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PARTIALLY-COUPLED INTEGRAL EQUATIONS
FOR A DYNAMIC FRACTURE PROBLEM

IN COUPLED THERMOELASTICITY

L.M. BROCK

ABSTRACT. Robust asymptotic solution forms reduce
a canonical problem of dynamic fracture in a thermoelastic
body to a set of partially-coupled integral equations. The
set contains both Cauchy and Abel operators but can be
solved analytically. The solution shows aspects of the effects
of thermoelastic coupling.

1. Introduction. When crack growth is rapid, fracture is a dynamic
process and, in a linear thermoelastic solid [9], is governed by a fully-
coupled system of temperature and linear momentum equations. The
growth of a crack of infinite width and semi-infinite length in an
unbounded solid is a canonical problem of dynamic fracture in plane
strain [2, 13], and a simple version suitable for coupled thermoelasticity
is sub-critical, steady-state growth driven by forces and heat fluxes
applied to opposite faces of the crack as line loads. The line loads lie
parallel to the crack edge, and are moved behind it at a fixed distance.

2. Governing equations. In the steady-state, crack growth is at a
constant speed, and field variables depend explicitly only on the spatial
coordinates x moving with the crack. If x is taken as the Cartesian
system x = (x, y, z) affixed so that (y = 0, x > 0) always defines the
crack edge and growth is in the negative-x direction, the equations of
thermoelasticity become [4, 6]

∇2u+ (m2−1)∇∆+ χ∇θ −m2c2
∂2u
∂x2

= 0, χ = χ0(4−3m2)

(2.1a)

h∇2θ − c
∂

∂x

(
θ − m2ε

χ
∆

)
= 0(2.1b)

1
µ
σ = [(m2−2)∆ + χθ] I+∇u+ u∇(2.1c)
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The coupled equations (2.1a,b) are for, respectively, linear momentum
and temperature, while (2.1c) is a constitutive equation. Here the field
variables (u, σ, θ) are the displacement vector, stress tensor and change
in (absolute) temperature from its uniform initial value, I is the identity
tensor and the dilatation ∆ = tr (∇u). In plane strain,

u = (ux, uy, 0), ∇ =
(
∂

∂x
,
∂

∂y
, 0

)

so that the z-component of (2.1a) is satisfied identically and only
the components (σxx, σxy = σyx, σyy, σzz) of σ remain. In (2.1)
the constants (µ, χ0) are the shear modulus and thermal expansion
coefficient, (1/m, c) are the rotational wave speed and crack speed
nondimensionalized with respect to the isothermal dilatational wave
speed [2], and (ε, h) are the dimensionless thermoelastic coupling
constant and thermoelastic characteristic length. In general [5, 9, 16]

(2.2) h ≈ O(10−4)µm, ε ≈ O(10−2), m >
√
2.

Sub-critical steady-state growth requires that crack speed not exceed
the long-time thermoelastic Rayleigh speed for the solid, i.e.,

(2.3) 0 < c < cR

where cR is the Rayleigh speed nondimensionalized with respect to the
isothermal dilatational wave speed. The values ±(0, cR) are the roots
of the Rayleigh function R(c), where

(2.4)
R = 4ab−K2, a =

√
1− c2

1 + ε
,

b =
√
1−m2c2, K = m2c2 − 2

and (2.3) guarantees that (R, a, b) are positive real. The root cR
can be obtained by rationalizing R to a cubic polynomial in c2 and
then extracting [1] the appropriate zero, but an expression can also be
obtained analytically [5] as

(2.5)
cR =

√
2(m2 − (1/(1 + ε)))

F0

m2
,

lnF0 =
1
π

∫ √
1+ε

1/m

dt

t
tan−1 4

√
1 + ε− t2

√
m2t2 − 1√

1 + ε(m2t2 − 2)2
.
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For boundary conditions, (u, θ) must remain finite as |x| → ∞, while
the crack-face loading requires that

(2.6) σyy = −Pnδ(x−L), σxy = −Psδ(x−L), ∂θ

∂y
= Q±δ(x−L)

along (y = 0±, x > 0). Here the constants (Pn, Ps, Q±) are, respec-
tively, the normal force, shear force and heat fluxes imposed on the
upper (y = 0+) and lower (y = 0−) crack faces at a distance L from
the moving crack edge (x, y) = 0, and the Dirac function δ( ) identifies
them as line loads in the out-of-plane (z) direction. In addition, (u, θ)
should be continuous everywhere except perhaps (y = 0±, x > 0) and,
for finite |x|, be bounded above except perhaps at (y = 0±, x = L),
and vanish as L → ∞, i.e., the loadings reside an infinite distance from
the moving crack edge.

3. Solution approach. In [6] it is demonstrated that asymptotic
solution candidates of (2.1) valid at so-called large values of |x| are
robust because the scaling length is the (quite small) thermoelastic
characteristic length h. Use of these candidate forms in (2.6) and the
other conditions cited above reduces the crack problem to the integral
equation set

(3.1a)
R

2m2c2a

1
π

∫
−

∞

0

∆V dt

x−t =
χhK

m2ca(1+ε)
1
π

Q+−Q−
L−x − Pn

µ
δ(x−L)

(3.1b)
R

2m2c2b

1
π

∫
−

∞

0

∆U dt

x−t +
χ

m2

√
h√

c (1+ε)π
d

dx

∫ x

0

∆θ dt√
x−t = −Ps

µ
δ(x−L)

(3.1c)
2ε
χ

√
h√

(c (1+ε)3π
d

dx

∫ x

0

∆U dt√
x−t

−
√
c (1+ε)
hπ

d

dx

∫ x

0

∆θ dt√
x−t = (Q++Q−)δ(x−L)

for x in (0,∞) on the unknown functions (∆U,∆V,∆θ). Here
∫−

denotes Cauchy principal value integration and (∆θ,∆U,∆V ) are the
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discontinuities in θ and the x-derivatives of (ux, uy) that occur for
a given x > 0 when one moves from the lower (y = 0−) to the
upper (y = 0+) crack face. That is, integrals with respect to x of
(∆U,∆V ) are the slip and separation of the crack faces and, therefore,
(∆U,∆V,∆θ) ≡ 0, x < 0. For x > 0, integrability is expected and
continuity, except perhaps at x = (0, L).

4. Solution of integral equation set. Equation (3.1a) defines ∆V ,
is uncoupled from (3.1b,c) and is of the Fredholm type. Its solution is
readily found by Cauchy singular integral methods [7] as

(4.1)

∆V
m2c2

=
C1√
πx

+
2a
πR

Pn

µ

√
L√

x(x− L)

− χhK

m2c (1 + ε)
(Q+−Q−)δ(x− L), x > 0

where C1 is an arbitrary constant. The integral equations (3.1b,c) are
coupled, but (3.1c) is of the Abel type [10] for a linear combination of
(∆U,∆θ), and can therefore readily be solved to yield the formula

(4.2) ∆θ − 2ε∆U
χ(1+ε)

=
C2√
πx

− (Q++Q−)
√
h√

c (1+ε)(x−L)H(x−L), x > 0

where C2 is an arbitrary constant and H( ) is the Heaviside function.

Linearly combining (3.1b,c) gives the equation

(4.3)
1
π

∫
−

∞

0

∆U dt

x− t
+

√
d

π

d

dx

∫ x

0

∆U dt√
x− t

= Aδ(x− L)

on ∆U for x in (0,∞), where

d

h
=

(
4bε
R

)2(
c

1 + ε

)3

,(4.4a)

A =
2m2c2b

R

[
− Ps

µ
+
χh(Q++Q−)
m2c (1 + ε)

]
(4.4b)

and d is a crack speed-dependent length proportional to h. The integral
equation (4.3) exhibits both Cauchy and Abel operators, and the
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magnitudes of (ε, h) seen in (2.2) suggest in view of (4.4a) that the
Abel operator is a perturbation. However, (2.3) (2.5) also show in
view of (4.4a) that

d ≈ O(1/c)(c→ 0+), d → ∞(c → cR−).

That is, for some crack growth speeds, it is the Cauchy operator that
is a perturbation. Therefore, (4.3) is treated directly.

5. Integral equation solution. The homogeneous (A = 0) version
of (4.3) admits the solution 1/

√
x. This form integrates with respect to

x to a function that vanishes appropriately as x → 0+, i.e., the crack
closes continuously at its edge, but which also becomes unbounded as
x → ∞. It is, therefore, discarded, but suggests the trial form

(5.1) ∆U =
1

π
√
x

∫
−

∞

0

U
√
t dt

t− x
, x > 0

for (4.3) itself, where U(x) is an unknown integrable function that,
except perhaps at x = L, is bounded above and continuous in (0,∞).
Substitution of (5.1) and use of Cauchy theory then reduces (4.3) to
the form

(5.2) U +

√
d

π

d

dx

∫ ∞

x

U dt√
t− x

= Aδ(x− L)

on U for x in (0,∞). Introduction of the quantities

(5.3) ξ =
1
x
, ψ(ξ) =

1
ξ3/2

Aδ

(
1
ξ
− L

)
, ω(ξ) =

1
ξ3/2

U

(
1
ξ

)

in (5.2) yields the equation

(5.4) ω −
√
ξd

π

d

dξ

(√
ξ

∫ ξ

0

ω dζ√
ξ − ζ

)
= ψ(ξ)

on ω for ξ in (0,∞). Application of the Laplace transform [15]

(5.5) G(p) =
∫ ∞

0

g(ξ)e−pξ dξ
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where p is positive real and large enough to ensure existence of the
integral, gives, finally, the first-order ordinary differential equation

(5.6)
dΩ
dp

+
Ω√
pd

=
Ψ√
pd

on Ω(p). The general solution [12] to (5.6) is

(5.7) Ω = e−2
√

p/d

(
C3 +

∫ p

0

Ψ√
qd

e2
√

q/d dq

)

where C3 is an arbitrary constant. Boundedness of Ω as |p| → ∞,
Re (p) > 0 is guaranteed by choosing the branch cut Im (p) = 0,
Re (p) < 0 for

√
p so that Re (

√
p) ≥ 0 in the cut p-plane. This

boundedness is required in view of the Abelian theorems [2] and (5.4),
because U(x) must be bounded as x → ∞.

The use of (5.4), standard inversion tables [1] and the Dirac function
sifting property [17] on (5.7) gives

(5.8)

U

m2c2
=

C3√
πd

e−x/d − A

d
e(L−x)/derfc (

√
L/d)

+
A√
d

[
1√

π(L−x) +
1√
d
e(L−x)/derfc (

√
(L− x)/d)

]
H(L−x)

for x > 0. For generality, it should be noted that, if the “+” in the
Abel operator term in (4.3) is replaced by a “−”, the solution becomes

(5.9)
U

m2c2
=

A√
d

[
1√

π(L−x) +
1√
d
e(L−x)/d(erfc (

√
(L−x)/d)

− erfc (
√
L/d))

]
H(L−x).

6. Solution and observations on coupling effects. Equations
(4.1), (4.2), (5.1) and (5.8) constitute the candidate solution for the
set (3.1). Invoking boundedness and the condition that (u, θ) should
vanish as L → ∞ leads to the conclusion that

(6.1) C1 = C2 = 0, C3 = −
√
π

d
A.
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The original crack growth problem is thus essentially solved.

The magnitude of the coupling constant ε exhibited by (2.2) could
be, e.g. [3], used to justify dropping the ε-term from the temperature
equation (2.1b), thereby uncoupling it from the linear momentum
equation (2.1a). The asymptotic analytical solutions constructed here
show the effect of this: When ε = 0 in (4.2) and (4.3), the fields
(∆θ,∆U) are uncoupled, ∆θ is given by (4.2) and (6.1) alone, and ∆U
is, like ∆V , governed by a Cauchy singular integral equation.

This is not surprising: solutions of the classical steady-state tem-
perature boundary-value problem in 2D [8] can involve Abel integral
equations and forms like the righthand side of (4.2), while solution of
the steady-state 2D linear elasticity mixed boundary-value problem,
with temperature merely providing a (known) body force, can lead to,
in the same manner as its classical elastostatic counterpart [11, 14],
Cauchy singular integral equations and forms like the righthand side of
(4.1).

In conclusion, then, robust asymptotic solutions for the equations of
linear coupled thermoelasticity reduce a canonical problem of dynamic
steady-state crack growth in plane strain to a set of partially-coupled
integral equations. The set exhibits both Cauchy and Abel operators,
but can be solved analytically. The solution results demonstrate aspects
of thermoelastic coupling.
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