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ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS
OF THE HÉNON EQUATION

BIAO WANG AND ZHENGCE ZHANG

ABSTRACT. We investigate the radial positive solutions
of the Hénon equation. It is known that this equation has
three different types of radial solutions: the M-solutions
(singular at r = 0), the E-solutions (regular at r = 0)
and the F-solutions (whose existence begins away from
r = 0). For the M-solutions and E-solutions, by virtue
of some prior estimates, we adopt a circulating iterative
method, step-by-step, to derive their precise asymptotic
expansions. In particular, the M-solution has an extremely
plentiful structure, and its asymptotic expansions are more
complicated. In contrast to previous research [2, 9], our
results are more accurate.

1. Introduction. In this paper, we consider the radial positive
solutions to the following semilinear elliptic equation

(1.1) ∆ϕ+ |x|σϕp = 0, x ∈ RN ,

where p > 1, σ > −2, N ≥ 3, ∆ = ΣN
i=1∂

2/∂x2i and |x| = (ΣN
i=1x

2
i )

1/2.
Equation (1.1) arises both in physics and geometry and is a model of
semilinear problem. Since the radial positive solutions are of particular
interest, we mainly study those of equation (1.1), which fulfill

(1.2)
1

rN−1
(rN−1ϕ′)′ + rσϕp = 0, p > 1, σ > −2, N ≥ 3,

where r = |x| and ′ denotes differentiation with respect to the vari-
able r.
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In the past three decades, the positive solution of (1.1) has been
investigated by many authors. For instance, Gidas and Spruck [9]
showed that, if 1 < p < (N + σ)/(N − 2), any positive solution of (1.1)
with 0 < |x| ≤ R either has a removable singularity at x = 0, or there
exist positive constants c1, c2 such that

c1
|x|N−2

≤ ϕ(x) ≤ c2
|x|N−2

near x = 0.

If (N+σ)/(N−2) < p < (N+2)/(N−2), but p ̸= (N+2+2σ)/(N−2),
every positive solution of (1.1) has either a removable singularity at
x = 0, or

|x|(σ+2)/(p−1)ϕ(x) −→ c3 as |x| −→ 0

for some constant c3 > 0. For the case of p > (N +σ)/(N −2), Bidaut-
Véron and Véron [4] demonstrated that, if there is some constant c4 > 0
such that |x|(σ+2)/(p−1)ϕ(x) ≤ c4 in 0 < |x| ≤ R, then the positive
solution of (1.1) either has a removable singularity at x = 0, or

|x|(σ+2)/(p−1)ϕ(x) −→ ω(x) as |x| → 0

uniformly in θ =
x

|x|
∈ SN−1,

where ω(x) solves

∆SN−1ω − σ + 2

p− 1

(
N − 2p+ σ

p− 1

)
ω + ωp = 0 on SN−1.

In the exterior region |x| > R, under the same conditions, the positive
solution of (1.1) either satisfies

|x|N−2ϕ(x) −→ c5 as |x| −→ ∞ for some c5 > 0,

or

|x|(σ+2)/(p−1)ϕ(x) −→ ω(x) as |x| −→ ∞

uniformly in θ =
x

|x|
∈ SN−1.

Recently, Bidaut-Véron and Véron’s results have been generalized to
the more general domain for p by Dance, et al., [5]; more relevant works
regarding equation (1.1) can be found in [8, 23].

It is well known (see, e.g., [2]) that the solutions of equation (1.2)
with N = 3 can be divided into three different types: the M-solutions
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(singular at r = 0), the E-solutions (regular at r = 0) and the F-
solutions (whose existence begins away from r = 0). The existence
and uniqueness of the E and F-solutions has been established by Ni
and Yotsutani [22] and Kwong and Li [12] in an annular region,
respectively. The asymptotic behavior of the M-solutions near the
origin was studied by Gidas and Spruck [9] and Batt and Pfaffelmoser
[2] with N = 3. In [27], Yanagida investigated the positive radial
E-solutions of the Matukuma equation

(1.3)

{
1

rN−1 (r
N−1ϕ′)′ + 1

1+r2ϕ
p = 0,

ϕ(0) = α > 0 ϕ′(0) = 0.

His result indicates that, when 1 < p < (N + 2)/(N − 2), there exists
a unique α∗ > 0 such that, if α > α∗, (1.3) has finite zero; if α = α∗,
(1.3) has a finite total mass solution; if α < α∗, (1.3) has an infinite
total mass solution. Recently, by virtue of Yanagida’s method, Sha
and Li [24] extended the above results to the radial F-solutions of
the generalized Matukuma equation. Deng, et al., [6] considered the
stability of the radial solutions of

(1.4)

{
∂ϕ
∂t = ∆ϕ+K(|x|)ϕp (x, t) ∈ RN × (0, T ),

ϕ(x, 0) = φ(|x|) x ∈ RN ,

where p > 1, T > 0, φ ̸= 0 is a nonnegative continuous function. If K
satisfies the following conditions:

lim
r→0

r−σK(r) = K0 > 0, lim
r→∞

r−σK(r) = K∞ > 0,

σ > −2, (r−σK(r))′ ≤ 0,

then the positive radial solution of (1.4) is stable with respect to some
defined norm provided p > pc, where

pc =

{
(N−2)2−2(σ+2)(N+σ)+2(σ+2)

√
(N+σ)2−(N−2)2

(N−2)(N−10−4σ) N > 10 + 4σ,

+∞ 3 ≤ N ≤ 10 + 4σ.

For more research regarding the positive radial solutions of general
semilinear equations, the interested reader is referred to [7, 11, 14,
15, 16, 17, 18, 19, 20, 21, 26, 28].
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In [1], Batt and Li developed a comprehensive theory of positive
radial solutions ϕ(r) of the Matukuma equation

(1.5) ∆ϕ+
|x|λ−2

(1 + |x|2)λ/2
ϕp = 0, p > 1, λ > 0

in R3. Their results reveal that the three different types of solutions
known for the Hénon equation (1.2) with N = 3 also exist for the
Matukuma equation (1.5). Moreover, with the aid of an asymptotic
expansion method [13], they obtained accurate asymptotic expansions
for the M- and E-solutions. Recently, Wang, et al., [25] investigated
the M-solution of the Matukuma equation (1.5) in higher-dimensional
space (N > 3) and obtained the precise asymptotic expansion of the
M-solutions. In this paper, by employing the methods and ideas of
[1, 13, 25] used to discuss positive radial solutions of the Matukuma
equation (1.5), we systematically restudy the positive radial solutions
of (1.1). We pay attention to asymptotic expansions of the M- and
E-solutions near the origin. In comparison with the preceding results
about the asymptotic expansions of the M- and E-solutions of (1.1)
[2, 9], our outcome appears to be more precise.

The rest of this paper is organized as follows. In Section 2, we
include some preliminaries which shall be used throughout the entire
paper. In Section 3, we present the E-solutions. Section 4 is devoted to
the asymptotic expansion of the M-solutions. In Section 5, we establish
a uniqueness theorem of the F-solutions.

2. Preliminaries.

2.1. Classification of positive solutions. Let K be a positive func-
tion in C1(R+) with r2K(r) bounded away from zero for r → ∞ and
p > 1. Assume that ϕ : (R−, R) → (0,∞) is a maximal radial solution
of

(2.1)
1

rN−1
(rN−1ϕ′)′ = −K(r)ϕp, N ≥ 3,

where 0 ≤ R− < R ≤ ∞. Let r0 ∈ (R−, R) and

(2.2) H(r) := ϕ′(r0)r
N−1
0 −

∫ r

r0

sN−1K(s)ϕp(s) ds in (R−, R).
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Then, ϕ′(r) = H(r)/rN−1 and H ′(r) = −rN−1K(r)ϕp(r) < 0 in
(R−, R). Hence,

H0 := lim
r→R−

H(r) ∈ (−∞,+∞]

exist. Indeed, if H0 > 0, then R− > 0. Furthermore, there exists
some R0 ∈ (R−, R) such that H(R0) = ϕ′(R0) = 0. If H0 ≤ 0, then
R− = 0. Consequently, R− = 0, ϕ′ < 0 in (0, R), and the limit
limr→0 ϕ(r) ∈ (0,∞] exists. In this case, we define R0 := 0, and have

R0 := inf{r ∈ (R−, R) | ϕ′(r) < 0}

for all solutions, see [25, subsection 2.1] for more details.

The solutions are classified as follows:

H0 > 0 ⇐⇒ R0 > R− > 0,

where we call ϕ an F-solution. Moreover,

H0 ≤ 0 ⇐⇒ R0 = R− = 0:

if limr→0 ϕ(r) < ∞, we call ϕ an E-solution, and, if limr→0 ϕ(r) = ∞,
we call ϕ an M-solution.

For the sake of convenience, we give a lemma which can be used to
demonstrate the existence and uniqueness of E-solutions. The proof of
Lemma 2.1 with dimension N ≥ 3 can be found in [22].

Lemma 2.1. Let α ∈ R and f(r, ϕ) : (0,∞) × R → R satisfy the
following conditions:

(i) f(r, ϕ) ∈ C1((0,∞)× R);
(ii) rf(r, α) ∈ L1

loc[0,∞);

(iii) there exist a constant δ > 0 and a function

Lα : (0, δ) → [0,∞] with rLα(r) ∈ L1[0, δ]

such that, for every r ∈ (0, δ) and ϕ1, ϕ2 ∈ [α− δ, α+ δ],

|f(r, ϕ1)− f(r, ϕ2)| ≤ Lα(r)|ϕ1 − ϕ2|.

Then, the initial value problem

1

rN−1
(rN−1ϕ′)′ = f(r, ϕ), ϕ(0) = α,

admits a unique solution.
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2.2. Transformation to Lotka-Volterra systems. In this section,
we consider solutions ϕ of (2.1) in their intervals Jϕ := (R0, R). Define

(2.3) u(t) := rK(r)
ϕp(r)

−ϕ′(r)
, v(t) := r

−ϕ′(r)
ϕ(r)

, r := et.

Then, φ := (u, v) : Iφ → R+ ×R+, Iφ := ln Jϕ is a maximal solution of
the system

(2.4)

{
u̇ = u

(
N + rK

′(r)
K(r) − u− pv

)
,

v̇ = v(−N + 2 + u+ v),

where · denotes differentiation with regard to the variable t. R+×R+ is
an invariant set of this system (the positive u- and v- axes are invariant).
The inverse is

(2.5) ϕ(r) =

[
u(ln r)v(ln r)

r2K(r)

]1/(p−1)

.

In particular, for K(r) = rσ, we get

(2.6)

{
u̇ = u(N + σ − u− pv),

v̇ = v(−N + 2 + u+ v).

In the sequel, unless otherwise stated, ϕ(r) always represents a
solution of (2.1) in (R0, R) with 0 ≤ R0 < R ≤ ∞, and φ = (u, v)
is the associated solution of (2.6) in (T0, T ) with −∞ ≤ T0 = lnR0 <
T = lnR ≤ ∞. In addition, it is always assumed that p > 1, σ > −2
and N ≥ 3.

2.3. Linearization of autonomous system (2.6). Clearly, system
(2.6) has the following stationary points: P1 = (0, 0), P2 = (0, N − 2),
P3 = (N + σ, 0); for p > (N + σ)/(N − 2),

P4 =

(
(N − 2)p−N − σ

p− 1
,
σ + 2

p− 1

)
,

where σ > −2 and N ≥ 3. Denote the stationary point by P = (u∗, v∗).
Then, the Jacobian matrix of system (2.6) is

(2.7) A :=

(
N + σ − 2u∗ − pv∗ −pu∗

v∗ u∗ + 2v∗ −N + 2

)
.
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For P1, we have eigenvalues λ1 = N + σ > 0, λ2 = −N + 2 < 0 and
corresponding eigenvectors ξ1 = (1, 0), ξ2 = (0, 1), and P1 is a saddle.

For P2, we have λ1 = N + σ − (N − 2)p, λ2 = N − 2 and
ξ1 = (N+σ−(N−2)(p+1), N−2), ξ2 = (0, 1). If p < (N+σ)/(N−2),
then λ1 > 0, P2 is an unstable improper node; if p < (σ + 2)/(N − 2),
then 0 < λ2 < λ1, P2 is a 2-tangential improper node; if p =
(σ + 2)/(N − 2), then 0 < λ2 = λ1, P2 is a 1-tangential node; if
(σ + 2)/(N − 2) < p < (N + σ)/(N − 2), then 0 < λ1 < λ2, P2 is a
2-tangential improper node; if p = (N + σ)/(N − 2), then λ1 = 0, P2

is an unstable 2-tangential node; if p > (N + σ)/(N − 2), then λ1 < 0,
P2 is a saddle.

For P3, we have λ1 = −(N +σ) < 0, λ2 = σ+2 > 0 and ξ1 = (1, 0),
ξ2 = (−(N + σ)p/(N + 2 + 2σ), 1), and P3 is a saddle.

If p > (N + σ)/(N − 2),

P4 =

(
(N − 2)p−N − σ

p− 1
,
σ + 2

p− 1

)
:= (u∗4, v

∗
4),

we have λ1,2 = v∗4 − (N − 2)/2 ± 1/2
√
Λ(v∗4), where Λ(κ) = 4pκ2

− 4(N − 2)pκ+ (N − 2)2 with two distinct roots κ1,2 = (N − 2)/2(1±√
1− 1/p). If

p <
N + 2 + 2σ

N − 2
=⇒ v∗4 >

N − 2

2
,

then Reλj > 0, j = 1, 2, and P4 is unstable. In particular, if κ1 ≤
v∗4 < N − 2, P4 is an improper node, and (N − 2)/2 < v∗4 < κ1 is a
spiral point. If

p =
N + 2 + 2σ

N − 2
=⇒ v∗4 =

N − 2

2
,

then λ1,2 = ±(N − 2)/2
√
p− 1i, and P4 is a center. If

p >
N + 2 + 2σ

N − 2
=⇒ 0 < v∗4 <

N − 2

2
,

then Reλj < 0, j = 1, 2, and P4 is stable. In particular, for κ2 ≤ v∗4 <
(N − 2)/2, P4 is a spiral point, and, if 0 < v∗4 < κ2, P4 is an improper
node.
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3. E-solutions. The following theorem characterizes E-solutions,
which also imply their existence.

Theorem 3.1. Assume that σ > −2 and p > 1. Then the following
conclusions are equivalent :

(i) ϕ(r) is an E-solution.

(ii) There exists some constant α > 0 such that

(3.1)

{
ϕ(r) = α− 1

N−2

∫ r

0

[
1− ( sr )

N−2
]
sσ+1ϕp(s) ds,

ϕ′(r) = − 1
rN−1

∫ r

0
sN+σ−1ϕp(s) ds for any r > 0.

(iii) There exists some constant α > 0 such that

ϕ(r) = α− αp

(N+σ)(σ+2)r
σ+2

+ pα2p−1

2(N+σ)(σ+2)2(N+2+2σ)r
2σ+4 + o(r2σ+4),

ϕ′(r) = − αp

N+σ r
σ+1 + pα2p−1

(N+σ)(σ+2)(N+2+2σ)r
2σ+3

+o(r2σ+3) r → 0.

(iv) There exists some constant α > 0 such that

u(t) = (N + σ)
[
1− pαp−1

(N+σ)(N+2+2σ)e
(σ+2)t

+o(e(σ+2)t)
]
,

v(t) = αp−1e(σ+2)t

N+σ

[
1 + [N+2+2σ−(N+σ)p]αp−1

(N+σ)(σ+2)(N+2+2σ) e
(σ+2)t

+o(e(σ+2)t)
]

t→ −∞.

(v) φ(t) → P3, t→ −∞.

Proof.

(i) → (ii). Follows from [22, Proposition 4.1].

(ii) → (iii). The existence and uniqueness of E-solutions can be es-
tablished by application of Lemma 2.1. From the second equality of
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(3.1), we obtain

ϕ′(r) = − 1

rN−1

∫ r

0

sN+σ−1ϕp(s) ds

= − 1

rN−1

∫ r

0

sN+σ−1αp[1 + o(1)] ds

= − αp

N + σ
rσ+1[1 + o(1)].

Integration yields

ϕ(r) = α− αp

(N + σ)(σ + 2)
rσ+2 + o(rσ+2), r → 0.

We will use a stepwise method to improve the asymptotic expansions.
By virtue of (3.1), again, we have

rN−1ϕ′(r) = −
∫ r

0

sN+σ−1ϕp(s) ds

= −
∫ r

0

sN+σ−1

[
α− αp

(N + σ)(σ + 2)
sσ+2 + o(sσ+2)

]p
ds

= −αp

∫ r

0

sN+σ−1

[
1− pαp−1

(N + σ)(σ + 2)
sσ+2 + o(sσ+2)

]
ds

= −αp

[
1

N+σ
rN+σ− pαp−1

(N+σ)(σ+2)(N+2+2σ)
rN+2+2σ

+ o(rN+2+2σ)

]
ϕ′(r) =− αp

N+σ
rσ+1 +

pα2p−1

(N+σ)(σ+2)(N+2+2σ)
r2σ+3+o(r2σ+3).

Therefore,

ϕ(r) = α− αp

(N + σ)(σ + 2)
rσ+2

+
pα2p−1

2(N + σ)(σ + 2)2(N + 2 + 2σ)
r2σ+4 + o(r2σ+4).
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(iii) → (iv). Recalling the previous transformation (2.3), we get

u(t) = rσ+1 ϕp(r)
−ϕ′(r)

= rσ+1 αp[1−αp−1/((N+σ)(σ+2))rσ+2

[αp/(N+σ)]rσ+1[1−pαp−1/[(σ+2)(N+2+2σ)]rσ+2+o(rσ+2)]

+ pα2p−2/(2(N+σ)(σ+2)2(N+2+2σ))r2σ+4+o(r2σ+4)]p

[αp/(N+σ)]rσ+1[1−pαp−1/[(σ+2)(N+2+2σ)]rσ+2+o(rσ+2)]

= (N + σ)
[
1− pαp−1rσ+2

(N+σ)(σ+2)

+ [p2(2N+2+3σ)−p(N+2+2σ)]α2p−2r2σ+4

2(N+σ)2(σ+2)2(N+2+2σ) +o(r2σ+4)
]

·
[
1 + pαp−1

(σ+2)(N+2+2σ)r
σ+2 + o(rσ+2)

]
= (N + σ)

[
1− pαp−1

(N+σ)(N+2+2σ)r
σ+2 + o(rσ+2)

]
.

Furthermore,

v(t) = r−ϕ′(r)
ϕ(r)

= r αprσ+1/(N+σ)
α[1−αp−1/((N+σ)(σ+2))rσ+2+pα2p−2/[2(N+σ)(σ+2)2(N+2+2σ)]r2σ+4+o(r2σ+4)]

· [1−pαp−1/[(σ+2)(N+2+2σ)]rσ+2+o(rσ+2)]
α[1−αp−1/((N+σ)(σ+2))rσ+2+pα2p−2/[2(N+σ)(σ+2)2(N+2+2σ)]r2σ+4+o(r2σ+4)]

= αp−1

N+σ r
σ+2[1− pαp−1/[(σ + 2)(N + 2 + 2σ)]rσ+2 + o(rσ+2)]

· [1 + αp−1/[(N + σ)(σ + 2)]rσ+2 + o(rσ+2)]

= αp−1

N+σ r
σ+2[1 + [N + 2 + 2σ − (N + σ)p]αp−1/

[(N + σ)(σ + 2)(N + 2 + 2σ)]rσ+2 + o(rσ+2)].

(iv) → (v) is trivial.

(v) → (i). Rewrite the equation of v in (2.6), we have

v̇ = v(−N + 2 + u) + v2.

Let y = v−1. Then, the above equation reduces to

ẏ = y(N − 2− y)− 1.

By some simple computations, we find

y(t) = y(t0)e
Γ(t) − eΓ(t)

∫ t

t0

e−Γ(s)ds
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with some t0 ∈ Iφ and

Γ(t) =

∫ t

t0

(N − 2− u) ds.

Since u(t) → N + σ as t → −∞, we see that Γ(t) = O(−(σ + 2)t),
which also implies that y(t) = O(e−(σ+2)t) as t→ −∞, in other words,
we have v(t) = O(e(σ+2)t).

By the inverse transformation (2.5), we obtain

ϕp−1(r) =
u(ln r)v(ln r)

r2K(r)
=
u(ln r)[C̃rσ+2 + o(rσ+2)]

rσ+2

−→ (N + σ)C̃ := αp−1, r → 0,

where C̃ is some positive constant independent of t. The proof is
complete. �

4. M-solutions. In this section, let p > 1, σ > −2, N ≥ 3. We
consider solutions ϕ in (0, R) with 0 < R ≤ ∞, and corresponding
φ in (−∞, T ), T = lnR. In order to obtain more precise asymptotic
expansions of the M-solutions, we investigate by distinguishing among
the four different cases:

(i) 1 < p < (N + σ)/(N − 2) (three subcases with σ > N − 4:
1 < p < (σ + 2)/(N − 2), p = (σ + 2)/(N − 2), (σ + 2)/(N − 2) < p <
(N+σ)/(N−2)), the case −2 < σ ≤ N−4 can be found in Remark 4.1;

(ii) p = (N + σ)/(N − 2);

(iii) p > (N + σ)/(N − 2); however, p ̸= (N + 2 + 2σ)/(N − 2);

(iv) p = (N + 2 + 2σ)/(N − 2).

4.1. The case 1 < p < (N + σ)/(N − 2).

Theorem 4.1. Suppose that 1 < p < (N + σ)/(N − 2). Then, the
following conclusions are equivalent :

(i) ϕ(r) is an M-solution.
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(ii) There exists some constant c > 0 such that{
ϕ(r) = c

rN−2 [1 + o(1)],

ϕ′(r) = − (N−2)c
rN−1 [1 + o(1)] r → 0.

(iii) There exists some constant c > 0 such that{
u(t) = (N − 2)cp−1e[N+σ−(N−2)p]t[1 + o(1)],

v(t) = (N − 2)[1 + o(1)] t→ −∞.

(iv) φ(t) → P2, t→ −∞.

In addition, ϕ(r) satisfies

(4.1) rN−1ϕ′(r) = −(N − 2)c−
∫ r

0

sN−1K(s)ϕp(s) ds,

where c > 0 is uniquely determined.

Proof.

(i) → (ii). This conclusion can be established by the method of
[2, 3].

(ii) → (iii), (iii) → (iv). Trivial.

(iv) → (i). ϕ(r) must be an M- or E-solution. For the latter case,
φ(t) → P3 by Theorem 3.1, which contradicts (iv).

Finally, (4.1) follows from integration by parts. �

In the sequel, we will show that the M-solution ϕ(r) has a splitting
form:

(4.2) ϕ = S +Θ,

where S is a singular term of the form S = (c/rN−2)P (r) with an
elementary, explicitly given function P of r with P (r) = 1 + o(1),
r → 0, whereas Θ is a regular solution of the initial value problem
(4.3){

(rN−1Θ′)′/rN−1 = −K(r)(Θ+S)p−(rN−1S′)′/rN−1 0 < r < R,

Θ(0) = β ∈ R.
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In terms of P , we have
(4.4)

1

rN−1
(rN−1Θ′)′=−K(r)

(
c

rN−2
P+Θ

)p

− c

rN−2
P ′′+

(N−3)c

rN−1
P ′

= −K(r)
cp

r(N−2)p
P p

[(
1 +

rN−2

cP
Θ

)p

− 1

]
+

[
− c

rN−2
P ′′ +

(N − 3)c

rN−1
P ′ − cprσ−(N−2)pP p

]
=: f1(r,Θ) + f2(r).

Since

K(r)
cp

r(N−2)p
P p(r) = O(rσ−(N−2)p)

and (
1 +

rN−2

cP
Θ

)p

− 1 = O(rN−2), r → 0,

we see that f1(r,Θ) satisfies the hypotheses of Lemma 2.1. Hence, it
suffices to verify that f2(r) also fulfills the assumptions of Lemma 2.1.
Then, we can conclude that (4.3) has a unique solution. In the following
three subsections, we shall divide into three subcases: 1 < p < (σ +
2)/(N−2), p = (σ+2)/(N−2) and (σ+2)/(N−2) < p < (N+σ)/(N−2)
with σ > N − 4 to derive the different forms of S and asymptotic
expansions for Θ.

4.1.1. The case 1 < p < (σ + 2)/(N − 2).

Theorem 4.2. Assume that 1 < p < (σ + 2)/(N − 2). Then:

(i) every M-solution ϕ(r) has the form ϕ = S +Θ, where

S(r) =
c

rN−2
,

and Θ solves the initial problem (4.3). Moreover,

Θ(r) = β − cprσ+2−(N−2)p

[N + σ − (N − 2)p][σ + 2− (N − 2)p]

− pβcp−1rN+σ−(N−2)p

[2N + σ − (N − 2)p− 2][N + σ − (N − 2)p]
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+ o(rN+σ−(N−2)p), r → 0,

for some uniquely defined constants c > 0, β ∈ R.
(ii) Conversely, given any c > 0 and β ∈ R, there exists a unique

solution Θ of (4.3) with S(r) = c/rN−2, and ϕ = S + Θ is an M-
solution. In addition,
(4.5)

Θ(r)=β − 1
N−2

∫ r

0

[
1−
(
s
r

)N−2
]
sK(s)[ c

sN−2 +Θ(s)]p ds 0 < r < R,

u(t)= cp−1e[N+σ−(N−2)p]t

N−2

[
1+ pβ

c e
(N−2)t− (σ+2)cp−1e[N+σ−(N−2)p]t

(N−2)[σ+2−(N−2)p][N+σ−(N−2)p]

+p(p−1)β2

2c2 e(2N−4)t + o(emax{N+σ−(N−2)p,2N−4}t)
]
,

v(t)=N − 2− (N−2)β
c e(N−2)t + cp−1

σ+2−(N−2)pe
[N+σ−(N−2)p]t

+ (N−2)β2

c2 e(2N−4)t+ o
(
emax{N+σ−(N−2)p,2N−4}t) t→ −∞.

Proof.

(i) Let c > 0 be determined by Theorem 4.1. Since 1 < p < (σ+2)/
(N − 2), we see that

1

rN−1

∫ r

0

sN−1K(s)ϕp(s) ds = O(rσ+1−(N−2)p)

is integrable at r = 0. It follows from (4.1) with r0 ∈ (0, R) that

ϕ(r) =
c

rN−2
− c

rN−2
0

+ ϕ(r0)−
∫ r

r0

dt

tN−1

∫ t

0

sN−1K(s)ϕp(s) ds,

=
c

rN−2
+ β0 −

∫ r

r0

dt

tN−1

∫ t

0

sN−1K(s)ϕp(s) ds,

=
c

rN−2
+Θ(r), 0 < r < R.

Let

β = β0 −
∫ 0

r0

dt

tN−1

∫ t

0

sN−1K(s)ϕp(s) ds

and S(r) = c/rN−2. It is not difficult to see that Θ satisfies (4.2) and
(4.3) with (rN−1S′)′ = 0. Integrating by parts, we can obtain the first
part of (4.5). Any equation

c1
rN−2

+Θ1(r) =
c2

rN−2
+Θ2(r)
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means c1 = c2 and Θ1(r) = Θ2(r), which demonstrates the uniqueness
of c,Θ and β. Recall that Θ = β + o(1). Then,

Θ′(r) = − 1

rN−1

∫ r

0

sN−1K(s)

[
c

sN−2
+Θ(s)

]p
ds

= − cp

rN−1

∫ r

0

sN+σ−(N−2)p−1

[
1 +

sN−2

c
Θ(s)

]p
ds

= − cp

rN−1

∫ r

0

sN+σ−(N−2)p−1

[
1 +

pβ

c
sN−2 + o(sN−2)

]
ds

= − cprσ+1−(N−2)p

N + σ − (N − 2)p
− pβcp−1rN+σ−(N−2)p−1

2N + σ − (N − 2)p− 2

+ o(rN+σ−(N−2)p−1).

The expansion for Θ follows by integration.

(ii) Given c, β, we define S(r) = c/rN−2. Lemma 2.1 indicates that
(4.3) (where (rN−1S′)′ = 0) has a unique solution Θ, and ϕ = S+Θ is
an M-solution.

Finally,

u(t) = rσ+1 ϕ
p(r)

−ϕ′(r)
= rσ+1 [c/rN−2 +Θ(r)]p

(N − 2)c/rN−1 −Θ′(r)

=
cp−1

N − 2
rN+σ−(N−2)p [1 + (rN−2/c)Θ(r)]p

1− (rN−1/(N − 2)c)Θ′(r)

=
cp−1

N − 2
rN+σ−(N−2)p

[
1 +

p

c
rN−2Θ(r) +O(rN−2Θ(r))2

]
·
[
1 +

rN−1

(N − 2)c
Θ′(r) +O(rN−1Θ′(r))2

]
=

cp−1

N − 2
rN+σ−(N−2)p

[
1 +

pβ

c
rN−2

− pcp−1rN+σ−(N−2)p

[N + σ − (N − 2)p][σ + 2− (N − 2)p]

+
p(p− 1)β2

2c2
r2N−4 + o(rmax{N+σ−(N−2)p,2N−4})

]
·
[
1− cp−1rN+σ−(N−2)p

(N − 2)[N + σ − (N − 2)p]
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− pβcp−2r2N+σ−(N−2)p−2

(N − 2)[2N + σ − (N − 2)p− 2]
+ o(r2N+σ−(N−2)p−2)

]
=

cp−1

N − 2
rN+σ−(N−2)p

[
1 +

pβ

c
rN−2

− (σ + 2)cp−1rN+σ−(N−2)p

(N − 2)[N + σ − (N − 2)p][σ + 2− (N − 2)p]

+
p(p− 1)β2

2c2
r2N−4 + o(rmax{N+σ−(N−2)p,2N−4})

]
.

Similarly,

v(t) = r
−ϕ′(r)
ϕ(r)

= r
(N − 2)c/rN−1 −Θ′(r)

c/rN−2 +Θ(r)
=
N − 2− (rN−1/c)Θ′(r)

1 + (rN−2/c)Θ(r)

=

[
N − 2− rN−1

c
Θ′(r)

]
·
[
1− rN−2

c
Θ(r) +O

(
rN−2

c
Θ(r)

)2]
=

[
N − 2 +

cp−1rN+σ−(N−2)p

N + σ − (N − 2)p
+ o(rN+σ−(N−2)p)

]
·
[
1− β

c
rN−2 +

cp−1rN+σ−(N−2)p

[N + σ − (N − 2)p][σ + 2− (N − 2)p]

+
β2

c2
r2N−4 + o(rmax{N+σ−(N−2)p,2N−4})

]
= N − 2− (N − 2)βrN−2

c
+
cp−1rN+σ−(N−2)p

σ + 2− (N − 2)p
+

(N − 2)β2r2N−4

c2

+ o(rmax{N+σ−(N−2)p,2N−4}). �

4.1.2. The case p = (σ + 2)/(N − 2).

Theorem 4.3. Suppose that p = (σ + 2)/(N − 2). Then:

(i) every M-solution ϕ(r) has the form ϕ = S +Θ, where

(4.6) S(r) =
c

rN−2
− cp

N − 2
ln r,

and Θ solves (4.3) with the following expansions
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Θ(r) = β +
pc2p−1

2(N − 3)3
rN−2 ln r − 3pc2p−1

4(N − 2)3
rN−2 + o(rN−2), r → 0

for some uniquely defined constants c > 0, β ∈ R.

(ii) Conversely, given any c > 0 and β ∈ R, there exists a unique so-
lution Θ of (4.3) with S given by (4.6), and ϕ = S+Θ is an M-solution.
Moreover, Θ satisfies (4.4) with f2(r) = (cp/r2) − cpr−2P p(r) =
O(rN−4 ln r).

u(t) = cp−1e(N−2)t

N−2

[
1− pcp−1

N−2 te
(N−2)t + pβe(N−2)t

c

− cp−1e(N−2)t

(N−2)2 + o(e(N−2)t)
]
,

v(t) = N − 2 + cp−1te(N−2)t +
[
cp−1

N−2 − (N−2)β
c

]
te(N−2)t

+o(e(N−2)t) t→ −∞.

Proof.

(i) Let c > 0 be determined by Theorem 4.1. Then,

sN−1K(s)ϕp(s) = sN+σ−1 cp

s(N−2)p

(
sN−2

c
ϕ(s)

)p

= cpsN−3[1 + o(1)].

By virtue of (4.1), we find

rN−1ϕ′(r) = −(N − 2)c−
∫ r

0

sN−1K(s)ϕp(s) ds,

ϕ′(r) = − (N − 2)c

rN−1
− cp

(N − 2)r
+ o

(
1

r

)
,

ϕ(r) =
c

rN−2

[
1− cp−1

N − 2
rN−2 ln r + o(rN−2 ln r)

]
.

Clearly, the expansions for ϕ(r) are all singular. Hence, we have to
apply the above iterative process once more. Again,

sN−1K(s)ϕp(s) = cpsN−3

[
1− cp−1

N − 2
sN−2 ln s+ o(sN−2 ln s)

]p
= cpsN−3

[
1− pcp−1

N − 2
sN−2 ln s+ o(sN−2 ln s)

]
.
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Therefore,

ϕ′(r) =− (N − 2)c

rN−1
− cp

(N − 2)r
+

pc2p−1

2(N − 2)2
rN−3

· ln r − pc2p−1

4(N − 2)3
rN−3 + o(rN−3).

Set

S′(r) = − (N − 2)c

rN−1
− cp

(N − 2)r

and Θ′(r) = ϕ′(r) − S′(r). Since Θ′ is integrable, Θ fulfills (4.3), and
Θ(0) =: β exists. Hence,

ϕ(r) =
c

rN−2
− cp

N − 2
ln r + β +

pc2p−1

2(N − 3)3
rN−2

· ln r − 3pc2p−1

4(N − 2)3
rN−2 + o(rN−2).

(ii) Given c and β, we define

S(r) :=
c

rN−2
− cp

N − 2
ln r.

Then,

f2(r) = −cprσ−(N−2)pP p(r)− 1

rN−1
(rN−1S′)′

= −cpr−2

(
1− cp

N − 2
rN−2 ln r

)p

+ cpr−2

= O(rN−4 ln r).

It is not difficult to verify that the assumptions of Lemma 2.1 are
satisfied; thus, (4.3) admits a unique solution Θ. Then, ϕ = S + Θ is
an M-solution.

Finally,

u(t) = rσ+1 ϕ
p(r)

−ϕ′(r)
= rσ+1 c/rN−2 − cp ln r/(N − 2) + Θ(r)p

(N − 2)c/rN−1 + cp/(N − 2)r −Θ′(r)

=
cp−1rN−2

N − 2

[1− cp−1rN−2 ln r/(N − 2) + (rN−2/c)Θ(r)]p

1− (cp−1/(N − 2)2)rN−2 − (rN−1/(N − 2)c)Θ′(r)
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=
cp−1rN−2

N − 2

[
1− pcp−1rN−2 ln r

N − 2
+
prN−2

c
Θ(r)

+ o

(
cp−1rN−2 ln r

N − 2
− rN−2

c
Θ(r)

)]
·
[
1− cp−1rN−2

(N − 2)2
+

rN−1

(N − 2)c
Θ′(r)

+ o

(
cp−1rN−2

(N − 2)2
− rN−1

(N − 2)c
Θ′(r)

)]
=
cp−1rN−2

N − 2

[
1− pcp−1rN−2 ln r

N − 2
+
pβrN−2

c
+ o(rN−2)

]
·
[
1− cp−1rN−2

(N − 2)2
+ o(rN−2)

]
=
cp−1rN−2

N−2

[
1− pcp−1

N−2
rN−2 ln r +

pβrN−2

c
− cp−1rN−2

(N−2)2
+o(rN−2)

]
,

and

v(t) = r
−ϕ′(r)
ϕ(r)

= r
(N − 2)c/rN−1 + cp/(N − 2)r −Θ′(r)

c/rN−2 − cp ln r/(N − 2) + Θ(r)

=

[
N − 2 +

cp−1

N − 2
rN−2 − rN−1

c
Θ′(r)

]
·
[
1 +

cp−1

N − 2
rN−2 ln r − rN−2

c
Θ(r)

+ o

(
− cp−1

N − 2
rN−2 ln r +

rN−2

c
Θ(r)

)]
= N−2+cp−1rN−2 ln r+

[
cp−1

N−2
− (N − 2)β

c

]
rN−2+o(rN−2). �

4.1.3. The case (σ + 2)/(N − 2) < p < (N + σ)/(N − 2).

Theorem 4.4. Let (σ + 2)/(N − 2) < p < (N + σ)/(N − 2). Define
µ := N + σ − (N − 2)p ∈ (0, N − 2), and choose k0 ∈ N such that
k0µ < N − 2 ≤ (k0 + 1)µ. Then, there exist some constants aj,
j = 1, 2, . . . , k0 + 3, depending on c, σ, p, N such that :

(i) every M-solution ϕ(r) has the form ϕ = S +Θ, where
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S(r) =


c

rN−2

(
1 +

∑k0

j=1 ajr
jµ
)

N − 2 < (k0 + 1)µ,
c

r(k0+1)µ

(
1 +

∑k0

j=1 ajr
jµ + ak0+1r

(k0+1)µ ln r
)

N − 2 = (k0 + 1)µ,

and Θ is a solution of (4.3) with the expansions

Θ(r) =


β + cak0+1r

(k0+1)µ−N+2 + o(r(k0+1)µ−N+2)

N − 2 < (k0 + 1)µ,

β + cak0+2r
µ ln r + cak0+3r

µ + o(rµ) N − 2 = (k0 + 1)µ

for uniquely determined constants c > 0, β ∈ R.
(ii) Conversely, given any c > 0, β ∈ R, there exists a unique

solution Θ of (4.3) with S given by (i), and ϕ = S+Θ is an M-solution.
Furthermore, Θ satisfies (4.4) with

f2(r) =

{
O(r(k0+1)µ−N+2) N − 2 < (k0 + 1)µ,

O(rµ−2 ln r) N − 2 = (k0 + 1)µ,

andu(t) =
cp−1

N−2e
µt
[
1− (σ+2)cp−1

(N−2)µ(µ−N+2)e
µt + o(eµt)

]
,

v(t) = N − 2 + cp−1

µ−N+2e
µt + o(eµt) t→ −∞.

Proof.

(i) Let c be determined by Theorem 4.1. We have

sN−1K(s)ϕp(s) = cpsµ−1[1 + o(1)].

By virtue of (4.1), we obtain

rN−1ϕ′(r) = −(N − 2)c−
∫ r

0

sN−1K(s)ϕp(s) ds,

ϕ′(r) = − (N − 2)c

rN−1
− cp

µ
rµ−N+1 + o(rµ−N+1),

ϕ(r) =
c

rN−2
− cp

µ(µ−N + 2)
rµ−N+2 + o(rµ−N+2) + C1

=
c

rN−2

[
1− cp−1

µ(µ−N + 2)
rµ + o(rµ)

]
,

where C1 is some constant.
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Repeating the above iterative process, we find

sN−1K(s)ϕp(s) = cpsµ−1

[
1− pcp−1

µ(µ−N + 2)
sµ + o(sµ)

]
,

ϕ′(r) = − (N − 2)c

rN−1
− cp

rN−1

·
∫ r

0

sµ−1

[
1− pcp−1

µ(µ−N+2)
sµ+o(sµ)

]
ds

= − (N−2)c

rN−1
− cprµ−N+1

µ
+
pc2p−1r2µ−N+1

2µ2(µ−N+2)
+o(r2µ−N+1).

If k0 = 1, i.e., µ < N − 2 < 2µ, there exists some constant β ∈ R such
that, for µ < N − 2 < 2µ,

ϕ(r)=β+
c

rN−2

[
1− cp−1rµ

µ(µ−N+2)
+

pc2p−2r2µ

2µ2(µ−N+2)(2µ−N+2)
+o(r2µ)

]
.

For the case N − 2 = 2µ, we obtain

ϕ(r) =
c

r2µ

[
1 +

cp−1rµ

µ2
− pc2p−2r2µ ln r

2µ3
+ o(r2µ ln r)

]
.

Similarly, we must apply the above process once more; thus,

sN−1K(s)ϕp(s) = cpsµ−1

[
1 +

pcp−1sµ

µ2
− p2c2p−2s2µ ln s

2µ3
+ o(s2µ ln s)

]
and

ϕ′(r) = − (N − 2)c

rN−1
− cp

rN−1

·
∫ r

0

sµ−1

[
1 +

pcp−1sµ

µ2
− p2c2p−2s2µ ln s

2µ3
+ o(s2µ ln s)

]
ds

= − (N − 2)c

rN−1
− cprµ−N+1

µ
− pc2p−1r−1

2µ3
+
p2c3p−2r3µ−N+1 ln r

6µ4

− p2c3p−2r3µ−N+1

18µ5
+ o(r3µ−N+1).

Integration gives
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ϕ(r) = β +
c

r2µ

[
1 +

cp−1rµ

µ2
− pc2p−2r2µ ln r

2µ3

+
p2c3p−3r3µ ln r

6µ5
− 2p2c3p−3r3µ

9µ6
+ o(r3µ)

]
.

Now, the singular term S and the regular term Θ can be read off exactly.

By induction, we may assume that, for k0µ < N − 2 < (k0 + 1)µ,

ϕ(r) =
c

rN−2

[
1 +

k0∑
j=1

ajr
jµ + o(rk0µ)

]
,

where aj , j = 1, 2, . . . , k0, are some constants depending on c, σ, p and
N . It follows from similar arguments as before that

sN−1K(s)ϕp(s) = cpsµ−1

[
1 +

k0∑
j=1

ajs
jµ + o(sk0µ)

]p

= cpsµ−1

[
1 +

k0∑
j=1

âjs
jµ + o(sk0µ)

]
for some appropriate constants âj depending upon c, σ, p, N and k0.
Hence,

ϕ′(r) = − (N − 2)c

rN−1
− cp

rN−1

∫ r

0

sµ−1

[
1 +

k0∑
j=1

âjs
jµ + o(sk0µ)

]
ds

= − (N − 2)c

rN−1
− cprµ−N+1

µ

−
k0∑
j=1

cpâjr
(j+1)µ−N+1

(j + 1)µ
+ o(r(k0+1)µ−N+1),

ϕ(r) = β +
c

rN−2

[
1− cp−1rµ

µ(µ−N + 2)

−
k0∑
j=1

cp−1âjr
(j+1)µ

(j + 1)µ[(j + 1)µ−N + 2]
+ o(r(k0+1)µ)

]

= β +
c

rN−2

[
1 +

k0+1∑
j=1

ajr
jµ + o(r(k0+1)µ)

]
,
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where a1 = −cp−1/(µ(µ−N + 2)), aj+1 = −cp−1âj/[(j + 1)µ[(j + 1)µ
−N + 2]], j = 1, 2, . . . , k0. Now, the singular term S and regular
term Θ can be precisely obtained again. We can handle the case
(k0 + 1)µ = N − 2 similarly.

(ii) To show that (4.3) has a unique solution Θ, it suffices to
show that f2(r) satisfies the hypotheses of Lemma 2.1. For the case
N − 2 < (k0 + 1)µ, we have

f2(r) = −cprσ−(N−2)pP p(r)− 1

rN−1
(rN−1S′)′

= −cprµ−N

(
1 +

k0∑
j=1

ajr
jµ

)p

−
k0∑
j=1

jµ(jµ−N + 2)cajr
jµ−N

= −cprµ−N

[
1 +

k0∑
j=1

âjr
jµ + o(rk0µ)

]

−
k0∑
j=1

jµ(jµ−N + 2)cajr
jµ−N = O(r(k0+1)µ−N ).

Here, we have used the relations between aj and âj . The other case
can be investigated similarly.

Finally,

u(t) = rσ+1 ϕ
p(r)

−ϕ′(r)

= rσ+1

[
(c/rN−2)

(
1 +

k0

Σ
j=1

ajr
jµ

)
+Θ(r)

]p/
[
(N−2)c/rN−1+cprµ−N+1/µ

+
k0

Σ
j=1

cpâjr
(j+1)µ−N+1/[(j+1)µ]+o(r(k0+1)µ−N+1)

]
=

cp−1

N − 2
rµ
[
1− pcp−1

µ(µ−N + 2)
rµ + o(rµ)

]
·
[
1− cp−1

(N − 2)µ
rµ + o(rµ)

]
=

cp−1

N − 2
rµ
[
1− (σ + 2)cp−1

(N − 2)µ(µ−N + 2)
rµ + o(rµ)

]
,
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and

v(t) = r
−ϕ′(r)
ϕ(r)

= r
(N− 2)c/rN−1+cprµ−N+1/µ

(c/rN−2)(1 +
∑k0

j=1 ajr
jµ) + Θ

+

∑k0

j=1 c
pâjr

(j+1)µ−N+1/[(j + 1)µ]+o(r(k0+1)µ−N+1)

(c/rN−2)(1 +
∑k0

j=1 ajr
jµ) + Θ

=

[
N − 2 +

cp−1

µ
rµ + o(rµ)

]
·
[
1 +

cp−1

µ(µ−N + 2)
rµ + o(rµ)

]
= N − 2 +

cp−1

µ−N + 2
rµ + o(rµ). �

Remark 4.5. For the case −2 < σ ≤ N−4, since (σ+2)/(N−2) ≤ 1,
we have one case only: 1 < p < (N + σ)/(N − 2). Here, the a priori
estimate (Theorem 4.1) of the M-solutions still holds. If the hypotheses
(σ + 2)/(N − 2) < p < (N + σ)/(N − 2) in Theorem 4.4 is replaced by
1 < p < (N + σ)/(N − 2), then, we can also obtain similar conclusions
as in Theorem 4.4.

4.2. The case p = (N + σ)/(N − 2).

Theorem 4.6. Suppose that p = (N+σ)/(N−2). Then, the following
conclusions are equivalent :

(i) ϕ(r) is an M-solution.

(ii) ϕ(r) fulfills
ϕ(r) =

(
N−2
p−1

)1/(p−1)

(− ln r)1/(p−1) · 1
rN−2 [1 + o(1)],

ϕ′(r) =
(

N−2
p−1

)(1/p−1)

(−ln r)1/(p−1) · −(N−2)
rN−1 [1+o(1)] r → 0.

(iii) u(t) and v(t) satisfy

u(t) = − 1

(p− 1)t
[1 + o(1)],
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v(t) = N − 2 +
1

(p− 1)t
[1 + o(1)], t→ −∞.

(iv) φ(t) → P2, t→ −∞.

Proof.

(i) → (iv). By [1, Theorem 3.1], we see that C−(φ) is bounded. By
the Poincaré-Bendixson theorem for autonomous systems, φ(t) must
converge to a stationary point of (2.6). Moreover, the convergence to P3

is impossible by Theorem 3.1, and the convergence to P1 is impossible,
too. Therefore, φ(t) → P2 as t→ −∞.

(iv) → (iii). Set z = (N − 2− v)/u, and differentiate it with respect
to t. We have

ż =
−uv̇ − (N − 2− v)u̇

u2

=
v(N − 2− u− v)

u
− N − 2− v

u
(N + σ − u− pv)

= [(p+ 1)v + u−N − σ]z − v.

Define

Γ(t) :=

∫ t

tδ

γ(s) ds

for some tδ ∈ Iφ, which indicates that

z(t) = z(tδ)e
Γ(t) − eΓ(t)

∫ t

tδ

v(s)e−Γ(s)ds

= z(tδ)e
Γ(t) + eΓ(t)

∫ t

tδ

[γ(s)− v(s)]e−Γ(s)ds+ 1− eΓ(t)

=: I1 + I2 + 1 + I3.

Since γ(t) → N − 2 as t → −∞, we see that Γ(t) → −∞ as t → −∞,
which implies that I1, I3 → 0. Clearly, v(t) → N − 2 as t → −∞.
Hence, for any δ > 0, we can select tδ ∈ Iφ such that, if s < tδ,

|γ(s)− v(s)| < δγ(s).

It follows that |I2| < δ. Therefore, we have z(t) → 1 as t → −∞.
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Through some simple calculations, we obtain

˙( 1

u

)
= − 1

u2
u̇ = −N + σ − pv

u
+ 1

= −pz(t) + 1 −→ −p+ 1, as t→ −∞.

Then, the expansions for u and v follow.

(iii) → (ii). By the inverse transformation (2.5), we see that

ϕ(r) =

[
u(ln r)v(ln r)

rσ+2

]1/(p−1)

=

(
N − 2

p− 1

)1/(p−1)

(− ln r)1/(p−1)

· 1

rN−2
[1 + o(1)],

ϕ′(r) =

(
N − 2

p− 1

)1/(p−1)

(− ln r)1/(p−1) · −(N − 2)

rN−1
[1 + o(1)].

(ii) → (i) is obvious. �

4.3. Cases p > (N + σ)/(N − 2) and p ̸= (N + 2 + 2σ)/(N − 2).

Theorem 4.7. Suppose that p > (N + σ)/(N − 2) and p ̸= (N + 2 +
2σ)/(N − 2). Then, the following conclusions are equivalent :

(i) ϕ(r) is an M-solution.

(ii) ϕ(r) satisfies

ϕ(r) = C̃r−(σ+2)/(p−1)[1 + o(1)],

ϕ′(r) = −C̃ σ + 2

p− 1
r−(σ+p+1)/(p−1)[1 + o(1)], r → 0,

where
C̃p−1 =

[(N − 2)p−N − σ](σ + 2)

(p− 1)2
.

(iii) u and v fulfill

u(t) =
(N − 2)p−N − σ

p− 1
[1 + o(1)],

v(t) =
σ + 2

p− 1
[1 + o(1)], t→ −∞.

(iv) φ(t) → P4, t→ −∞.
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Proof. The proof follows by similar arguments to those of Theo-
rem 4.5. �

4.4. The case p = (N+2+2σ)/(N−2). For this case, we see that the
real part of complex conjugate eigenvalues of (2.7) is zero. By means
of the Hopf bifurcation theory [10], we can derive more accurate forms
of (u, v), respectively. Then, the form of ϕ(r) follows from an inverse
transformation (2.5).

Theorem 4.8. Suppose that p = (N + 2 + 2σ)/(N − 2). Then, the
following conclusions hold.

(i) ϕ(r) is an M-solution with the form

ϕ(r) =
ψ(ln r)

r(N−2)/2
,

where ψ(ln r) is a strictly positive function with small oscillations about
ψ0 = ((N − 2)/2)(N−2)/(σ+2).

(ii) There exists some sufficiently small ϵ such that u(t) and v(t) can
be described by the following forms, respectively :

u(t) = N−2
2 + ϵ cos(2πt/Tϵ) +O(ϵ2),

v(t) = N−2
2 +

ϵ

p2∗
[(p∗ − 1) sin(2πt/Tϵ)

−(p∗ +
√
p∗ − 1) cos(2πt/Tϵ)] +O(ϵ2),

where

p∗ =
N + 2 + 2σ

N − 2

and

Tϵ =
4π

(N − 2)
√
p∗ − 1

[
1 +

p∗ + 3

6(N − 2)2(p∗ − 1)
ϵ2 +O(ϵ4)

]
.

Proof. From subsection 2.3, we see that

λ1(p) = v∗4 − N − 2

2
+

1

2

√
−Λ(v∗4)i := α(p) + iω(p)

if κ2 < v∗4 < κ1. Obviously,

ω0 := ω(p∗) =
N − 2

2

√
p∗ − 1 > 0
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with p∗ = (N + 2 + 2σ)/(N − 2). By some simple computations, we
obtain

α′(p∗) = − N − 2

2(p∗ − 1)
< 0, ω′(p∗) =

(N − 2)3

4

√
p∗ − 1 > 0.

Set

B = (Reξ1,−Imξ1) =

(
1 0

−1/p∗
√
p∗ − 1/p∗

)
,

where

ξ1 =

(
1,− 1

p∗
−

√
p∗ − 1

p∗
i

)T

is the eigenvector of the matrix corresponding to the eigenvalue
λ1(p∗) = iω0. Applying a change of variables(

u
v

)
=

(
N−2
2

N−2
2

)
+B

(
y1
y2

)
,

we have

(4.7)


ẏ1 = − (N−2)

√
p∗−1

2 y2 −
√
p∗ − 1y1y2 := F 1(y1, y2),

ẏ2 = (N−2)
√
p∗−1

2 y1 −
√
p∗−1
p∗

y21 − 2
p∗
y1y2

+
√
p∗−1
p∗

y22 := F 2(y1, y2).

The Jacobian matrix ∂F i/∂yj(0), i, j = 1, 2, . . ., of (4.7) will have the
real canonical form

∂F 1

∂y1

∂F 1

∂y2

∂F 2

∂y1

∂F 2

∂y2


∣∣∣∣∣∣∣∣∣
(0,0)

=

(
0 −ω0

−ω0 0

)
.

In view of the formulae of [10, Chapter 2], we have

g11(p∗) =
1

4

[
∂2F 1

∂y21
+
∂2F 1

∂y22
+ i

(
∂2F 2

∂y21
+
∂2F 2

∂y22

)]
= 0,

g02(p∗) =
1

4

[
∂2F 1

∂y21
− ∂2F 1

∂y22
−2

∂2F 2

∂y1∂F2
+i

(
∂2F 2

∂y21
− ∂2F 2

∂y22
+ 2

∂2F 1

∂y1∂y2

)]
=

1

2p∗
[2− (p∗ + 2)

√
p∗ − 1i],
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g20(p∗) =
1

4

[
∂2F 1

∂y21
− ∂2F 1

∂y22
+2

∂2F 2

∂y1∂F2
+i

(
∂2F 2

∂y21
− ∂2F 2

∂y22
−2

∂2F 1

∂y1∂y2

)]
=

1

2p∗
[−2 + (p∗ − 2)

√
p∗ − 1i],

g21(p∗) = G21(p∗) = 0,

c1(p∗) =
i

2ω0

[
g20(p∗)g11(p∗)− 2|g11(p∗)|2 −

1

3
|g02(p∗)|2

]
+
g21(p∗)

2
= −p∗ + 3

24ω0
i.

Consequently,

µ2 = −Rec1(p∗)/α
′(p∗) = 0, β2 = 2Rec1(p∗) = 0,

τ2 = −[Imc1(p∗) + µ2ω
′(p∗)]/ω0 =

p∗ + 3

24ω2
0

> 0.

Unfortunately, the result µ2 = 0 does not imply the direction of bi-
furcation, and β2 = 0 does not indicate the stability of the bifurcation
periodic solution either. We do know that the periods of the oscillations
increase as their amplitudes grow. For all sufficiently small ϵ, if we pose
the initial conditions y1(0) = ϵ, y2(0) = 0, the solution of (4.7) must
exist for at least 2π/ω0 units of time and must cross the line y2 = 0 for
some time near π/ω0. Since the symmetry of the y1, y2 phase plane,
the trajectory backwards in time from the same initial conditions is
the reflection in the line y2 = 0 of the forwards trajectory, and the
trajectory meet at y2 = 0, y1 = −ϵ + O(ϵ2). Hence, there exists a
family of periodic solution at p = p∗. Moreover, this family of periodic
solutions is described by(

y1(t; ϵ)
y2(t; ϵ)

)
=

ϵ

p∗

(
p∗ cos(2πt/Tϵ)√

p∗ − 1 sin(2πt/Tϵ)− cos(2πt/Tϵ)

)
+O(ϵ2),

where the period is

Tϵ =
2π

ω0

(
1 +

p∗ + 3

24ω2
0

ϵ2 +O(ϵ4)

)
.
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In cylindrical coordinates, the family of bifurcating tori, belonging
to the system (2.6), is characterized by

u(t) = N−2
2 + ϵ cos(2πt/Tϵ) +O(ϵ2),

v(t) = N−2
2 + ϵ

p2
∗
[(p∗ − 1) sin(2πt/Tϵ)

−(p∗ +
√
p∗ − 1) cos(2πt/Tϵ)] +O(ϵ2).

With the aid of the inverse transformation (2.5), we have

ϕp∗−1(r) =
u(ln r)v(ln r)

rσ+2

=

[
N − 2

2
+ ϵ cos(2πt/Tϵ) +O(ϵ2)

]
·
{
N − 2

2
+

ϵ

p2∗

[
(p∗ − 1) sin(2πt/Tϵ)

− (p∗ +
√
p∗ − 1) cos(2πt/Tϵ)

]
+O(ϵ2)

}
r−σ−2

=

{(
N − 2

2

)2

+
N − 2

2p2∗
ϵ
[
(p∗ − 1) sin(2πt/Tϵ)

+ (p2∗ − p∗ −
√
p∗ − 1) cos(2πt/Tϵ)

]
+O(ϵ2)

}
r−σ−2.

Therefore,

ϕ(r)=

{(
N − 2

2

)2

+
N − 2

2p2∗
ϵ
[
(p∗ − 1) sin(2πt/Tϵ)

+ (p2∗−p∗−
√
p∗−1) cos(2πt/Tϵ)

]
+O(ϵ2)

}1/(p∗−1)

r−(σ+2)/(p∗−1)

:=ψ(ln r)r−(N−2)/2,

where ψ(ln r) is strictly positive with small oscillations about ψ0 =
(N − 2/2)(N−2)/(σ+2). The proof is complete. �

5. F-solutions. By the definition of F-solutions, we see that the
F-solution ϕ(r) fulfills

(5.1)

{
ϕ′′(r) + N−1

r ϕ′(r) + rσϕp(r) = 0 r > R0 > 0,

ϕ(R0) = α, ϕ′(R0) = 0.
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The following results can be established by similar arguments to
those of [24, 27].

Theorem 5.1. Assume that ϕ(r) is a solution of (5.1). Then, there
exists a unique constant α∗ > 0 such that :

(i) if α > α∗, ϕ(r) has a finite zero and finite total mass;

(ii) if α = α∗, ϕ(r) has an infinite zero and finite total mass;

(iii) if 0 < α < α∗, ϕ(r) has an infinite zero and infinite total mass.
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Hénon type elliptic equation −∆u = |x|αup

+, Calc. Var. 50 (2014), 847–866.

24. Y.C. Sha and Y. Li, Structure of the positive radial F-solutions of Matukuma

equation, Int. J. Math. 26 (2015), 1550013.

25. B. Wang, Z.C. Zhang and Y. Li, The radial positive solutions of the Ma-
tukuma equation in higher dimensional space: Singular solution, J. Diff. Eqs. 253

(2012), 3232–3265.

26. X.F. Wang, On the Cauchy problem for reaction-diffusion equations, Trans.
Amer. Math. Soc. 337 (1993), 549–590.

27. E. Yanagida, Structure of positive radial solutions of Matukuma’s equation,
Japan J. Ind. Appl. Math. 8 (1991), 165–173.

28. E. Yanagida and S. Yotsutani, Global structure of positive solutions to
equations of Matukuma type, Arch. Rat. Mech. Anal. 134 (1996), 199–226.



POSITIVE SOLUTIONS OF THE HÉNON EQUATION 2749
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