivalent to the problem (2.20) in the class
Ã0 with an additional condition: its solution ψ(z) ought to have zeros
at all points of discontinuity of the function tkp. These points will be
specified later on.

Denoting by
ω(z) := ψp(z), z ∈ D,

any fixed branch of multi-valued function ψp in D, and exploiting the
regularizing factor’s technique, one can reduce the boundary condition
(2.20) to the following one:

(2.22) 

{
ω(t) exp{−iT(arg µ̃)(t)}

tχ0

}
= 0, t ∈ T,
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where χ0 = χ− kp ∈ R\Q is now an irrational number,

(2.23)

µ̃(t) = t−χλ(t)
( k∏

j=1

(
1 − zj

t

))p

= λ0

( k∏
j=1

(
1 − zj

t

))p

, t ∈ T.

Let us consider in the class Ã0 an auxiliary problem

(2.24) 

{
F (t)
tα

}
= 0, t ∈ T,

where α ∈ (0, 1). It follows from [9] that the problem (2.24) has partial
solutions of the type iFα(z) where

Fα(z) := (z − τj)α(1 − τ̄jz)α, z ∈ D.

The function Fα is the analytic branch of the multi-valued function in
the plane which is cut along the ray {z : z = rei arg τj , 1 < r < +∞}
chosen under condition

(2.25) Fα(z)|z=t∈T
= tα|t− τj |2α.

Here τj ∈ T are arbitrary points on T (we can choose them as the points
of discontinuity of the function tkp). Using (2.25) one can rewrite the
boundary condition (2.22) in the form

(2.26) 

{
ω̃(t)
t[χ0]

}
= 0, t ∈ T,

where ω̃(z) = ω(z) exp{−iT(arg µ̃)(z)}∏s
j=1 F

−1
αj

(z), 0 < αj < (1/2),∑
αj = χ0 − [χ0]. The problem (2.26) has to be solved in a subclass of

functions from Ã0 satisfying additional conditions

(2.27) ∃ lim
t→τj

ω̃(t)
(t− τj)2αj

.
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It is not hard to see that (cf. solution of (2.10)),

(i) if [χ0] < 0, i.e., if χ0 < 0, then no solution to (2.26) of such a
type exists;

(ii) if [χ0] ≥ 0, i.e., if χ0 > 0, then the solution to (2.26) can be
represented in the form

ω̃(t) = ±iρ

2[χ0]∏
j=1

(z − tj)t̄1/2
j ,

where tj are arbitrarily chosen points on T. Therefore, the solution of
the problem (2.1) has in this case the form

(2.28)

φ(z) = ρ exp
{

4m± (1 − 2α0)
2p

πi

}
exp{iT(arg µ̃)(z)}

·
s∏

j=1

(z − τj)(2αj/p)τ
−αj/p
j

·
k∏

j=1

(z − zj) ·
2[χ0]∏
j=1

(z − tj)1/pt
−1/(2p)
j ,

where ρ > 0; m = 0,±1, . . . ; α0 = χ0 − [χ0] =
∑s

j=1 αj , 0 <
αj < (1/2); µ̃ is given in the formula (2.23). Proposition 2 follows
immediately.

Proposition 2. Let p be a positive irrational number.

(i) The problem (2.1) has no solution in any class Ak, k �= 0.

(ii) If the winding number of the coefficient χ < 0, then the problem
(2.1) has no solution in any class Ãk, k ∈ N0, as well as in A0.

(iii) If χ = 0, then the problem (2.1) is solvable only in the class A0;
the unique solution is delivered by the formula (2.16).

(iv) If χ > 0, then the problem (2.1) is solvable in any class Ãk with
0 ≤ k ≤ [χ/p]; the solution in these classes is represented in the form
(2.28).

(v) If χ > 0, then the problem (2.1) has no solution in any class Ãk

with k > [χ/p].
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Case (c) p = iβ, β ∈ R. As was already said, the case p = α+iβ with
α �= 0 can be reduced to the case of positive α, and then repeating the
argument of (2a) and (2b) to the case of the purely imaginary exponent
p.

Let us consider first the problem (2.1) in the class Ak, or Ãk, with
certain nonnegative k ∈ N0. Following Case (a) we choose k points
zj ∈ D and introduce a new unknown function (cf. (2.6)),

(2.29) ψ(z) := φ(z)
( k∏

j=1

z − zj

1 − zjz

)−1

:= φ(z), (B(z))−1, z ∈ D.

Then the boundary condition (2.1) can be rewritten in the form
(ω(z) := {ψ(z)}iβ):

(2.30) 
{λ(t)(B(t))iβω(t)} = 0, t ∈ T.

Here the function (B(t))iβ is the restriction to T of a certain single-
valued branch of the corresponding multi-valued function. Since the
latter has branching points (z1, . . . , zk) in D as well as (z̄−1

1 , . . . , z̄−1
k ,∞)

in Ĉ\clD, hence the cut for determining a single-valued branch nec-
essarily crosses the unit circle T. Therefore, there exists at least one
point, say t0, on T at which (B(t))iβ has to be discontinuous. The val-
ues of (B(t))iβ on T\{t0} are real positive numbers, as |B(t)| ≡ 1 on
T. It immediately implies that the problem (2.30) in Ã0 is equivalent
to the problem

(2.31) 
{λ(t)ω(t)} = 0, t ∈ T,

considered in the subclass of functions from Ã0 having zero at t = t0
(of any positive order).

If χ = windTλ < 0, then there is no analytic solution to the problem
(2.31). Hence, there is no solution in the above-mentioned subclass. If
χ = 0, then the only analytic solution has the form

(2.32) ω(z) = iC0 exp{iT(argλ)(z)}, z ∈ D,

which is nonvanishing in clD. Therefore, it does not belong to the
desired subclass. At last, if χ > 0, then the solution of the problem
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is determining up to polynomials whose zeros tj lie on T. It is simply
sufficient to choose t0 to be one of these points. The solution of (2.31)
in the above described subclass is presented in the formula:
(2.33)

ω(z) = iC0 exp{iT(arg λ(σ) − χσ)(z)}(z − t0)t̄1/2
0

2χ−1∏
j=1

(z − tj)t̄1/2
j ,

where C0 �= 0 is an arbitrary real constant, t0, t1, . . . , t2χ−1 ∈ T.

Returning to the problem (2.1), we get the following

Proposition 3. Let p �= 0 be a purely imaginary number, i.e.,
p = iβ, β �= 0.

(i) The problem (2.1) has no solution in any class Ak, k �= 0.

(ii) If χ < 0, then the problem (2.1) has no solution in any class Ãk,
k ∈ N0, as well as in A0.

(iii) If χ = 0, then the problem (2.1) is solvable only in the class A0;
the unique solution is delivered by the formula

(2.34) φ(z) = e(π(4m±1)−2i log ρ)/2β exp
{

1
β
T(argλ)(z)}, z ∈ D,

where ρ > 0 is any positive real number; m = 0,±1, . . . ; the branch of
exponential function is chosen arbitrarily in D.

If χ > 0, then the problem (2.1) is solvable in the class Ã0; the unique
solution is delivered by the formula

(2.35)

φ(z) = e(π(4m±1)−2i log ρ)/2β exp
{

1
β
T(argλ(σ) − χσ)(z)

}

·
2χ∏

j=1

(z − tj)−i/βt
i/(2β)
j , z ∈ D,

where tj ∈ T, r > 0, m = 0,±, . . . .

(v) If χ > 0, then the problem (2.1) is solvable in any class Ãk with
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0 < k < ∞; the solution is delivered by the formula

(2.36)

φ(z) = e(π(4m±1)−2i log ρ)/2β exp
{

1
β
T(argλ(σ) − χσ)(z)

}

·
k∏

j=1

(
z − zj

1 − zjz

)
· (z − t0)−i/βt

i/(2β)
0

·
2χ−1∏
j=1

(z − tj)−i/βt
i/(2β)
j , z ∈ D.

Remark 1. It follows from Proposition 3 that the only real part of
the exponent p controls a number of internal zeros of the solution to
the nonlinear problem (2.1).

In this connection it is natural to ask the question whether it is
possible for the solution of (2.1) in the case ρ = iβ to have an infinite
collection of internal zeros? Clearly, it suffices to consider only case
χ > 0.

Let us suppose that φ(z) has an infinite, hence denumerable, collec-
tion of internal zeros z1, z2, . . . , zn, . . . ; zn ∈ D, with certain accumu-
lation points on T. Then the Blaschke product B(z) in (2.29) becomes
an infinite one. It converges if and only if (cf., e.g., [4]),

(2.37)
∑

j

(1 − |zj |) < ∞.

Under this condition B(z) has boundary limit at almost all points
t ∈ T. Is there a condition which guarantees an existence of the
boundary limit everywhere on T? It is known (cf., e.g., [4]) that if
the sequence (zj) satisfies the condition

(2.38)
∑

j

1 − |zj |
eiθq − zj

< ∞,

where eiθq are all accumulation points of (zj), then the radial boundary
function

B̂(t) := lim
ρ→1−0

B(ρeiθ)
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is continuous on T. Hence (B̂(t))iβ is positive for any t ∈ T (it is
valid even for so-called nontangential boundary functions). But it is
no longer true for the standard boundary function B(t). More of the
asymptotic values of |B(t)| at the points eiθq almost fill in the segment
[0, 1]. Therefore, the function

λ(t)B(t)
iβ
, t ∈ T,

can be continuous at t = eiθq if and only if the initial coefficient λ

vanishes at eiθq . Besides, the (asymptotic) values of B(t)
iβ

are not
positive on T. Hence, the problem (2.30) could not in general be
reduced to (2.31). Of course, those solutions of (2.31) which vanish
at all points eiθq do satisfy condition (2.30).

Remark 2. Following the same line as in Proposition 3 one can
describe some particular cases of the distribution of sequence (zj),
satisfying condition (2.38), which can form a denumerable collection
of internal zeros of the solution of the problem (2.1).

Remark 3. The conclusions of Proposition 1 and Remark 2 lead us
to the following conjecture: conditions on the boundary behavior of
solutions of the problem (2.1) determining uniqueness classes have to
be nonlocal.

3. Inhomogeneous nonlinear Riemann-Hilbert problem of
power type. Let us now consider the following problem: given two
Hölder-continuous functions λ : T → C, λ(t) �= 0, f : T → R, and a
(complex) number ρ �= 0, find a function φ ∈ A+(D), analytic in the
unit disc D, continuous up to its boundary T, satisfying the following
nonlinear boundary condition

(3.1) 
{λ(t)φp(t)} = f(t), t ∈ T.

One can suppose additionally that p has nonnegative real part and
consider, as in Section 2, only cases (a), (b) and (c) for the exponent
p.

(a) p = m ∈ N. Introducing a new unknown function

ω(z) = (φ(z)B−1(z))p ∈ A0 (or Ã0)
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we reduce the problem (3.1) to the following linear boundary value
problem

(3.2) 
{µ(t)ω(t)} = f(t), t ∈ T.

The latter is solved in the standard way (see, e.g., [1]). Determining
γ(z) by using the Schwarz operator T (cf. (2.11)) for the unit disc D:

(3.3) γ(z) := u(z) + iv(z) = T(argµ(σ) − (χ− kp)σ)(z)

one can rewrite the boundary condition (3.2) in the form

(3.4) 

{

ω(t)
tχ−kpeiγ(t)

}
= ev(t)f(t), t ∈ T.

If χ0 := χ− kp = 0, then the solution of the latter problem is given by
the formula:

(3.5) ω(z) = eiγ(t)[T(ev(σ)f(σ))(z) + iC0].

In order to have in (3.5) the solution of class A0 or Ã0, one ought to
choose the real constant C0 in the following way

(3.6)
(i) for A0 : C0 /∈ iT(ev(σ)f(σ))(clD),

(ii) for Ã0 : C0 /∈ iT(ev(σ)f(σ))(D).

Both choices can be realized because the function T(·) maps the
unit disc D onto the bounded domain on the complex plane and is
continuous up to the boundary.

If χ0 > 0, then the same consideration as in the homogeneous case
gives us the following solution of (3.4):

(3.7) ω(z) = eiγ(t)[zχ0T(ev(σ)f(σ))(z) + iC0Q(z)],

where Q(z) =
∏2χ0

j=1(z − tj)t̄1/2
j . The real constant C0 �= 0 should be

chosen in such a way:

(3.8)
(i) for A0 : C0 �= iT(ev(σ)f(σ))(z)R(z), z ∈ cl D,

(ii) for Ã0 : C0 �= iT(ev(σ)f(σ))(z)R(z), z ∈ D,
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where R(z) = z−χ0Q(z). It is not hard to see that both choices are
possible too (see [10]).

If χ0 < 0, then the only solution to the problem (3.4) is given by the
formula:

(3.9) ω(z) = zχ0eiγ(t)T(ev(σ)f(σ))(z), z ∈ D.

It has in general a pole at the point z = 0. The solution (3.9) becomes
analytic if and only if the following necessary and sufficient solvability
conditions are satisfied:

(3.10) T(l)(ev(σ)f(σ))(0) = 0, l = 0, . . . ,−χ0 − 1.

The solution satisfying (3.10) belongs to those classes considered if
(3.11)

(i) for A0 : 0 /∈ T(ev(σ)f(σ))(clD\{0}); T(−χ0)(ev(σ)f(σ))(0) �= 0,

(ii) for Ã0 : 0 /∈ T(ev(σ)f(σ))(D\{0}); T(−χ0)(ev(σ)f(σ))(0) �= 0.

Remark 4. To make the problem (3.2) uniquely and unconditionally
solvable in the case χ0 < 0, one has to pose it in the classes of
meromorphic functions with the prescribed poles either in D or on
T.

(b) p ∈ R\Q. As in Section 2(b), we introduce a new unknown
function

(3.12) ω(z) =
(
φ(z)

[ k∏
j=1

(z − zj)
]−1)p

=: (φ(z)B̃−1(z))p,

and rewrite the boundary condition (3.1) in the form
(3.13)



{

ω(t)
t[χ0]eiγ(t)

∏s
j=1 Fαj

(t)

}
= ev(t)

s∏
j=1

|t− τj |−2αjf(t), t ∈ T,

where χ0 := χ − kp ∈ R\Q;
∑s

j=1 αj = χ0 − [χ0], 0 < αj < (1/2);
Fαj

(z) := (z − τj)αj (1 − τ̄jz)αj , τj ∈ T are different arbitrary points
on the unit circle, γ(z) := u(z) + iv(z) = T(argµ(σ) − (χ − kp)σ)(z).
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This linear problem should be solved in the subclass of function ω from
Ã0 satisfying the following asymptotic relation:

(3.14) ∃ lim
t→τj

ω(t)
(t− τj)2αj

.

If [χ0] = 0, then the unique solution of such a problem is given by the
formula:

(3.15) ω(z) = eiγ(t)
s∏

j=1

Fαj
(z) · [T(ev(σ)|σ − τj |−2αjf(σ))(z) + iC0].

In order to have this solution in the desired classes, one has to choose
C0 as follows:
(3.16)
(i) for A0 : C0 /∈ iT(ev(σ)|σ − τj |−2αjf(σ))(clD\{τ1, . . . , τs}),

and ∀ j = 1, . . . , s, lim
t→τj

(t−τj)2αjT(ev(σ)|σ−τj |−2αjf(σ))(t) �= 0;

(ii) for Ã0 : C0 /∈ iT(ev(σ)|σ − τj |−2αjf(σ))(clD\{τ1, . . . , τs}),

and ∀ j = 1, . . . , s, lim
t→τj

(t−τj)2αjT(ev(σ)|σ−τj |−2αjf(σ))(t) �= 0.

It is not hard to see that the second conditions in (3.16)(i) and (3.16)(ii)
are equivalent to the condition f(τj) �= 0, for all j = 1, . . . , s, (cf., e.g.,
[1]).

If [χ0] > 0, then the solutions to the problem (3.13) are given by the
formula:
(3.17)

ω(z) = eiγ(t)z[χ0]
s∏

j=1

Fαj
(z) · [T(ev(σ)|σ − τj |−2αjf(σ))(z) + iC0Q(z)].

In order to have this solution in the desired classes, one has to choose
C0 as follows:

(3.18)

(i) for A0 : C0 �= iT
(
ev(σ)

s∏
j=1

|σ − τj |−2αjf(σ)
)

(z)R(z),

z ∈ cl D\{τ1, . . . , τs}, and ∀ j = 1, . . . , s, f(τj) �= 0;

(ii) for Ã0 : C0 �= iT(ev(σ)
s∏

j=1

|σ − τj |−2αjf(σ))(z)R(z),

z ∈ D\{τ1, . . . , τs}, and ∀ j = 1, . . . , s, f(τj) �= 0.
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If [χ0] < 0, then the only solution to the problem (3.13) is given by the
formula:
(3.19)

ω(z) = z[χ0]eiγ(t)
s∏

j=1

Fαj
(z) · T(ev(σ)|σ − τj |−2αjf(σ))(z), z ∈ D.

It has in general a pole at the point z = 0. The solution (3.19) becomes
analytic if and only if the following necessary and sufficient solvability
conditions satisfy:

(3.20) T(l)(ev(σ)|σ − τj |−2αjf(σ))(0) = 0, l = 0, . . . ,−χ0 − 1.

The solution satisfying (3.20) belongs to the classes considered if

(3.21)

(i) for A0 : 0 /∈ T(ev(σ)|σ − τj |−2αjf(σ))(clD\{0});

T(−χ0)(ev(σ)|σ − τj |−2αjf(σ))(0) �= 0,

(ii) for Ã0 : 0 /∈ T(ev(σ)|σ − τj |−2αjf(σ))(D\{0});

T(−χ0)(ev(σ)|σ − τj |−2αjf(σ))(0) �= 0.

(c) p = iβ, β ∈ R+. Choosing a nonnegative number k and k
points z1, . . . , zk ∈ D, one can reduce the problem (3.1) to the linear
inhomogeneous problem

(3.22) 
{λ(t)ω(t)} = eβ arg B(t)f(t), t ∈ T,

where

ω(z) :=
[( k∏

j=1

z − zj

1 − z̄jz

)−1

φ(z)
]iβ

=: [(B(z))−1φ(z)]iβ.

The function eβ arg B(t) could not be defined continuously on the whole
circle T because the increment of argB(t) along T is equal to 2πk.
Hence the righthand side of (3.22) has at least one point of jump
discontinuity on T. There are in principle two ways out. If f(t)
vanishes at least at one point of T, say t = τ0, then we draw the
cut for determining a single-valued branch of argB(z) intersecting T
at τ0. Therefore, the righthand side of (3.22) remains continuous and
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it is possible to apply the standard considerations. If f(t) �= 0, then
we are forced to lose one degree of freedom. Choosing s arbitrary
points τ1, . . . , τs ∈ T and s positive numbers α1, . . . , αs ∈ (0, (1/2)),∑s

j=1 αj = 1, we introduce s functions analytic in D:

(3.23) Fαj
(z) := (z − τj)αj (1 − τ̄jz)αj , z ∈ D,

which are single-valued in D and satisfy the following condition on T:

(3.24) Fα1(t) · · · · · Fαs
(t) = t

s∏
j=1

|t− τj |2αj , t ∈ T.

Using these functions one can rewrite the boundary condition (3.22) in
the form

(3.25)



{

ω(t)
tχ−1eiγ(t)

∏s
j=1 Fαj

(t)

}
= ev(t)+β arg B(t)

s∏
j=1

|t− τj |−2αjf(t),

t ∈ T,

where γ(z) = u(z) + iv(z) = T(argλ(σ) − χσ)(z).

If χ > 0, then the analytic solutions of the problem (3.25) are given
by the formula:

ω(z) = eiγ(z)
s∏

j=1

Fαj
(z)

[
zχ−1 · T(ev(σ)+β arg B(σ)

·
s∏

j=1

|σ − τj |−2αjf(σ))(z) + iC0Q2χ−2(z)
]
,(3.26)

where Q2χ−2(z) =
∏2χ−2

j=1 (z − tj)t̄1/2
j is a polynomial with only zeros

on the unit circle. This solution belongs to the classes considered if the
following “branching” conditions are satisfied:
(3.27)

(i) for A0 : C0 �= iT(ev(σ)+β arg B(σ)
s∏

j=1

|σ − τj |−2αjf(σ))(z)R(z),

z ∈ cl D\{τ1, . . . , τs}, and ∀ j = 1, . . . , s, f(τj) �= 0;

(ii) for Ã0 : C0 �= iT(ev(σ)+β arg B(σ)
s∏

j=1

|σ − τj |−2αjf(σ))(z)R(z),

z ∈ D\{τ1, . . . , τs}, and ∀ j = 1, . . . , s, f(τj) �= 0,
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where R(z) := zχ−1 ·Q−1
2χ−2(z).

If χ ≤ 0, then the formula (3.26) with Q2χ−2(z) ≡ 0 represents the
solution of the problem (3.25) with the pole of order −χ + 1 at z = 0.
It becomes analytic if and only if the following solvability conditions
hold:
(3.28)

T(l)(ev(σ)+β arg B(σ)
s∏

j=1

|σ − τj |−2αjf(σ))(0) = 0, l = 0, . . . ,−χ.

It belongs to desired classes if additionally
(3.29)

(i) for A0 : 0 /∈ T(ev(σ)+β arg B(σ)
s∏

j=1

|σ − τj |−2αjf(σ))(clD\{0});

T(−χ+1)(ev(σ)+β arg B(σ)
s∏

j=1

|σ − τj |−2αjf(σ))(0) �= 0,

(ii) for Ã0 : 0 /∈ T(ev(σ)+β arg B(σ)
s∏

j=1

|σ − τj |−2αjf(σ))(D\{0});

T(−χ+1)(ev(σ)+β arg B(σ)
s∏

j=1

|σ − τj |−2αjf(σ))(0) �= 0.

We are now in a position to formulate the final result on solvability of
the nonlinear inhomogeneous problem (3.1).

Proposition 4. (a) Let p ∈ N be a positive integer number.

(i) If χ < 0, then the number of internal zeros is determined by
the conditions (3.10); the solution belongs to Ak (to Ãk) if and only if
the given functions satisfy the branching conditions (3.11)(i), (3.11)(ii),
respectively. If so, then the solution of the problem (3.1) has the form

(3.30) φ(z) = B(z)(ω(z))1/p, z ∈ D,

where (ω)1/p is any analytic branch of the corresponding multi-valued
function with ω given in (3.9).

(ii) If χ = 0, then the unique solution in A0 (in Ã0) is given by the
formula (3.30) with B(z) ≡ 1 and ω given in (3.5) with the choice of
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the constant C0 in accordance to (3.6)(i), to (3.6)(ii), respectively. The
solution in Ak (in Ãk) exists under the same conditions as in ai).

(iii) If χ > 0, then for all 0 ≤ k ≤ (χ/p), the formula (3.30) with
ω in (3.7) determines the solution of the problem (3.1) of the class Ak

(of Ãk) under the choice of C0 in accordance to (3.8)(i), to (3.8)(ii),
respectively. A number of conditions (3.10) determines the class Ak (or
Ãk), with k > χ/p, in which (3.1) is solvable. The solution is given by
the formula (3.30) with ω in (3.9). It really belongs to the corresponding
class if the branching conditions (3.11)(i), to (3.11)(ii), respectively, are
valid.

(b) Let p ∈ R+\Q be a positive irrational number.

(i) If χ < 0, then a possible number k of internal zeros of the
solution of (3.1) is determined by the number of conditions (3.20). This
solution belongs to Ak (or Ãk) if the condition (3.21)(i) (or (3.21)(ii))
are satisfied. Under these conditions the solution of the problem (3.1)
has the form

(3.31) φ(z) = B̃(z)(ω(z))1/p, z ∈ D,

where (ω)1/p is any analytic branch of the corresponding multi-valued
function with ω given in (3.19) and B̃ as in (3.12);

(ii) If χ = 0, then the unique solution in A0 (or Ã0) is given by (3.31)
with B̃(z) ≡ 1, ω given in (3.15), with α1 = · · · = αs = 0, and with
the choice of the constant C0 in accordance to (3.16)(i) (or (3.16)(ii)).
This solution belongs to Ak (or Ãk), for certain k ≥ 1, under the same
conditions as in bi).

(iii) If χ > 0, then for all k, 0 ≤ k ≤ [χ/p], the formula (3.31)
with ω given in (3.17) determines a solution of the problem (3.1) of
the class Ak (or Ãk) under the choice of C0 in accordance to (3.18)(i)
(or (3.18)(ii)). A number of conditions (3.20) determines the class Ak

(or Ãk), k > [χ/p] in which the formula (3.31) with ω given in (3.19)
represents the solution of such type.

(c) Let p = iβ, β ∈ R\{0} be a purely imaginary number. Then

(i) If χ ≤ 0, then a possible number of internal zeros of the solution
to (3.1) is determined by the number of conditions (3.28). This solution
really belongs to AK (or Ãk) if conditions (3.29)(i) (or (3.29)(ii)) are
satisfied. Under these conditions the solution of the problem (3.1) has
the form (3.30) with ω given by (3.26), and Q2χ−2(z) ≡ 0;
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(ii) if χ > 0, then for any positive integer number k the formula
(3.30) with ω in (3.26) determines a solution of the problem (3.1) of
class Ak (or Ãk) under the choice of C0 in accordance to (3.27)(i) (or
(3.27)(ii)).

4. The modulus problem. Let L be a simple closed smooth curve
encircling a domain D = intL /∈ ∞, find an analytic function w in D
via its given modulus on the boundary L, i.e.,

(4.1) |w(t)| = a(t), t ∈ L,

where a(t) ≥ 0 is Hölder-continuous on L. We study this problem in
two situations: (i) a(t) > 0, t ∈ L; and (ii) a(t) ≥ 0, vanishing at some
points of L.

It should be noted that the problem (4.1) is conformal invariant, i.e.,
does not change its type under conformal mapping of the domain D
onto another simply connected domain of the complex plane C. Hence,
without loss of generality one can suppose that D � 0. Besides the
problem (4.1) is equivalent to the following one:

|w(ω−1(τ ))| = a(ω−1(τ )), τ ∈ T,

where ω is the Riemann map of the domain D onto the unit disc D.
Thus, the problem (4.1) can be considered only for the case of the
unit disc. Anyway, we give the results for the general situation with
corresponding comments concerning the case of the unit disc.

(i) a(t) > 0, t ∈ L. The uniqueness theorem for analytic functions
shows us that the unknown function w does not have more than a finite
number of zeros in D. Therefore, we have to consider problem (4.1)
in one of the classes Ak(D), where k is a prescribed number of zeros
of the solution in D. Let us fix some, not necessarily different, points
zj ∈ D, j = 1, . . . , k, supposing that they are zeros of the solution w
(for simplicity, suppose additionally that (1/zj) /∈ cl (D)). Any function
w ∈ Ak(D) with the given zeros can be represented in the form:

(4.2) w(z) =
k∏

j=1

|zj |
zj

zj − z

1 − zjz
w0(z),



152 S.V. ROGOSIN

where w0 ∈ A0(D), i.e., is analytic and nonvanishing in clD. Then the
boundary condition (4.1) can be rewritten as:

(4.3) |w0(t)| = a(t)
k∏

j=1

∣∣∣∣1 − zjt

zj − t

∣∣∣∣ =: b(t), t ∈ L.

It is evident that in the case of the unit disc the product on the
righthand side of (4.3) is identically equal to 1, hence a(t) ≡ b(t). But it
is in general not the case for an arbitrary domain D, although b remains
positive and Hölder-continuous on L. Taking the logarithm of both
sides of (4.3) we obtain the following boundary condition equivalent to
(4.3) (for any choice of the branch of logarithmic function in D):

(4.4) log |w0(t)| = log b(t), t ∈ L.

As every branch of logarithmic function logw0(z) is analytic in D,
so one can consider (4.4) as the boundary condition of the Schwarz
problem for logw0(z). Its solution has the form:

logw0(z) = T(log b(t))(z), z ∈ D,

where T is the Schwarz operator for the domain D. Hence the solutions
of the starting problem (4.1) in the class w ∈ Ak(D) is given by the
formula
(4.5)

w(z) =
k∏

j=1

|zj |
zj

zj−z

1−zjz
exp

{
T

(
log

(
a(t)

k∏
j=1

∣∣∣∣1−zjt

zj−t

∣∣∣∣
))

(z)
}
, z ∈ D.

(ii) a(t) ≥ 0 is vanishing at some points of L. Suppose additionally
that a has a finite collection of zeros on L. Let, for definiteness,
(4.6)

a(t) =
m∏

s=1

(t− ts)dsa0(t); ts ∈ L, ds ∈ R+; a0(t) �= 0, t ∈ L.

We can consider the problem (4.1) under condition (4.6) or in the
class Ãk(D) (of analytic functions in D with k zeros there and with
admissible zeros on L), or in the class Ã∞(D). Besides, we can note
that the problems (4.1) and (4.6) can be studied “locally,” taking into
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account an influence of every point ts independently. It means that one
can investigate the model problem

(4.7) |ws(t)| = |t− ts|ds , s ∈ {1, . . . ,m}, t ∈ L,

and then construct the general solution of (4.1) and (4.6) as the product
of solutions of the problem (4.7), and solution (4.5) with corresponding
changing of data. Let us consider the problem (4.7) for different values
of ds. First let

0 < ds < 1.

Then the problem (4.7) has solutions in any class Ãk(D), but not in
Ã∞(D). It follows from the uniqueness theorem for analytic functions
and asymptotic behavior of such functions near the boundary L. Any
solution of the class Ãk(D) is delivered by the formula

(4.8) ws(z) = (z − ts)ds

k∏
j=1

|zj |
zj

zj − z

1 − zjz
w0,s(z)

where w0,s is analytic and nonvanishing in D, the points zj are arbitrary
fixed points in D. The branch of multi-valued function (z − ts)ds is
chosen arbitrarily in Ĉ\Ls where Ls is a smooth arc connecting the
point z = ts and z = ∞, Ls ∩ L = ts. Substituting (4.8) into the
boundary condition (4.7), one gets the following problem to be solved
with respect to w0,s in Ã0(D):

(4.9) |w0,s| =
k∏

j=1

∣∣∣∣1 − zjt

zj − t

∣∣∣∣, t ∈ L.

Hence, the solution of the problem (4.7) in Ãk(D) has the form

(4.10)

ws(z) = (z − ts)ds

k∏
j=1

|zj |
zj

zj − z

1 − zjz

· exp
{
T

(
log

( k∏
j=1

∣∣∣∣1 − zjt

zj − t

∣∣∣∣
))

(z)
}
, z ∈ D.

If the exponent ds is a positive integer, i.e.,

ds ∈ N,
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then the problem (4.7) can have the solution as in any class Ãk(D),
delivered by the formula (4.10), in which the first factor is now single-
valued, as in the class Ã∞(D). Let us show it only in the case of unit
disc D. If we choose the points zj ∈ D such that

(4.11)
∞∑

j=1

1 − |zj |
|ts − zj | < ∞,

then the Blaschke product

(4.12) B(z) :=
∞∏

j=1

( |zj |
zj

zj − z

1 − zjz

)ds

has the radial, and even nontangential, limit at any point of T, but B(z)
does not have the limit of ts anyway. Besides,the asymptotic values of
radial boundary function B̂(t) of B(z) are such that |B̂(t)| = 1 for
t ∈ T\{ts}, and 0 ≤ |B̂(t)| ≤ 1 for all t ∈ T. Therefore, the solution of
the problem (4.7) in A∞(D) has the following form

(4.13)

ws(z) = (z − ts)ds

∞∏
j=1

( |zj |
zj

zj − z

1 − zjz

)ds

· exp
{
T

(
log

( ∞∏
j=1

∣∣∣∣
(

1−zjt

zj−t

)∣∣∣∣ds
))

(z)
}
, z ∈ D.

If, at last, ds > 1 is an arbitrary noninteger positive real number, then
the problem (4.7) can have solutions as in the class Ãk(D), delivered
by the formula of the type (4.10), as in the class Ã∞(D). In the last
case one has to represent first the number ds in the form

ds = ds,1 + ds,2,

where ds,1 ∈ N0, ds,2 ∈ R+\N . The problem (4.7) is then reduced to
two problems of the same type but with ds,1, ds,2 instead of ds. Both
problems were solved before. The general solution is then the product
of the solutions of corresponding problems.

Summarizing the above results we can formulate the following
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Proposition 5. Let α(t) be a Hölder-continuous positive function
on ∂D. Then the problem (4.1) has a solution in any class Ak(D),
k = 0, 1, . . . . This solution is delivered by the formula (4.5). There is
no solution in Ãk(D) for any k = 0, 1, . . . .

Let α(t) be a Hölder-continuous nonnegative function on ∂D, repre-
sented in the form (4.6). Then the problem (4.1) has a solution in any
class Ãk(D), k = 0, 1, . . . . This solution is given by the formula (4.10).
There is no solution in Ak(D) for any k = 0, 1, . . . .

If at least one number ds, s = 1, . . . ,m, is greater than or equal to
1, then the problem (4.1) has a solution in Ã∞(D), delivered by the
formula (4.13). If not, i.e., if 0 < ds < 1, s = 1, . . . ,m, then there is
no solution of the problem (4.1) in Ã∞(D).
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