
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 48, Number 8, 2018

INVARIANT SETS FOR QMF FUNCTIONS

ADAM JONSSON

ABSTRACT. A quadrature mirror filter (QMF) function
can be considered as the transition function for a Markov
process on the unit interval. The QMF functions that
generate scaling functions for multiresolution analyses are
then distinguished by properties of their invariant sets. By
characterizing these sets, we answer in the affirmative a
question raised by Gundy [8].

1. Introduction. The motivation for this paper comes from the
study of a class of Markov processes that appear in the construction of
scaling functions for multiresolution analyses (MRA). For definitions
and background, see [2, 3, 4, 5, 6, 12, 14, 16] and, in particular, [8].
One way to construct a scaling function is to start with a 1-periodic
function p(ξ), ξ ∈ R, that satisfies

(1.1) p(ξ/2) + p(ξ/2 + 1/2) = 1 for every ξ ∈ [0, 1], p(0) = 1.

This condition is known as the quadrature mirror filter (QMF) condi-
tion. We reserve the symbol p for nonnegative, continuous 1-periodic
functions that satisfy (1.1). We call them QMF functions.

To each p, we associate a Markov process ξ0, ξ1, ξ2, . . . on the interval
[0, 1]. Given ξ0 ∈ [0, 1], the process evolves according to

(1.2)
ξt+1 = ξt/2 or ξt/2 + 1/2,

Pp(ξt+1 = ξt/2 + j/2 | ξt) = p(ξt/2 + j/2), j = 0, 1.

If p generates a scaling function, then (see (4.4) below)

(1.3) Pp(ξt → 0 or 1 | ξ0) = 1 for Lebesgue almost every ξ0 ∈ [0, 1].

For Hölder continuous p, the left-hand side of the equality in (1.3) is a
continuous function of ξ0. In this case, the equality in (1.3) must hold
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for every ξ0 ∈ [0, 1] if p generates a scaling function. However, for some
p which generate scaling functions, the equality in (1.3) fails on a set
of Lebesgue measure zero.

An example of such a p is constructed in [8] starting from p(ξ) =
cos2(3πξ), a QMF function with p(1/3) = p(2/3) = 1. That p takes
the value one at ξ = 1/3 and ξ = 2/3 means that B = {1/3, 2/3} is
invariant (i.e., Pp(ξ1 ∈ B | ξ0) = 1 for every ξ0 ∈ B), so Pp(ξt → 0
or 1 | ξ0) = 0 if ξ0 ∈ B. The sets {0} and {1} are invariant since
p(0) = p(1) = 1, so the equality in (1.3) holds if ξ0 ∈ {0, 1}. To
allow sample paths from initial points in the complement of B to
converge to {0, 1}, the function p is given sharp cusps at 1/3 and 2/3,
with corresponding modifications near 1/6 and 5/6 to retain the QMF
condition. Paths from points in the vicinity of B are still attracted to B,
but B is “inaccessible”: for every ξ0 ∈ Bc, the sequence ξ0, ξ1, ξ2, . . .
converges to 0 or 1 with probability one. Hence, the equality in (1.3)
holds for almost every ξ0 ∈ [0, 1].

The set B in the above example is closed and invariant under mul-
tiplication by 2 (mod 1). Since every subset of (0, 1) with these prop-
erties has (Lebesgue) measure zero by the ergodicity of the doubling
map, we may ask (cf., [8, page 1103]): given a closed set B ⊂ (0, 1),
invariant under multiplication by 2 (mod 1), is there a p for which B
is invariant, where

Pp(ξt → 0 or 1 | ξ0) = 1

for almost every ξ0 ∈ [0, 1]?

Our objective is to answer this question by establishing the following
result, whose proof provides a characterization of those subsets of (0, 1)
that are invariant with respect to some p (see (3.5) below).

Theorem 1.1. If B ⊂ (0, 1) is closed, invariant under multiplication
by 2 (mod 1), and invariant for some p, then there is a p̃ for which B
is invariant, where Pp̃(ξt → 0 or 1 | ξ0) = 1 for almost every ξ0 ∈ [0, 1].

This paper is organized as follows. The next section restates the
main question on a space of binary sequences. Having seen the role
played by invariant subsets of the sequence space, we return to the
unit interval in Section 3, where Theorem 1.1 is proven. Section 4
concludes our study.
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2. The dynamics of sample paths. The process (1.2) is conve-
niently studied on the set of all sequences ξ = (. . . , x−1, x0) of zeros
and ones (see [3, 7, 8, 9]), viewed as binary representations of points
of [0, 1]. We denote this set by X . The correspondence between X
and [0, 1] is given by τ : X → [0, 1], where τ(ξ) =

∑∞
j=0 x−j2

−(j+1).
With the topology induced by the metric

(2.1) ρ(ξ, ξ′) =

{
0 if ξ = ξ′,

2−min{|j|:xj ̸=x′
j} if ξ ̸= ξ′,

X becomes a compact space.

After composition with τ , a QMF function defines a continuous
g : X → [0, 1] that satisfies

(2.2) g((ξ, 0)) + g((ξ, 1)) = 1 for all ξ ∈ X, g(0) = g(1) = 1.

Here 0 = (. . . , 0, 0) and 1 = (. . . , 1, 1). If we define

(2.3) (. . . , x−1, x0)
∗ = (. . . , x−1, 1− x0),

we can write the first condition in (2.2) as the requirement that

(2.4) g(ξ) + g(ξ∗) = 1 for all ξ ∈ X.

Let ξ0, ξ1, ξ2, . . . be the Markov process on X that goes from ξt to
(ξt, j) with probability g((ξt, j)), j = 0, 1, and let dξ denote the
infinite product of normalized counting measure on {0, 1}. Then, (1.3)
is equivalent to the condition that

(2.5) Pg(ξt → 0 or 1 | ξ0) = 1 for dξ-almost every ξ0 ∈ X.

Before we describe the structure of what Gundy [8] refers to as
inaccessible invariant sets, we discuss the subshifts of finite type studied
in [7, Section 13]. For n ≥ 2, let K(n) be the set of all ξ ∈ X that do
not contain a string (or word) of n consecutive zeros, or a string of n
consecutive ones. Then,

(2.6) K(2) = {(. . . , 1, 0, 1, 0) and (. . . , 0, 1, 0, 1)} = τ−1(B),

where B = {1/3, 2/3} is the set discussed in the introduction. For every
n ≥ 2, we have that K(n) is a closed shift-invariant proper subset of X
(a subshift). Such sets have measure zero by the ergodicity of the shift
with respect to dξ.
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Suppose that we have defined g so that g is continuous and such that
K := K(3) is invariant, i.e., Pg(ξ1 ∈ K | ξ0) = 1 for every ξ0 ∈ K. The
last condition is met if and only if g(ξ) = 0 for every ξ ∈ Ke, where

Ke := {ξ ∈ Kc : (. . . , x−2, x−1) ∈ K}

is the set of points of exit from K [11]. It is possible to define g in such
a way that g has no zeros outside Ke besides the zeros at 0∗ and 1∗,
which are required for g(0) = g(1) = 1 [13]. To prevent sample paths
from initial points in the complement of K from converging to K, we
modify g so that

(2.7) Uexit:={ξ ∈ X : (x−2, x−1, x0) = (0, 0, 0) or (1, 1, 1)}

is visited infinitely often. (If ξt ∈ Uexit, then ρ(ξt,K) ≥ 2−3, so
paths that visit Uexit infinitely often do not converge to K.) By Levy’s
conditional Borel-Cantelli lemma (see [1] or [7, Lemma 4.1]), we have
ξt ∈ Uexit for infinitely many values of t ≥ 1, Pg( · | ξ0)-almost surely,
if

(2.8)
∞∑
t=0

Pg(ξt+1 ∈ Uexit | ξt) = +∞, Pg( · | ξ0)-almost surely.

The words (0, 0) and (1, 1) are critical in the sense that, if one of these
words appears as the initial word in ξt, then Uexit can be reached in
one step. By our assumptions on g, the probability to reach

(2.9) Ucrit:={ξ ∈ X : (x−1, x0) = (0, 0) or (1, 1)}

in at most two steps is positive for every ξ0 ∈ X. (If ξ0 ∈ Ucrit, no steps
have to be taken. If ξ0 ∈ K, then either (ξ0, 0) and (ξ0, 0, 0) are both
in K, or (ξ0, 1) and (ξ0, 1, 1) are both in K. Since g is strictly positive
on K, we can then reach Ucrit in two steps. Finally, if ξ0 ∈ (K∪Ucrit)

c,
then neither (ξ0, 0) nor (ξ0, 1) is in Ke ∪ {0∗,1∗}, so both transitions
have positive probability. Since (ξ0, 1) ∈ Ucrit if (ξ0, 0) /∈ Ucrit, we can
then reach Ucrit in one step.) The strictly positive finite-step transition
probability is a continuous function of ξ0; thus, it is bounded away
from zero. By the Renewal theorem, we can find β > 0, not dependent
on ξ0 ∈ X such that the recurrence times t1, t2, . . . for critical words
(i.e., the times when ξt ∈ Ucrit) satisfy tj ≤ βj, Pg( · | ξ0)-almost
surely. Setting g = | log2 ρ(ξ,Ke)|−1 on Uexit\Ke, with a corresponding
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modification on Uexit
∗ \ (Ke)

∗, we get

Pg(ξtj+1 ∈ Uexit | ξtj ) ≥
1

l + tj
≥ 1

l + βj
,

where l is the integer with ρ(ξ0,K) = 2−l. (Here we have used the fact
that ρ(ξ0,K) = 2−l implies ρ(ξt,Ke) ≥ 2−(t+l): the initial word in ξt
of length t+ l cannot be the initial word of a point of Ke if the initial
word in ξ0 of length l does not appear in a point of K.) Since (2.9)
holds, Uexit is visited infinitely often. If we set g ≡ 1 on a neighborhood
of {0,1}, then Pg(ξt → 0 or 1 | ξ0) is positive for every ξ0 ∈ Uexit.
We then obtain that the equality in (2.5) holds for all ξ0 ∈ Kc, hence
almost everywhere.

The above construction relies (only) upon the assumption that K
is a subshift of finite type [15, Definition 2.1.1]. If K is a g-invariant
subshift that is not of finite type, then g must take the value zero at
some point of K [13]. (The frontier of Ke is a non-empty subset of K if
K is not of finite type [11]. Since g must vanish on Ke if g is continuous
andK is invariant, we must then have g(ξ) = 0 for certain ξ ∈ K.) This
may leave us without a lower bound on the probability to encounter
a critical word in any number of steps. However, as long as the zeros
of g are contained in Ke ∪ (Uexit)

∗, the set {0,1} remains accessible
from any ξ0 ∈ Kc in the sense that Pg(ρ(ξk, {0,1}) ≤ 2−k | ξ0) > 0
for every k ≥ 1. Consider, therefore, a sequence of (dependent) trials,
where trial n ≥ 0 consists of the attempt to reach

(2.10) U0,1:=

{
ξ ∈ X : (x−k, . . . , x0) = (0, 0, . . . , 0︸ ︷︷ ︸

k + 1 zeros

) or (1, 1, . . . , 1︸ ︷︷ ︸
k + 1 ones

)

}

by k consecutive steps towards either 0 or 1, depending on whether
the initial symbol in ξnk is 0 or 1. For k so large that U0,1 is disjoint

from K and with g(ξ) = | log2 ρ(ξ,Ke)|−1/k on a neighborhood of Ke,
we obtain (below), for some λ′ > 0 and all n ≥ 1, that
(2.11)

Pg(ξnk+k ∈ U0,1|ξnk) ≥
λ′

l + nk + k
, where l = | log2 ρ(ξ0,K)|.

Setting g ≡ 1 on U0,1 achieves (2.5) since U0,1 is visited infinitely often
if ξ0 ∈ Kc, again by Borel-Cantelli.
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A construction of the second type is possible whenever K ⊂ X \
{0,1} satisfies

(2.12) Ke ∩ (Ke)
∗ = ∅.

This condition is necessary if we require that g be continuous, for g-
invariance then implies that g(ξ) = 0 for all ξ ∈ Ke (the closure
of Ke), and hence, that g(ξ) = 1 for all ξ ∈ (Ke)

∗ (cf., [11, 13]).
The construction does not answer the question from the introduction,
however, as it does not provide a continuous p(ξ), ξ ∈ R. To answer
the question that we began with, we return to the unit interval.

3. Proving Theorem 1.1.

3.1. Definitions. When we say that B ⊂ (0, 1) is invariant under
multiplication by 2 (mod 1), we mean that, if B is considered as a
subset of the circle [0, 1), then B = θ(B), where θ(ξ):=2ξ (mod 1).

The map ξ 7→ ξ∗ = ξ+1/2 (mod 1), which is unambiguously defined
on [0, 1), corresponds to the map in (2.3). We define ξ∗ for all ξ ∈ [0, 1]
by

(3.1) ξ∗=

{
ξ + 1/2 if ξ ∈ [0, 1/2],

ξ − 1/2 if ξ ∈ (1/2, 1].

The first condition in (1.1) then says that

(3.2) p(ξ) + p(ξ∗) = 1 for every ξ ∈ [0, 1].

For E ⊂ [0, 1], we let E∗ = {ξ∗ : ξ ∈ E}. Finally, the distance between
ξ ∈ [0, 1] and E is given by

(3.3) dE(ξ) = inf
ξ′∈E

|ξ − ξ′|.

3.2. The structure of invariant sets. A set B ⊂ [0, 1] is invariant
for the process (1.2) if and only if p(ξ) = 0 for every ξ ∈ Be, where

(3.4) Be = {ξ ∈ [0, 1]\B : ξ = ξ′/2+ j/2 for some ξ′ ∈ B, j ∈ {0, 1}}.

(If we identify 0 and 1, we can write Be = {ξ ∈ [0, 1) \ B : θ(ξ) ∈ B}.)
If this condition holds, then we have p(ξ) = 0 for every ξ ∈ Be, and
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consequently, p(ξ) = 1 for every ξ ∈ (Be)
∗, so that

(3.5) Be ∩ (Be)
∗ = ∅.

The proof of Theorem 1.1 shows that every closed θ-invariant B ⊂ (0, 1)
which satisfies (3.5) is invariant for some p.

3.3. Proof of Theorem 1.1. The proof of Theorem 1.1 proceeds in
two steps. Given a closed θ-invariant B ⊂ (0, 1) that satisfies (3.5),
we first construct p such that B is invariant. We then verify that p
satisfies (1.3).

Step 1: Construction. Our construction relies on the following
result.

Lemma 3.1. Suppose that B ⊂ (0, 1) is closed and θ-invariant.

(a) {0, 1/2} ∩ (B ∪Be ∪ (Be)
∗) = ∅.

(b) If B satisfies (3.5), there is a closed Ne ⊂ [0, 1] such that

(i) Ne contains Be is in its interior ;
(ii) Ne ∩N∗

e = ∅;
(iii) {0, 1/2, 1} ∩ (Ne ∪N∗

e ) = ∅.

Proof.

(a) That B is θ-invariant means that 1/2 /∈ B. Thus, we can find
ε > 0 such that

B ⊂ Cε := (ε, 1/2− ε) ∪ (1/2 + ε, 1− ε).

Then, we have Be ⊂ Cε. It follows that

{0, 1/2} ∩ (B ∪Be ∪ (Be)
∗) = ∅.

(b) That B satisfies (3.5) means that we can take δ > 0 so that
|ξ − ξ′| > δ if ξ ∈ Be and ξ′ ∈ (Be)

∗. We can cover the (compact) set
Be by a finite union of closed intervals whose lengths do not exceed
δ/3 and that each contain a point of Be in its interior. If we let Ne

be such a union, then Ne contains Be in its interior. The set N∗
e is

a finite union of closed intervals whose lengths do not exceed δ/3 and
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that each contain a point of (Be)
∗ in its interior. Since

{0, 1/2, 1} ∩ (Be ∪ (Be)
∗) = ∅,

we have
{0, 1/2, 1} ∩ (Ne ∪N∗

e ) = ∅,

if we take the intervals that define Ne sufficiently short. Our choice of
δ gives Ne ∩N∗

e = ∅. �

Now, given a closed θ-invariant B ⊂ (0, 1) that satisfies (3.5), let Ne

be as in Lemma 3.1. Choose ε > 0 so small that Ne ∪ (Ne)
∗ is disjoint

from
N0,1:=[0, ε] ∪ [1− ε, 1].

Then, Ne ∪ (Ne)
∗ is also disjoint from

N1/2:=[1/2− ε, 1/2 + ε] = N∗
0,1.

Fix a positive integer k with 2−k < ε. (This choice of k will ensure
that, starting from any ξ0 ∈ [0, 1] and using the transitions (1.2), we
can reach N0,1 by k consecutive steps towards 0, or by k consecutive
steps towards 1.) Define

(3.6) p(ξ) =


| log2(dBe(ξ))|−1/k if ξ ∈ Ne \Be,

0 if ξ ∈ Be,

0 if ξ ∈ N1/2.

For ξ ∈ (Ne)
∗ ∪N0,1, let p(ξ) = 1− p(ξ∗). Now, p is defined on

N :=Ne ∪ (Ne)
∗ ∪N1/2 ∪N0,1,

and the equality in (3.2) holds if ξ ∈ N . Extend p to [0, 1/2] \ N
continuously in such a way that 0 < p(ξ) < 1 for all ξ ∈ [0, 1/2] \ N .
If we set p(ξ) = 1 − p(ξ∗) for ξ ∈ [1/2, 1] \N and extend periodically,
then p is a QMF function with {ξ ∈ [0, 1] : p(ξ) = 0} = Be ∪N1/2. In
particular, B is invariant for p.

Step 2: Condition (1.3). The verification of (1.3) uses (3.9) below,
which gives an estimate on the speed at which sample paths can
approach Be. We take the sample space for the process (1.2) to be the
set {0, 1}N of all binary sequences x+ = (x1, x2, . . . ), each xi ∈ {0, 1},
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and define the sample path ξt(x
+) from a fixed ξ0 ∈ [0, 1] recursively,

via

(3.7) ξt = ξt−1/2 + xt/2, t ≥ 1.

Note that the estimates in (3.8) and (3.9) below do not involve p.

Lemma 3.2. Let B ⊂ (0, 1) be closed and θ-invariant, and let ξ0 ∈ Bc.
There is a constant α = α(ξ0) > 0 such that, for any sample path
ξt = ξt(x

+), t ≥ 0, from ξ0,

dB(ξt) ≥ α2−t for all t ≥ 0,(3.8)

dBe(ξt) ≥ α2−t for all t ≥ 1.(3.9)

Proof. Since 1/2 /∈ B ∪ Be (Lemma 3.1 (a)), we can pick δ ∈ (0, 1)
such that |ξ − 1/2| > δ for all ξ ∈ B ∪ Be. Let ξ0 ∈ Bc be given, and
consider the sample path ξt = ξt(x

+) defined by x+ ∈ {0, 1}N and the
recursion (3.7). We show that (3.8) holds with

α:=min(δ, dB(ξ0)).

This choice of α > 0 gives dB(ξt) ≥ α2−t if t = 0. Thus, it is sufficient
to show that dB(ξt−1) ≥ α2−(t−1) implies dB(ξt) ≥ α2−t for all t ≥ 1.
Suppose, therefore, that dB(ξt−1) ≥ α2−(t−1), where t ≥ 1. To estimate
dB(ξt), fix an arbitrary ξ ∈ B. Since B is θ-invariant, we can write
ξ = ξ′/2 + j/2 with ξ′ ∈ B and j ∈ {0, 1}. If j ̸= x+

t , then |ξt − ξ| ≥ δ.
(This is since B ⊂ Cδ := (0, 1/2 − δ) ∪ (1/2 + δ, 1).) In this case, we
immediately obtain |ξt − ξ| ≥ α2−t from the definition of α. If x+

t = j,
then

|ξt − ξ| =
∣∣∣∣ξt−1

2
+

x+
t

2
−
(
ξ′

2
+

j

2

)∣∣∣∣ = |ξt−1 − ξ′|/2 ≥ dB(ξt−1)/2.

Using that dB(ξt−1) ≥ α2−(t−1), we get |ξt − ξ| ≥ α2−t. Since ξ ∈ B
was arbitrary, dB(ξt) ≥ α2−t.

Now, we prove (3.9). Let t ≥ 1. To estimate dBe(ξt), let ξ ∈ Be,
so that (by the definition of Be) ξ = ξ′/2 + j/2 for some ξ′ ∈ B and
j ∈ {0, 1}. If j ̸= x+

t , then |ξt − ξ| ≥ δ. (This follows from Be ⊂ Cδ.)
Thus, |ξt − ξ| ≥ α2−t if j ̸= x+

t . If x
+
t = j, then
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|ξt − ξ| =
∣∣∣∣ξt−1

2
+

x+
t

2
−
(
ξ′

2
+

j

2

)∣∣∣∣ = |ξt−1 − ξ′|/2 ≥ dB(ξt−1)/2,

so |ξt − ξ| ≥ α2−t. Since ξ ∈ Be was arbitrary, dBe(ξt) ≥ α2−t. �

Let B, Ne, N0,1, N1/2 and p be as in Step 1. Since B has measure
zero, we are done if we can show that

Pp(ξt −→ 0 or 1 | ξ0) = 1

for every ξ0 ∈ Bc. Let ξ0 be any point of Bc. That p ≡ 1 on N0,1

means that, if a sample path from ξ0 reaches N0,1, it goes to 0 (if it
reaches [0, ε]) or 1 (if it reaches [1 − ε, 1]). Thus, it suffices to show
that ξt ∈ N0,1 for some t, Pp( · | ξ0)-almost surely. By Borel-Cantelli,
we will have ξt ∈ N0,1 for some (in fact, infinitely many) t, if

(3.10)
∞∑

n=0

Pp(ξnk+k ∈ N0,1 | ξnk) = +∞, Pp(· | ξ0)-almost surely.

We verify (3.10) by showing that there is a constant λ ∈ (0, 1) and
a > 0 such that, for all n ≥ 1,

(3.11) Pp(ξnk+k ∈ N0,1 | ξnk) ≥
λ

a+ nk + k
,

Pp( · | ξ0)-almost surely.

Case 1: ξnk ≤ 1/2. Then, ξnk/2
k ∈ N0,1 by our choice of k; thus,

Pp(ξnk+k ∈ N0,1 | ξnk) ≥ Pp(ξnk+k = ξnk/2
k | ξnk) =

k∏
i=1

p(ξnk/2
i).

That ξnk ≤ 1/2 implies that ξnk/2
i ≤ 1/4 for all i ≥ 1. Since

{ξ : p(ξ) = 0} = Be ∪ N1/2 and Be is in the interior of Ne, we can
find c ∈ (0, 1) such that p(ξ) ≥ c for all

ξ ∈ ([0, 1] \Ne) ∩ ([0, 1/4] ∪ [3/4, 1]).

Then, we have

k∏
i=1

p(ξnk/2
i) ≥ ck if ξnk/2

i /∈ Ne for i = 1, . . . , k.
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To verify that (3.11) holds, we need a lower bound on
∏k

i=1 p(ξnk/2
i)

for the case when ξnk/2
i ∈ Ne for at least one i ∈ {1, . . . , k}. By

Lemma 3.2, we can choose α0 > 0 so that dBe(ξt(x
+)) ≥ 2−t−α0 for

every sample path ξt(x
+) from ξ0. For i ∈ {1, . . . , k}, take x+ ∈ {0, 1}N

so that ξnk+i(x
+) = ξnk/2

i. (The first nk entries of x+ define the
itinerary from ξ0 to ξnk, and x+

nk+j = 0 for j = 1, . . . , i.) If ξnk/2
i ∈ Ne,

the definition (3.6) of p together with (3.9) gives

p(ξnk/2
i) = | log2(dBe(ξnk/2

i))|−1/k = | log2(dBe(ξnk+i(x
+)))|−1/k

≥ | log2(2−(nk+i+α0))|−1/k

=

(
1

α0 + nk + i

)1/k

.

Letting i1, . . . , im be the m (m ≤ k) integers i with ξnk/2
i ∈ Ne,

k∏
i=1

p(ξnk/2
i) ≥ ck−m

m∏
j=1

1

(α0 + nk + ij)1/k
≥ ck−m · 1

α0 + nk + k
.

This shows that (3.11) holds with a = α0 and λ = ck.

Case 2: ξnk > 1/2. If ξnk > 1/2, then N0,1 can be reached by k
consecutive steps to the right: ξnk+i = ξnk+i−1/2+1/2 for i = 1, . . . , k.
We then have ξnk+i ≥ 3/4, and the above c bounds p(ξnk+i) when
ξnk+i ∈ ([0, 1] \Ne)∩ ([0, 1/4]∪ [3/4, 1]). Lemma 3.2 and the argument
in Case 1 give p(ξnk+i) ≥ (α0 + nk + i)−1/k when ξnk+i ∈ Ne. This
means that (3.11) again holds with a = α0 and λ = ck.

Since n ≥ 1 was arbitrary, (3.11) holds for all n ≥ 1 with a = α0(ξ0)
and λ = ck. Hence, (3.10) is satisfied.

4. Concluding remarks. A QMF function p(ξ), ξ ∈ R, generates
a scaling function for an MRA if and only if the infinite product

(4.1) Φ̂p(ξ):=
∞∏
j=1

p(ξ/2j), ξ ∈ R,

satisfies (see [8, 10])∑
k∈Z

Φ̂p(ξ + k) = 1 for almost every ξ ∈ [0, 1],(4.2)
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lim
j→∞

Φ̂p(2
−jξ) = 1 for almost every ξ ∈ R.(4.3)

That (4.3) holds for the p that we constructed in the previous section
follows from the fact that this p ≡ 1 is on an open interval containing 0.
That the equality in (4.2) holds almost everywhere for this p follows
from the fact that, for every p and every ξ0 ∈ [0, 1], we have (see [8])

(4.4)
∑
k∈Z

Φ̂p(ξ0 + k) = Pp(ξt −→ 0 or 1 | ξ0).

The discovery of continuous p for which
∑

k∈Z Φ̂p(ξ+k) = 1 fails on
a set of measure zero was made in [5]. The notion of an inaccessible
invariant set comes from [7], where the example from [5] is included in
a class of such invariant sets obtained from subshifts of finite type. In
this paper, we have described their structure completely.
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16. M. Papadakis, H. Šikić and G. Weiss, The characterization of low pass filters

and some basic properties of wavelets, scaling functions and related concepts, J.
Fourier Anal. Appl. 5 (1999), 495–521.

Lule̊a University of Technology, Department of Engineering Sciences and
Mathematics, 97187 Lule̊a, Sweden
Email address: adam.jonsson@ltu.se


