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A NOTE ON THE SOLUTION SET
OF INTEGRAL INCLUSIONS

R. KANNAN AND DONAL O’REGAN

ABSTRACT. In this note we discuss the topological struc-
ture of the set of solutions of integral and differential inclu-
sions.

1. Introduction. This paper discusses the structure of the solution
set of the Volterra integral inclusion

(1.1) y(t) ∈ h(t) +
∫ t

0

k(t, s)F (s, y(s)) ds for t ∈ [0, T ].

Throughout k : [0, T ] × [0, t] → R and F : [0, T ] × Rn → CK(Rn);
here CK(Rn) denotes the family of all nonempty, compact, convex
subsets of Rn. In the literature only a few results have appeared on
the structure of the solution set of (1.1); we refer the reader to [1, p.
219] and the references therein. For completeness we state here the
main result available in the literature [1]. Let S(h;Rn) denote the
solution set of (1.1).

Theorem 1.1. Let k : [0, T ]× [0, t] → R, F : [0, T ]×Rn → CK(Rn)
and suppose the following conditions hold:

(1.2) t �−→ F (t, x) is measurable for every x ∈ Rn

(1.3)
{
x �−→ F (t, x) is upper semicontinuous (u.s.c.)
for a.e. t ∈ [0, T ]

(1.4)
{

there exists h ∈ L1[0, T ] with ‖F (t, x)‖ ≤ h(t)
for a.e. t ∈ [0, T ] and every x ∈ Rn
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(1.5) h ∈ C[0, T ]

(1.6)
{

for each t ∈ [0, T ], k(t, s) is measurable on [0, t] and
k(t) = ess sup|k(t, s)|, 0 ≤ s ≤ t, is bounded on [0, T ]

and

(1.7)
{

the map t �→ kt is continuous from [0, T ] to L∞[0, T ];
here kt(s) = k(t, s).

Then S(h;Rn) is nonempty, connected and compact.

Remark 1.1. In [1]

(1.8) F (·, x) possesses a measurable selection

was assumed instead of (1.2). Notice [3, p. 22] implies if (1.2) is true
then automatically (1.8) is true.

One of the main goals of this paper is to remove the “global” inte-
grably boundedness assumption, see (1.4), on F . By using Theorem 1.1
and a trick involving the Urysohn function we are able to accomplish
this if we assume a “local” integrably boundedness assumption on F .
This is exactly what we need from an application viewpoint.

2. Solution set. First we establish a general existence principle for
(1.1). We assume (1.2), (1.3), (1.5), (1.6) and (1.7) hold. In addition
suppose the following conditions are also satisfied:

(2.1)



for each r > 0 there exists hr ∈ L1[0, T ] with
‖F (t, x)‖ ≤ hr(t) for a.e. t ∈ [0, T ] and every
x ∈ Rn with ‖x‖ ≤ r

and

(2.2)
{
there exists a constant M > ‖h‖0 = supt∈[0,T ] ‖h(t)‖ with
‖y‖0 < M for any possible solution to (1.1).

Let ε > 0 be given, and let τε : Rn → [0, 1] be the Urysohn function
for

(B(0,M),Rn\B(0,M + ε))



THE SOLUTION SET OF INTEGRAL INCLUSIONS 87

such that τε(x) = 1 if ‖x‖ ≤ M and τε(x) = 0 if ‖x‖ ≥ M + ε. Let
F̃ (t, x) = τε(x)F (t, x) and consider the problem

(2.3) y(t) ∈ h(t) +
∫ t

0

k(t, s)F̃ (s, y(s)) ds for t ∈ [0, T ].

Let Sε(h;Rn) denote the solution set of (2.3).

Theorem 2.1. Suppose (1.2), (1.3), (1.5), (1.6), (1.7), (2.1) and
(2.2) hold. Let ε > 0 be given and assume

(2.4) ‖w‖0 < M for any possible solution w ∈ C[0, T ] to (2.3).

Then S(h;Rn) is nonempty, connected and compact.

Proof. Notice (2.2) and (2.4) imply S(h;Rn) = Sε(h;Rn). It is easy
to see that F̃ : [0, T ]×Rn → CK(Rn) satisfies (1.2) and (1.3), with F
replaced by F̃ . Also (2.1) and the definition of τε imply that F̃ satisfies
(1.4), with F replaced by F̃ . Thus, Theorem 1.1 implies Sε(h;Rn) is
nonempty, connected and compact.

The existence principle, Theorem 2.1, can now be used to establish
some applicable results. We illustrate the ideas involved with the
following theorem.

Theorem 2.2. Let k : [0, T ]× [0, t] → R, F : [0, T ]×Rn → CK(Rn)
and assume (1.2), (1.3), (1.5), (1.6), (1.7) and (2.1) hold. In addition,
suppose the following conditions are satisfied:

(2.5)




there exists α ∈ L1[0, T ] and g : [0,∞) → (0,∞) a
nondecreasing continuous function such that
‖k(t, s)F (s, u)‖ ≤ α(s)g(‖u‖) for a.e. s ∈ [0, t],
a.e. t ∈ [0, T ] and all u ∈ Rn

and

(2.6)
∫ T

0

α(s) ds <
∫ ∞

‖h‖0

dx

g(x)
.
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Then S(h;Rn) is nonempty, connected and compact.

Proof. Let ε > 0 be given,

M0 = I−1

( ∫ T

0

α(s) ds
)
,

where

I(z) =
∫ z

‖h‖0

dx

g(x)
, and M =M0 + 1.

We will show any possible solution u of (1.1) satisfies ‖u‖0 ≤ M0 and
any possible solution y of (2.3) satisfies ‖y‖0 ≤M0. If this is true, then
Theorem 2.1 guarantees the result.

Suppose u is a possible solution of (2.1). Then

‖u(t)‖ ≤ ‖h‖0 +
∫ t

0

α(s)g(‖u(s)‖) ds ≡ w(t) for t ∈ [0, T ].

Now w′(t) = α(t)g(‖u(t)‖) ≤ α(t)g(w(t)) almost everywhere and so

∫ w(x)

‖h‖0

ds

g(s)
=

∫ x

0

w′(s)
g(w(s))

ds ≤
∫ x

0

α(s) ds ≤
∫ T

0

α(s) ds

for x ∈ [0, T ]. Thus w(x) ≤M0 for any x ∈ [0, T ] and so ‖u(x)‖ ≤M0

for all x ∈ [0, T ].

Next let y be a possible solution of (2.3). For t ∈ [0, T ], since
τε : Rn → [0, 1], we have

‖y(t)‖ ≤ ‖h‖0 +
∫ t

0

α(s)g(‖y(s)‖) ds

and again we have ‖y(x)‖ ≤M0 for all x ∈ [0, T ].

Next we discuss the differential inclusion

(2.7)
{
y′ ∈ F (t, y) a.e. t ∈ [0, T ]
y(0) = y0.
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We discuss a more general situation than before, namely when F :
[0, T ]× E → CK(E); here E is a real Banach space. By a solution to
(2.7) we mean a function y ∈W 1,1([0, T ], E), see [7], which satisfies the
differential inclusion almost everywhere on [0, T ] and the stated initial
data. Let S(y0;E) denote the solution set of (2.7). The analogue of
Theorem 1.1, in this situation, may be found in [3, p. 118]; we state it
here.

Theorem 2.3. Let E be a separable Banach space and F : [0, T ] ×
E → CK(E). Suppose the following conditions are satisfied:

t �−→ F (t, x) is measurable for every x ∈ E(2.8)
x �−→ F (t, x) is u.s.c. for a.e. t ∈ [0, T ](2.9)

(2.10)
{

there exists h ∈ L1[0, T ] such that ‖F (t, x)‖ ≤ h(t)
for a.e. t ∈ [0, T ] and all x ∈ E

and

(2.11) for any bounded set A ⊆ E we have α(F ([0, T ]×A)) = 0.

Then S(y0;E) is nonempty, connected and compact.

Remark 2.1. In fact [3], S(y0;E) is an Rδ set.

Remark 2.2. α denotes the Kuratowskii measure of noncompactness.

Remark 2.3. Instead of Theorem 2.3, we could state a result in [10,
p. 1093].

Now we establish a general existence principle for (2.7). We assume
(2.8) and (2.9) hold. In addition, suppose the following conditions are
satisfied:

(2.12)



for each r > 0 there exists hr ∈ L1[0, T ] s.t.
‖F (t, x)‖ ≤ hr(t) for a.e. t ∈ [0, T ] and all
x ∈ E with ‖x‖ ≤ r
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and

(2.13)
{
there exists a constant M > ‖y0‖ with ‖y‖0 < M

for any possible solution to (2.7).

Let ε > 0 be given, and let τε : E → [0, 1] be the Urysohn function for

(B(0,M), E\B(0,M + ε))

such that τε(x) = 1 if ‖x‖ ≤ M and τε(x) = 0 if ‖x‖ ≥ M + ε. Let
F̃ (t, x) = τε(x)F (t, x) and consider

(2.14)
{
y′(t) ∈ F̃ (t, y(t)) a.e. t ∈ [0, T ]
y(0) = y0.

Let Sε(y0;E) denote the solution set of (2.14).

Theorem 2.4. Let E be a separable Banach space and F : [0, T ] ×
E → CK(E). Suppose (2.8), (2.9), (2.11), (2.12) and (2.13) hold. Let
ε > 0 be given and assume

(2.15)
{ ‖w‖0 < M for any possible solution
w ∈W 1,1([0, T ], E) to (2.14).

Then S(y0;E) is nonempty, connected and compact.

Proof. Notice S(y0;E) = Sε(y0;E). Also (2.12) and the definition of
τε implies that F̃ satisfies (2.10), with F replaced by F̃ . Notice also if
A is a bounded subset of E, then

F̃ ([0, T ]×A) ⊆ co(F ([0, T ]×A) ∪ {0}).

This together with (2.11) and the properties of the measure of non-
compactness yields α(F̃ ([0, T ] × A)) = 0. Thus, Theorem 2.3 implies
Sε(y0;E) is nonempty, connected and compact.

At this stage we could easily establish an existence result of the type
in Theorem 2.2 for the differential inclusion (2.7); we leave this to the
reader. Instead, to illustrate the generality of the method described
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above, we establish a new result for differential equations when E = R.
In particular, we discuss

(2.16)
{
y′(t) = α(t)g(y(t)) for t ∈ (0, T )
y(0) = 0.

Let S(0;R) denote the solution set of (2.16).

Theorem 2.5. Let g : R → R be continuous and α : (0, T ) → [0,∞)
be such that α ∈ C(0, T ]. In addition, suppose the following conditions
hold:

(2.17) α > 0 on (0, T ] with α ∈ L1[0, T ]

(2.18) g(0) > 0

(2.19)
{
g has a positive zero (let r1 be
the smallest positive zero of g)

and

(2.20)
∫ T

0

α(x) dx ≤
∫ r1

0

dx

g(x)
.

Then S(0;R) is nonempty, connected and compact.

Remark 2.4. Solutions to (2.16) will lie in W 1,1([0, T ],R) ∩C1(0, T ].

Proof. Let ε > 0 be given, and let M = r1 + 1. We will show
any possible solution u of (2.16) satisfies ‖u‖0 < M and any possible
solution y of

(2.21)
{
y′(t) = τε(y(t))α(t)g(y(t)) for t ∈ (0, T )
y(0) = 0

satisfies ‖y‖0 < M . If this is true, then Theorem 2.4 guarantees the
result.
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Suppose u is a possible solution of (2.16). Now (2.17) and (2.18)
imply u′ > 0 in a neighborhood of zero. Suppose u′ > 0 on (0, δ) and
u′(δ) = 0. Then u(δ) = r1. If δ < T , then we have

∫ r1

0

dx

g(x)
=

∫ δ

0

α(x) dx <
∫ T

0

α(x) dx,

a contradiction. Thus u′ > 0 on (0, T ) so 0 < u(t) < r1 for t ∈ (0, T ).
Thus 0 ≤ u(t) ≤ r1 for t ∈ [0, T ].

Now let y be a possible solution of (2.21). Since y(0) = 0 and
M = r1 + 1 there exists an interval (0, δ1) with τε(y(t)) = 1 for
t ∈ [0, δ1). Now (2.17) and (2.18) together with τε(y(t)) = 1 on
[0, δ1) implies y′ > 0 in a neighborhood of zero, say on (0, δ2). Note
τε(y(t)) = 1 on [0, δ2). To see this, notice if not, then there exists a
δ3 ∈ (0, δ2) with τε(y(δ3)) ∈ [0, 1). Thus y(δ3) > M = r1 + 1 so there
exists δ4 ∈ (0, δ3), since y(0) = 0, with y(δ4) = r1. Hence y′(δ4) = 0, a
contradiction. Thus τε(y(t)) = 1 on [0, δ2). Suppose y′(δ2) = 0. Then
y′ > 0 on (0, δ2) with y′(δ2) = 0 and y′(t) = α(t)g(y(t)) for t ∈ (0, δ2).
If δ2 < T we obtain, as above, a contradiction. Thus y′ > 0 on (0, T )
and so we have 0 ≤ y(t) ≤ r1 for t ∈ [0, T ].

More generally we may consider

(2.22)
{
y′(t) = α(t)f(t, y(t)) for t ∈ (0, T )
y(0) = 0.

Let Sf (0;R) denote the solution set of (2.22). Essentially the same
reasoning as in Theorem 2.5 establishes the following result.

Theorem 2.6. Let f : [0, T ]×R → R be continuous and α : (0, T ) →
[0,∞) be such that α ∈ C(0, T ]. In addition, suppose (2.17) holds and
also assume the following conditions are satisfied:

(2.23)




there exists a continuous function g : R → R
with g(0) > 0 and |f(t, y)| ≤ |g(y)| for
t ∈ [0, T ] and y ∈ R

(2.24) f(0, 0) > 0
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(2.25) if r �= 0 and f(t, r) = 0 for some t ∈ (0, T ), then g(r) = 0

(2.26)
{
g has a positive zero (let r1 be
the smallest positive zero of g)

and

(2.27)
∫ T

0

α(x) dx ≤
∫ r1

0

dx

g(x)
.

Then Sf (0;R) is nonempty, connected and compact.

Remark 2.5. The argument in the proof of Theorem 2.5 based on
approaching the “barriers” y = 0 and y = r1 from the inside was
introduced [6] in 1990 (it has been extended, using a similar type of
argument, in [5]). In some sense the argument given in Theorem 2.5
is the opposite to the “upper and lower solution” type approach, see
[7]. As was seen above the approach in Theorem 2.5 guarantees that
all solutions are a priori bounded. However, notice that the upper and
lower solution type approach only guarantees that there exists at least
one solution that is bounded by the barriers.
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