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FAMILIES OF CALABI-YAU ELLIPTIC
FIBRATIONS IN P(La ⊕ Lb ⊕OB)

ANDREA CATTANEO

ABSTRACT. Let B be a smooth projective surface, and
let L be an ample line bundle on B. The aim of this paper is
to study the families of elliptic Calabi-Yau threefolds sitting
in the bundle P(La ⊕Lb ⊕OB) as anticanonical divisors. We
will show that the number of such families is finite.

Introduction. While the theory of elliptic surfaces is a well-settled
and consolidated subject, in the case of elliptic threefolds, there are
still many interesting and open questions. Not only are the theoretical
aspects of the theory important, but, in addition, the research of the
families of examples plays a central role: one of the main motivations
is the close connection with the theory of strings (and, in particular,
F -theory, see e.g., [21]), which is a physical subject whose main object
of study is, in fact, elliptic fibrations on Calabi-Yau manifolds. To
give two examples, in [7], the E6 and E7 families of elliptic Calabi-Yau
threefolds are defined, and, in [6], the authors defined the D5 family.

In this paper, we focus on a manner of constructing elliptic fibra-
tions on the Calabi-Yau threefolds, working in the field C of complex
numbers.

A simple way to produce Calabi-Yau varieties is to consider smooth
anticanonical subvarieties of some reasonable ambient space; in fact,
by adjunction, these varieties will automatically be Calabi-Yau. Giv-
ing different shades to the word ‘reasonable,’ different classes of ambient
spaces are considered in attempting to describe its anticanonical sub-
varieties. In particular, the class of toric Fano Gorenstein fourfolds has
been deeply studied for the following reasons:
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(1) since any anticanonical divisor of a Fano variety is ample, we
are sure to find effective divisors in the anticanonical system;

(2) Gorenstein varieties may be singular, but, in this case, they
have nice resolutions of the singularities and then the anti-
canonical subvarieties of the resolution can be studied;

(3) toric varieties are simple since most of the problems that
may have to be solved can be translated into a combinatorial
problem, which is simpler to deal with.

To each toric Fano Gorenstein fourfold is associated a reflexive four-
dimensional polyhedron, and viceversa, so the first attempt to describe
the Calabi-Yau subvarieties in these ambient spaces is to classify all
of the reflexive four-dimensional polyhedra. Such a classification is
known, and there are 473,800,776 four-dimensional reflexive polyhedra
(see e.g., [15, 16]). Among these, in [2], the 102,581 elliptic fibrations
over P2 are identified.

The elliptic fibrations we describe in this paper are anticanonical
hypersurfaces in a projective bundle Z over a surface B of the form

Z = P(La ⊗ Lb ⊗OB)

for L an ample line bundle on B. Observe that, even in the case where
the base B is toric, e.g., B = P2, the ambient bundle is typically not
Fano.

The aim of this paper is to show that, once B and L are fixed,
then the bundle Z = P(La ⊕ Lb ⊕ OB) can house Calabi-Yau elliptic
fibrations only for a finite number of choices of (a, b):

Main theorem (Theorem 2.1). Let B be a smooth projective surface,
and let L be an ample line bundle on B. Consider the projective bundle
P(La ⊕ Lb ⊕ OB), with a ≥ b ≥ 0. Then, only for a finite number of
pairs (a, b), the generic anticanonical hypersurface in P(La ⊕Lb ⊕OB)
is a Calabi-Yau elliptic fibration over B.

As will be seen in subsections 2.2 and 2.5, we may fail to find a
Calabi-Yau elliptic fibration for the following reasons: the fibration has
no sections or its total space is singular.

The outline of this paper is as follows. In Section 1, we recall the
definitions of elliptic fibration and of Calabi-Yau variety. In Section 2,
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we state the finiteness result (Theorem 2.1) and prove it (subsections
2.5.1–2.5.4). Finally, in Section 3, we give some concrete examples: we
will find explicit bounds on the number of different families when the
base B is a del Pezzo surface (and, in particular, for B = P2), and
when the basis B is a Hirzebruch surface Fe.

1. Elliptic fibrations and Calabi-Yau manifolds. In this sec-
tion, we recall the definition and main properties of elliptic fibrations
(subsection 1.1) and Calabi-Yau manifolds (subsection 1.2). Through-
out this paper, all the varieties are defined over C.

1.1. Elliptic fibrations. Elliptic fibrations are the geometric realiza-
tion of elliptic curves over the function field of a variety. Their study
has been encouraged by physics, and, in particular, string theory: to
each elliptic fibration correspond a physical scenario, and the fibration
itself determines the number of elementary particles, their charges and
masses (see, e.g., [21]).

Definition 1.1. We say that π : X → B is an elliptic fibration over B
if:

(i) X and B are projective varieties of dimension n and n − 1,
respectively, with X smooth;

(ii) π is a surjective morphism with connected fibres;
(iii) the generic fibre of π is a smooth connected curve of genus 1;
(iv) a section σ : B → X of π is given.

When π : X → B satisfies only the first three requirements above, we
say that it is a genus one fibration.

We will denote the fibre over the point P ∈ B with XP .

Remark 1.2. Let π : X → B be an elliptic fibration, with section σ.
Then, each smooth fibre XP is an elliptic curve, where we choose as
the origin the point σ(P ).

A morphism between two elliptic fibrations

π : X −→ B and π′ : X ′ −→ B
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is a morphism of varieties over B, i.e., a morphism

f : X −→ X ′

such that

X
f //

π
  @

@@
@@

@@
@ X ′

π′
~~}}
}}
}}
}}

B

commutes.

Not every fibre of π needs to be smooth: the discriminant locus of
the fibration is the subset of B over which the fibres are singular

∆ = {P ∈ B | XP is singular} ⊆ B.

A rational section of π is a rational map s : B 99K X such that
π◦s = id over the domain of s. The Mordell-Weil group of the fibration
is

MW(X) = {s : B 99K X | s is a rational section},

where the group law is given by addition fibrewise. Observe that,
although the elements of the Mordell-Weil group are rational sections,
we require its zero element to be a section.

1.1.1. The Weierstrass model of an elliptic fibration. The main
reason for requiring that an elliptic fibration admits a section is that
we can use the presence of this section to define the Weierstrass model
of the fibration (see [19, Theorem 2.1]).

Let π : X → B be an elliptic fibration. By a slight abuse of
notation, we still call the image of the distinguished section S = σ(B)
the distinguished section of X. Denote by i the inclusion i : S ↪→ X.
Then, we define the fundamental line bundle of the fibration as the line
bundle on B

F =
(
π∗i∗NS|X

)−1
,

and the Weierstrass model of X is then the image of the birational
morphism

f : X −→ P(π∗OX(3S)) = P(F⊗2 ⊕F⊗3 ⊕OB)
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defined by the canonical morphism π∗π∗OX(3S) → OX(3S). For the
surjectivity of this map, we refer to [19, Proof of Theorem 2.1].

Remark 1.3. Let p :W → B be the Weierstrass model of π : X → B.
Then, W is defined in P(F⊗2 ⊕F⊗3 ⊕OB) by a Weierstrass equation

(1.1) W : y2z = x3 + α102xz
2 + α003z

3,

where α102 ∈ H0(B,F⊗4), α003 ∈ H0(B,F⊗6).

Remark 1.4. The discriminant locus ∆ of a Weierstrass fibration
p : W → B is not only a subset of B, but also a subvariety (actually,
a subscheme) of B. It is defined in terms of the coefficients of the
Weierstrass equation (1.1) by

∆ : 4α3
102 + 27α2

003 = 0.

1.2. Calabi-Yau manifolds. Calabi-Yau manifolds are the higher-
dimensional analogues of elliptic curves and K3 surfaces. The mathe-
matical models of F -theory are all examples of Calabi-Yau manifolds:
this property is needed on the total space of an elliptic fibration in
order to get a physically consistent model (see, e.g., [17, 18]).

Definition 1.5. A Calabi-Yau manifold is a smooth compact Kähler
variety X with

(a) trivial canonical bundle ωX ≃ OX ;
(b) h0,q(X) = 0 for q = 1, . . . dimX − 1, where hp,q(X) =

dimHq(X,Ωp
X).

Example 1.6. If X is a Calabi-Yau variety of dimension 1, then X is
a smooth Riemann surface of genus 1. In the case of dimension 2, the
Calabi-Yau surfaces are the K3. In dimension 3, the Fermat quintic in
P4, and, in fact, any smooth quintic, is a classical example of Calabi-
Yau variety (see, for instance, [4, 12]). Other Calabi-Yau threefolds,
which are complete intersections in projective spaces, are the complete
intersection of two hypersurfaces of degree 3 in P5, of a hyperquadric
and a hypersurface of degree 4 in P5, of two hyperquadrics and a
hypercubic in P6, or the complete intersection of four hyperquadrics
in P7. For other examples of Calabi-Yau manifolds, see e.g., [14].
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2. A finiteness result.

2.1. Notation and general setting. In this section, we will fix the
notation to be used throughout the remainder of the paper. Let B be
a smooth projective surface, and let π : X → B be an elliptic threefold
over B. As we observed in subsection 1.1.1, the Weierstrass model
of π sits in a projective bundle of the form P(F⊗2 ⊕ F⊗3 ⊕OB) for a
suitable line bundle F on B. Now, we want to investigate all of the
elliptic fibrations that can be embedded in similar ambient spaces.

This is the general framework with which we will be working. Let B
be a smooth projective surface and L an ample line bundle on B. Let

p : Z −→ B

be the projective bundle of lines associate to the rank two vector bundle

La ⊕ Lb ⊕OB ,

i.e.,
Z = P(La ⊕ Lb ⊕OB).

Let X ∈ | −KZ | be an anticanonical subvariety, and let π : X → B be
the restriction to X of the structure map p of Z.

2.2. Statement of the problem. The aim of the paper is to give an
answer to the next question.

Main question. For how many (and for which) pairs (a, b) is it true
that, for the generic anticanonical subvariety X of P(La ⊕ Lb ⊕ OB),
the map π defines a Calabi-Yau elliptic fibration over B?

At first sight, the answer seems to be “almost for all pairs,” for the
following reasons:

(1) anticanonical subvarieties are Calabi-Yau by adjunction;
(2) since the generic fibre of π is a plane cubic curve (cf., (2.2)),

we have always a genus 1 fibration.

Nevertheless, we are wrong. In fact, the map π can have no sections,
or the total space X of the fibration can be singular. This last case can
occur for two reasons:
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(1) the generic X ∈ | −KZ | is reducible (see subsection 2.5.4);
(2) there is a section of π passing through a singular point of a

fibre.

In the second case, if the singularities of X admit a small resolution, we
can obtain a Calabi-Yau elliptic fibration; however, then, the resolved
fibration would live in another ambient space, so we exclude them from
this paper.

Theorem 2.1. Let B be a smooth projective surface, and let L be an
ample line bundle on B. Consider the projective bundle P(La ⊕ Lb ⊕
OB), with a ≥ b ≥ 0. Then, only for a finite number of pairs (a, b), the
generic anticanonical hypersurface in P(La⊕Lb⊕OB) is a Calabi-Yau
elliptic fibration over B.

Remark 2.2. Our theorem can be considered as a reflex of the more
general statement [11, Theorem 0.1] that there are only a finite number
of deformation families of Calabi-Yau elliptic threefolds over rational
surfaces with the property that any Calabi-Yau elliptic threefold over
a rational surface is birational to one elliptic fibration in these families
(see, also, [5, Theorem 1.1] for an analogue statement for Calabi-Yau
elliptic fourfolds and fivefolds).

Remark 2.3. The theorem states only the finiteness, but its proof
also provides a sort of algorithm to detect a finite superset of the set
of pairs satisfying the main question.

Remark 2.4. Consider the projective bundle

P(Lα ⊕ Lβ ⊕OB),

with
(α, β) ∈ Z× Z.

After tensoring Lα⊕Lβ ⊕OB with L−m, where m = min{α, β, 0}, and
a permutation of the addends, a new vector bundle is obtained, of the
form

La ⊕ Lb ⊕OB with a ≥ b ≥ 0,

and such that

P(Lα ⊕ Lβ ⊕OB) ≃ P(La ⊕ Lb ⊕OB).
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Thus, the bound on the possible (a, b)s in the hypothesis of Theorem 2.1
is not restrictive.

Before proving Theorem 2.1, in subsection 2.3, we will take a short
digression on the projective bundle Z and its anticanonical subvarieties.

2.3. Calabi-Yau’s in P(La⊕Lb⊕OB). We are interested in studying
the anticanonical subvarieties of

Z = P(La ⊕ Lb ⊕OB).

In this section, we want first to compute the Chern classes of Z and then
find out what an equation looks like for an anticanonical subvariety.

2.3.1. The ambient bundle. The bundle projection p : Z → B gives
the relative tangent bundle exact sequence

0 −→ TZ|B −→ TZ −→ p∗TB −→ 0,

from which we see that

c(Z) = c(TZ|B)p
∗c(B).

To compute the total Chern class of the relative tangent bundle, we
exploit the fact that it fits into an Euler-type exact sequence (see [9,
page 435, B.5.8]):

0 −→ OZ −→ p∗E ⊗OZ(1) −→ TZ|B −→ 0,

where E = La ⊕ Lb ⊕OB .

An explicit computation leads to the following results

(2.1)

c1(Z) = p∗c1(B) + (a+ b)p∗L+ 3ξ,

c2(Z) = abp∗L2 + (a+ b)p∗Lc1(B) + 2(a+ b)p∗Lξ

+ 3p∗c1(B)ξ + p∗c2(B) + 3ξ2,

c3(Z) = 2(a+ b)p∗c1(B)Lξ + 3p∗c1(B)ξ2 + 3p∗c2(B)ξ,

c4(Z) = 3p∗c2(B)ξ2,

where L = c1(L) and ξ = c1(OZ(1)).
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2.3.2. Equations for anticanonical subvarieties. Consider the
projective bundle

Z = P(La ⊕ Lb ⊕OB),

and let x, y and z denote sections on Z whose vanishing gives the
subvariety of Z corresponding to the embeddings

Lb ⊕OB ↪→ E, La ⊕OB ↪→ E, La ⊕ Lb ↪→ E,

respectively. Then,

x ∈ H0(Z, p∗La ⊗OZ(1))

y ∈ H0(Z, p∗Lb ⊗OZ(1))

z ∈ H0(Z,OZ(1)),

and we can use (x : y : z) as global homogeneous coordinates in Z
over B.

Since c1(Z) = p∗c1(B) + (a + b)p∗L + 3ξ, by (2.1), an equation F
defining an anticanonical hypersurface must be cubic in (x : y : z), of
the form

(2.2) F =
∑

i+j+k=3

αijkx
iyjzk,

and the coefficient αijk of the monomial xiyjzk must be a section of a
suitable line bundle, according to Table 1.

Table 1: Cubic monomials and the weight of their coefficients.

Monomial Weight of the coefficient
x3 c1(B)− 2aL+ bL
x2y c1(B)− aL
xy2 c1(B)− bL
y3 c1(B) + aL− 2bL
x2z c1(B)− aL+ bL
xyz c1(B)
y2z c1(B) + aL− bL
xz2 c1(B) + bL
yz2 c1(B) + aL
z3 c1(B) + aL+ bL
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2.3.3. Chern classes of anticanonical subvarieties. We want to
compute the Chern classes of a smooth X ∈ | −KZ |. We have

X � � i //

π
  @

@@
@@

@@
@ Z

p
��~~
~~
~~
~

B

and the normal bundle sequence of X in Z

0 −→ TX −→ i∗TZ −→ NX|Z −→ 0,

which gives the following relation between the total Chern classes

i∗c(Z) = c(X)c(NX|Z) = c(X)i∗(1−KZ).

Since we know c(Z) from subsection 2.3.1, and 1 −KZ is a unit in
the Chow ring of Z, we deduce the following formulae for the Chern
classes of X:

(2.3)

c1(X) = 0,

c2(X) = 3ξ2|X + π∗(2(a+ b)L+ 3c1(B))ξ|X

+ π∗((a+ b)Lc1(B) + abL2 + c2(B)),

c3(X) = −9π∗c1(B)ξ2|X − π∗(2(a2 − ab+ b2)L2

+ 6(a+ b)Lc1(B) + 3c1(B)2)ξ|X .

Remark 2.5. In particular, we have a formula for the Euler-Poincaré
characteristic of our varieties:

χtop(X) = deg c3(X) = −6(a2 − ab+ b2)L2 − 18c1(B)2.

2.4. Hypersurfaces in Calabi-Yau threefolds. In this section, we
recall a result which will be crucial in the proof of our Main theorem 2.1
(see subsection 2.5.2). Using Proposition 2.6, we will, in fact, reduce
our general problem to a simpler one, concerning only the base surface
of the elliptic fibration.

Assume that X is any threefold with c1(X) = 0 and that i : S ↪→ X
is the inclusion of a smooth surface. The techniques used in subsections
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2.3.1 and 2.3.3 can be used to acquire more information on how S is
embedded in X.

From the normal bundle sequence

0 −→ TS −→ i∗TX −→ NS|X −→ 0,

we obtain that

(2.4) i∗c(X) = c(S)c(NS|X).

To compute i∗c(NS|X), we can argue in two ways:

• By the self-intersection formula, c(NS|X) = i∗(1 + [S]), where
[S] is the class of S in the Chow ring of X. Thus,

(2.5) i∗c(NS|X) = i∗i
∗(1 + [S]) = (1 + [S])[S] = [S] + [S]2.

• Using (2.4), we have that c(NS|X) = i∗c(X) · c(S)−1, and thus,

(2.6)
i∗c(NS|X) = c(X) · i∗(c(S)−1)

= [S]− i∗c1(S) + c2(X)[S]− i∗(c2(S)− c1(S)
2).

Comparing (2.5) and (2.6), we get that

(2.7) [S]2 = −i∗c1(S), c2(X)[S] = i∗(c2(S)− c1(S)
2)

Taking the degree of the second relation in (2.7) gives us the following
result.

Proposition 2.6 ([8, Lemma 4.4]). Let X be a threefold with c1(X) =
0, and S a smooth hypersurface, with associated class [S]. Then

c2(X)[S] = χtop(S)−K2
S .

The first relation in (2.7) gives an interpretation to [S]2. In order
to also understand what [S]3 is, we use the adjunction formula for S
in X:

c1(S) = i∗(c1(X)− [S]) = −i∗[S].

From this relation, we have that

deg c1(S)
2 = deg i∗[S]2 = deg i∗i

∗[S]2 = deg[S]3,

i.e., K2
S = [S]3.
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2.4.1. The fundamental line bundle of a Calabi-Yau elliptic
fibration. Assume that π : X → B is an elliptic fibration with
section S, where X is a Calabi-Yau threefold. We can use the first
relation in (2.7) to compute the fundamental line bundle of π. In fact,
since π∗([S]) = B, we have that

π∗i∗c(NS|X) = π∗([S] + [S]2) = 1− p∗i∗c1(S) = 1− c1(B).

Hence, if F is the fundamental line bundle of π, then c1(F) = c1(B),
and thus, we can embed the Weierstrass model of π in

P(ω−2
B ⊕ ω−3

B ⊕OB),

where ωB is the anticanonical line bundle of B.

2.5. Proof of the Main theorem. We will split the proof of The-
orem 2.1 into several steps to make it clearer. In the first step (sub-
section 2.5.1) we will show that possibly with the exception of a finite
number of pairs (a, b), the genus one fibrations X in

Z = P(La ⊕ Lb ⊕OB)

admit a section. In the second step (subsection 2.5.2) we will concen-
trate on such pairs and use the presence of the section to reduce the
problem to a new problem concerning only the intersection form on the
base. In the third step (subsections 2.5.3, 2.5.4) we will show that this
last problem has solution only for a finite number of pairs (a, b), and
this will be accomplished in two different ways, essentially, according
to whether or not L is a rational multiple of ω−1

B .

We recall here the statement of Theorem 2.1.

Main theorem. Let B be a smooth projective surface, and L an ample
line bundle on B. Consider the projective bundle P(La⊕Lb⊕OB), with
a ≥ b ≥ 0. Then, only for a finite number of pairs (a, b), the generic
anticanonical hypersurface in P(La ⊕Lb ⊕OB) is a Calabi-Yau elliptic
fibration over B.

2.5.1. Step 1. In this first step, we use the information provided by
Table 1 to determine when some of the cohomology spaces where the
coefficients αijk of (2.2) lie are a priori zero.
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Since L is an ample divisor, there exists a suitable integer n0 such
that nL + KB is ample for any n ≥ n0. Fix one such n0 (e.g., the
least one), then H0(B, c1(B)− nL) = 0 for any n ≥ n0, for otherwise,
c1(B) − nL = −(nL +KB) would be effective. In particular, there is
an infinite number of pairs (a, b) satisfying 2a − b ≥ n0 in the octant
a ≥ b ≥ 0: the divisor (2a− b)L+KB is ample; hence, by the previous
argument

H0(B, (b− 2a)L−KB) = H0(B,−((2a− b)L+KB)) = 0,

and so the coefficient of x3 in (2.2) is identically 0 (cf., Table 1).
Equation (2.2) then looks like

F =����α300x
3 + α210x

2y + α201x
2z + . . . ,

and thus, π : X → B has a distinguished section, given by

(2.8) P 7−→ (1 : 0 : 0) ∈ XP .

Observe that there is only a finite number of pairs (a, b) in the
octant a ≥ b ≥ 0 such that 2a − b < n0. For such pairs, the generic
anticanonical hypersurface in Z is a genus 1 fibration; however, since
the equation F that defines the variety is general, it is difficult to see
whether or not there are sections. However, we can ignore them from
now on since they are only a finite number.

In Figure 1, this fact is shown in the particular case where B = P2

and L = OP2(1).

Remark 2.7. Exploiting this argument and comparing with the first
four rows in Table 1, it is then easy to see that, if (a, b) satisfy

(2.9)



2a− b ≥ n0

a ≥ n0

b ≥ n0

2b− a ≥ n0

a ≥ b ≥ 0

−→ 1

2
a+

1

2
n0 ≤ b ≤ a,

then the coefficients αij0 are all necessarily identically zero. In par-
ticular, equation (2.2) factors as F (x, y, z) = z · f(x, y, z), and thus,
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Figure 1. The finitely many cases with 2a− b < n0. The picture refers to
the particular case where B = P2 and L is the class of a line so that n0 = 4.
The shaded area corresponds to the bounds given in (2.9).

F = 0 cannot define a smooth variety. However, this is not enough to
conclude the proof of our Main theorem, since an infinite number of
pairs (a, b)s remains.

2.5.2. Step 2. It follows from the first step that, in the infinitely many
cases where 2a − b ≥ n0, the generic anticanonical hypersurface of Z
admits the presence of a section, as defined in (2.8). In this step, we
want to use the relation in Proposition 2.6 to drop the problem down
to B.

Let S be the image of the section (2.8). By Proposition 2.6, we have
that

c2(X)[S] = c2(S)− c1(S)
2 = c2(B)− c1(B)2,

and thus, we need to compute the term on the left.

Let i : X ↪→ Z be the inclusion: by (2.3), we have that c2(X) = i∗ψ,
where

ψ = 3ξ2+ p∗(2(a+ b)L+3c1(B))ξ+ p∗((a+ b)Lc1(B)+ abL2+ c2(B)),
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and hence,

deg c2(X)[S] = deg i∗ψ · [S] = deg i∗(i
∗ψ · [S]) = degψ · i∗[S].

In order to compute i∗[S], which is the class of S in the Chow ring of Z,
we recall that S is defined in Z by y = z = 0 and that this intersection
is transverse. Therefore,

i∗[S] = (ξ + bp∗L)ξ = ξ2 + bp∗Lξ,

and the relation degψ · i∗[S] = c2(B)− c1(B)2 reduces to

(2.10) a(a− b)L2 + (b− 2a)c1(B)L+ c1(B)2 = 0.

Observe now that we have a problem concerning only the base and its
intersection theoretic properties. Letting (a, b) ∈ R2, equation (2.10)
defines a plane conic, which is reducible if and only if

L2 = 0 or (c1(B)L)2 = L2c1(B)2.

The first case is impossible since we are assuming that L is ample.

By the Hodge index theorem, (c1(B)L)2 ≥ L2c1(B)2 and

(2.11) (c1(B)L)2 = L2c1(B)2 ⇐⇒ rL ≡ sc1(B)

for suitable integers r and s (where ≡ denotes numerical equivalence),
and s ̸= 0 since L is ample.

Our next step is to study the conic defined in (2.10) when it is irre-
ducible (subsection 2.5.3) and when it is reducible (subsection 2.5.4),
and to show that, in each of these two cases, we have only a finite num-
ber of integral points (a, b) in the octant a ≥ b ≥ 0 on the conic (2.10).

2.5.3. Step 3, Case 1. We concentrate first on the case when the
conic (2.10) is irreducible; it is a hyperbola, with asymptotes

a =
c1(B)L

L2
and b = a− c1(B)L

L2
.

Observe that, if we multiply (2.10) by L2, then it can be written as

(L2a− c1(B)L)(L2(a− b)− c1(B)L) = (c1(B)L)2 − c1(B)2L2,
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and thus, the integral points of (2.10) are the integral pairs (ai, bi)
having

ai =
di + c1(B)L

L2
, bi =

di − d′i
L2

=
d2i + c1(B)2L2 − (c1(B)L)2

L2di
,

where di runs through all the divisors of (c1(B)L)2 − c1(B)2L2 and
d′i = [(c1(B)L)2 − c1(B)2L2]/di. Hence, it is clear that they are finite.

2.5.4. Step 3, Case 2. Now, we concentrate on the case where the
conic (2.10) is reducible, i.e., the case where (c1(B)L)2 = L2c1(B)2.

The equation for the conic (2.10) is

(L2a− c1(B)L)(L2a− L2b− c1(B)L) = 0.

By (2.11), rL ≡ sc1(B) implies (c1(B)L)/L2 = r/s. We have two
further subcases, according to whether r/s is or is not a positive integer.

If r/s /∈ N, the two lines

a =
c1(B)L

L2
and b = a− c1(B)L

L2

have no integral points in the octant a ≥ b ≥ 0. This means that we
have no new smooth Calabi-Yau fibrations.

If, instead, r/s ∈ N, then, in the range a ≥ b ≥ 0, we have a
finite number of pairs (a, b) on the line a = (c1(B)L)/L2, namely,
(c1(B)L)/L2 +1 = r/s+1, and an infinite number of (a, b) on the line
b = a− (c1(B)L)/L2. To give a limitation on the number of the latter
ones, we look at the coefficients of the first monomials in equation (2.2),
listed in Table 2, and use the integer n0 introduced in subsection 2.5.1.
It was defined by the property that nL−c1(B) is ample for any n ≥ n0.

Table 2: Weight of αij0 on the line b = a− (c1(B)L)/L2.

Monomial Weight of the coefficient

x3 c1(B)−
(
b+ 2 r

s

)
L

x2y c1(B)−
(
b+ r

s

)
L

xy2 c1(B)− bL

y3 c1(B)−
(
b− r

s

)
L
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Arguing as in Remark 2.7, we now find a bound: if b ≥ n0 + r/s,
we have that all of the bundles listed in Table 2 are anti-ample.
Hence, the coefficients of x3, x2y, xy2 and y3 in (2.2) are necessarily
identically zero, and thus, the equation F for the variety factors as
F (x, y, z) = z · f(x, y, z). Then, F = 0 cannot define a smooth variety.

Observe that, in this case, z = 0 defines a divisor whose class is ξ,
while f(x, y, z) = 0 defines a divisor of class p∗c1(B)+ (a+ b)p∗L+2ξ,
which is neither a Calabi-Yau variety nor an elliptic fibration.

In particular, we have only a finite number of pairs (a, b) on the line
b = a− (c1(B)L)/L2 such that the generic anticanonical hypersurface
in

P(La ⊕ Lb ⊕OB)

could define a Calabi-Yau elliptic fibration over B, and a limitation is

r

s
≤ a ≤ n0 + 2

r

s
− 1, 0 ≤ b ≤ n0 +

r

s
− 1.

We can be even more precise (see, also, Remark 3.1) since, up to
numerical equivalence, we have rL/s ≡ c1(B), and thus, nL− c1(B) ≡
(n − r/s)L is ample if n ≥ r/s − 1. This means that we can choose
n0 = r/s− 1, which gives us the limitations

(2.12)
r

s
≤ a ≤ 3

r

s
, 0 ≤ b ≤ 2

r

s
.

Remark 2.8. It is interesting to observe that the “extreme” case of
limitation (2.12) occur. In fact, choosing (a, b) = (3r/s, 2r/s), from the
relation rL ≡ sc1(B), we obtain

3
r

s
L ≡ 3c1(B), 2

r

s
L ≡ 2c1(B),

and thus, we are dealing with the projective bundle

P(ω−3
B ⊕ ω−2

B ⊕OB),

where we can find all of the Weierstrass models of elliptic fibra-
tions over B, whose total space is a Calabi-Yau manifold (cf., sub-
section 2.4.1).
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Figure 2. If B = P2 and L is the class of a line, then we are in the case
described in subsection 2.5.4, to which the picture corresponds.

If r/s ∈ N, then we have at most
(2.13)

3
r

s
+ 1 =

( r

s
+ 1

)
︸ ︷︷ ︸

pairs on the line
a = (c1(B)L)/L2

+
(
2
r

s
+ 1

)
︸ ︷︷ ︸

pairs on the line
b = a− (c1(B)L)/L2

− 1︸︷︷︸
the common case

(a, b) =
(
(c1(B)L)/L2, 0

)
such pairs (a, b).

2.5.5. Conclusion. Only for a finite number of pairs (a, b) is the
generic anticanonical hypersurface in P(La⊕Lb⊕OB) a smooth Calabi-
Yau elliptic fibration, which completes the proof of Theorem 2.1.

We summarize the results obtained in Table 3.

Remark 2.9. We want to stress that we have proved that the number
of genus 1 fibrations whose total space is smooth lies in a finite number
of P(La ⊕ Lb ⊕ OB); however, we do not know a priori whether all of
them are elliptic fibrations. In the finite number of cases detected in
subsection 2.5.1, it is unclear, in fact, if there is at least a section.

Remark 2.10. We can also read our result in another way: only for
a finite number of Z = P(L⊗a ⊕L⊗b ⊕OB) the generic element of the
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Table 3. Summary of the results.

(2a−b)L+KB

is not ample

(2a− b)L+KB is ample

(KBL)
2 ̸= K2

BL
2 (KBL)

2 = K2
BL

2

r/s /∈ N r/s ∈ N
Finite number

of cases, which

are a priori

only genus one

fibrations. It is

not clear if they

have at least one

section or not.

The conic (2.10) is irre-

ducible, and we have a

finite number of Calabi-

Yau elliptic fibrations.

No pairs Finite number

of Calabi-Yau

elliptic fibra-

tions, at most

3r/s+ 1.

anticanonical system | −KZ | is a smooth hypersurface. We now focus
on the infinite number of cases where this does not hold: in view of
Bertini’s theorem, we can then claim that, for such ambient spaces Z,
the linear system | −KZ | is not base point free.

3. Examples. We want to run this program in two cases of interest:
the case where the base B is a del Pezzo surface and L is a rational mul-
tiple of an anticanonical divisor, and the case where B is a Hirzebruch
surface and L is any ample line bundle.

The reason why del Pezzo surfaces are interesting is provided by the
following observation.

Remark 3.1. Let B be a surface and L an ample divisor on B. Assume
that, at the end of step 2 (subsection 2.5.2), the conic (2.10) is reducible.
It easily follows from (2.11) that B is a del Pezzo surface and L is
(numerically) a rational multiple of c1(B).

Before dealing with the general case in subsection 3.2, it is worth-
while separately studying the subcase B = P2 (subsection 3.1).

The motivation for our interest in Hirzebruch surfaces is the follow-
ing.

Remark 3.2. Assume that π : X −→ B is a smooth, elliptic Calabi-
Yau threefold, with B a smooth minimal surface. It follows from [10,
Corollary 3.3] and [10, Theorem 3.1] that, either B is birationally



2154 ANDREA CATTANEO

ruled, or B is a K3 or Enriques surface and the j-invariant function is
constant. In the first case, it follows from the discussion following [10,
Corollary 3.3] that B can either be P2 or a geometrically ruled surface
with Sakai invariant e bounded by 0 ≤ e ≤ 12. Finally, from [20, Main
theorem], we deduce that B is rational; hence, it is P2 or a Hirzebruch
surface Fe (with e ̸= 1).

Hirzebruch surfaces will be dealt with in subsection 3.3.

3.1. The case of B = P2. Observe that, if B is a smooth surface
with PicB ≃ Z, then we are necessarily in the case described in
subsection 2.5.4.

Take B = P2, and L = dl for d ∈ N, l a line in P2 (Figures 1, 2
correspond to the choice d = 1). Now, we compute the least integer n0
such that n0L+KP2 is ample:

n0 =


4 if d = 1

2 if d = 2, 3

1 if d ≥ 4;

thus, the cases satisfying 2a− b < n0 (subsection 2.5.1) are

(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 3) if d = 1
(0, 0), (1, 1) if d = 2, 3
(0, 0) if d ≥ 4.

Since c1(P2) = 3l, we have

rdl = 3sl ⇐⇒ rd = 3s⇐⇒ r

s
=

3

d
.

We only have two cases where the ratio r/s is an integer, which
correspond to

d = 1 and d = 3,

i.e., L = l or L = −KP2 . For all of the other cases, the only possible
pair is then (a, b) = (0, 0), with the exception of L = 2l, which also has
(a, b) = (1, 1).

For d = 3, there are five possibilities: besides the two we already
know, on the reducible conic (2.10), we also have the pairs (a, b) =
(1, 1), (2, 1), (2, 3).



FAMILIES OF CALABI-YAU ELLIPTIC FIBRATIONS 2155

Table 4: Summary of cases with B = P2, L = dl and d ≥ 2.

d Possible (a, b)

2 (0, 0), (1, 1)
3 (0, 0), (1, 0), (1, 1), (2, 1), (2, 3)

≥ 4 (0, 0)

The only remaining case is d = 1, in the situation of subsection 2.5.4.
We must count the integral points on the conic

(a− 3)(a− b− 3) = 0,

which are in the first octant and have b ≤ 6 (estimate (2.12)). On the
line a = 3, we have the points (3, 2), (3, 1) and (3, 0), while on the line
b = a−3, we have the points (4, 1), (5, 2), (6, 3), (7, 4), (8, 5) and (9, 6).

Then, the pairs (a, b) such that the generic anticanonical hypersur-
face in the bundle

P(OP2(a)⊕OP2(b)⊕OP2)

could be a smooth Calabi-Yau elliptic fibration are the following 15:

(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 3),
(3, 2), (3, 1), (3, 0),

(4, 1), (5, 2), (6, 3), (7, 4), (8, 5), (9, 6).

Remark 3.3. Some of these families are already known. For example,
the families corresponding to (a, b) = (3, 3) and (6, 3) were analyzed
in [1], while the one corresponding to (a, b) = (6, 3) and (3, 0) was
analyzed in [3].

3.2. The case of del Pezzo surfaces. Let B denote a del Pezzo
surface and L a rational multiple of the anticanonical bundle, say,
Lr = ω−s

B (this is the natural setting by Remark 3.1). Let n0 = [r/s]+1.
Then, nL + KB is ample for all n ≥ n0. With the notation of
subsection 2.5.1, the number of pairs (a, b) for which we cannot ensure
the presence of a section, i.e., those satisfying the system{

a ≥ b ≥ 0

2a− b < n0,
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is

(3.1)

n0(n0 + 2)

4
for n0 even,

n20 + 4n0 − 1

4
for n0 odd.

If the ratio r/s is not an integer, then these are the only cases among
which we can find elliptic fibrations.

Remark 3.4. In particular, for r < s we only have the pair (a, b) =
(0, 0).

If the ratio r/s is an integer m, then r = ms, and thus, mL = −KB,
i.e., L is a submultiple of −KB . In this case, n0 = m+1, and we must
also count the points on the reducible conic (2.10): in view of estimate
(2.13), these are 3m since the point (a, b) = (m,m) was already taken
into account. However, then, the number of families of elliptic Calabi-
Yau threefolds over B is bounded by

(3.2)

m2 + 18m+ 4

4
for m even,

m2 + 16m+ 3

4
for m odd.

Remark 3.5. Observe that these results agree with those found in
subsection 3.1 for the plane P2. Let l be the class of a line. Then:

(1) For L = l, we have r = 3, s = 1 and so we can use (3.2) with
m = 3; we have 15 cases.

(2) For L = 2l, we have r = 3, s = 2 and so we can use (3.1) with
n0 = 2; we have 2 cases.

(3) For L = 3l, we have r = s = 1 and so we can use (3.2) with
m = 1; we have 5 cases.

(4) For L = kl, with k ≥ 4, we have r/s < 1 and so we can use
(3.1) with n0 = 1; we have only 1 case.

3.3. The case of Hirzebruch surfaces. Let Fe = P(OP1(e)⊕OP1)
be a Hirzebruch surface. Then, the Picard group of Fe is generated
by two classes, C and f , with C2 = −e, C · f = 1 and f2 = 0.
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The canonical divisor of Fe is KFe = −2C − (e + 2)f , and a divisor
L = αC + βf is ample if and only if (cf., [13, Corollary V.2.18])

(3.3)

{
α > 0

β > αe.

It is then easy to see that −KFe is ample if and only if e < 2, and
thus, the only minimal Hirzebruch surface which is also a del Pezzo
surface is

F0 = P1 × P1.

In what follows, we will then assume that e ≥ 2.

Following along the lines of the proof of Theorem 2.1, we first
compute the less integer n0 such that KFe + nL is ample for every
n ≥ n0. Due to (3.3), we have that

n0 =


3 if α = 1

2 if α = 2

1 if α ≥ 3.

Hence, as a first result, the pairs (a, b) satisfying 2a− b < n0 are
(0, 0), (1, 0), (1, 1), (2, 2) if α = 1

(0, 0), (1, 1) if α = 2

(0, 0) if α ≥ 3.

Next, we must consider the conic (2.10) and find its integral points
in the octant a ≥ b ≥ 0. Observe that (2.10) can also be written as

(KFe + aL)2 = bL(KFe + aL),

which is easier to deal with. Before finding the integral points on this
conic, we make a small digression, giving some useful estimates for some
intersection numbers. We have that

−KFe
· L

L2
=

2β − eα− 2α

α(2β − eα)
=

1

α
+

2

2β − eα
.

Observe, then, that:
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(1) If α = 1, we have β > e ≥ 2, and thus, β ≥ 3. As a
consequence,

2β − e = β + (β − e) ≥ 3 + 1 = 4;

thus, we deduce that

1 < −KFe · L
L2

≤ 1 +
1

2
=

3

2
.

(2) If α ≥ 2, arguing as above, we deduce that β ≥ 5, and thus,

2β − eα = β + (β − eα) ≥ 5 + 1 = 6.

This means that

0 < −KFe
· L

L2
≤ 1

2
+

1

3
=

5

6
.

With these estimates, we can then prove the next lemma.

Lemma 3.6. Let L be an ample line bundle on the Hirzebruch surface
Fe with e ≥ 2. Then, the conic (2.10) has no integral points (a, b) with
a ≥ 3.

Proof. Write L = αC + βf , as above, and observe that we have
−KFe · L ≥ 6. This means, in particular, that the intersection of any
ample divisor with the canonical divisor is strictly negative. We split
the proof into two parts, according to whether α = 1 or α ≥ 2.

If α = 1, the oblique asymptote b = a + (KFe/L
2) has −3/2 ≤

(KFe/L
2) < −1, and thus, it suffices to show that, given any integer

a ≥ 3, the b-coordinate of the point (a, b) on the conic (2.10) satisfies
the inequality b > a − 2. This means that this point lies between the
asymptote and the closest integral point below it; therefore, this point
cannot be integral. Since we can write our conic as

b =
(KFe + aL)2

L(KFe + aL)

and, for a ≥ 3, we have that (KFe +aL) is ample, we see that b > a−2
is equivalent to

(KFe + aL)(KFe + 2L) > 0.
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However, explicitly writing this product, we find that it turns out to
be (2β − e − 2)(a − 2), which is positive since L is ample and a ≥ 3.
Thus, we are finished in this case.

In order to deal with the case α ≥ 2, we argue in the same manner
but, since we have

−5

6
≤ KFe · L

L2
< 0,

we want to show that

b =
(KF2 + aL)2

L(KFe + aL)
> a− 1.

This is equivalent to (KFe + aL)(KFe + L) > 0, which is true if α ≥ 3
since it is the intersection of two ample divisors. It remains to show
that the inequality also holds when α = 2. Explicitly writing the
intersection product, we find that

(KFe + aL)(KFe + L) = 2(a− 1)(β − e− 2),

which is positive since L is ample and a ≥ 3. �
Due to the previous lemma, it remains to deal with only five integral

points in the plane.

(1) The point (2, 0) belongs to the conic (2.10) if and only if
(KFe + 2L)2 = 0. Thus, if α ≥ 2, it cannot be a point of the conic, as
KFe + 2L is ample. On the contrary, if α = 1, then

KFe + 2L = (2β − e− 2)f,

and thus, (KFe + 2L)2 = 0. Therefore, we do have an integral point.

(2) The point (2, 1) belongs to the conic (2.10) if and only if
(KFe + 2L)(KF2 + L) = 0. We can assume that α ̸= 1 since we know
that, in this case, the conic passes through the point (2, 0). We can
also discard all of the cases with α ≥ 3 since the intersection on the
left is the intersection of two ample divisors. Therefore, we are only
left with the case where α = 2, in which case, we have

(KFe + 2L)(KF2 + L) = 2(β − e− 2) = 0.

The only possible line bundle, then, is

L = 2C + (e− 2)f = −KFe ;

however, we must discard this possibility as −KFe is not ample.
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(3) The point (2, 2) belongs to the conic (2.10) if and only if
KFe

· (KFe
+ 2L) = 0. As before, we can assume that α ≥ 2, in which

case, KFe +2L is ample. However, then, as pointed out in the proof of
Lemma 3.6, its intersection with an anticanonical divisor is negative.
Hence, we do not have new integral points.

(4) The point (1, 0) belongs to the conic (2.10) if and only if
(KFe + L)2 = 0. Recall that the points we are now considering must
also satisfy b ≤ 2a − n0; thus, we can assume that α ≥ 2. As before,
if α ≥ 3, we have the self-intersection of an ample divisor. Hence, it
cannot be zero. If α = 2, then

KFe + L = (β − e− 2)f,

and thus, (KFe + L)2 = 0. This means that we have an integral point.

(5) The point (1, 1) belongs to the conic (2.10) if and only if

KFe
· (KFe

+ L) = 0.

Due to the limitation b ≤ 2a − n0, we can restrict to α ≥ 3. In this
case, KFe +L is ample, and thus, its intersection with an anticanonical
divisor is negative. Hence, we do not have new integral points.

We can now sum up these results in the next proposition.

Proposition 3.7. Let Fe be a Hirzebruch surface, with e ≥ 2. Let
L = αC + βf be an ample divisor on Fe, corresponding to the line
bundle L. Then, the generic anticanonical divisor in

P(La ⊕ Lb ⊕OFe)

defines a smooth Calabi-Yau elliptic fibration over Fe only if (a, b) is
one in the following list :

(0, 0), (1, 0), (1, 1), (2, 2); (2, 0) if α = 1,
(0, 0), (1, 1); (1, 0) if α = 2,
(0, 0) if α ≥ 3.

Remark 3.8. Concerning the surface

F0 = P1 × P1,

we have that PicF0 is generated by two classes, f1 and f2, with
intersections f21 = f22 = 0 and f1 · f2 = 1. The canonical divisor
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is
KF0

= −2f1 − 2f2,

and −KF0 is ample. Therefore, we must distinguish two cases.

(1) The line bundle L is L = f1 + f2. In this case, we can apply the
arguments of subsection 3.2, and we see that the possible pairs (a, b)
are:

(0, 0), (1, 0), (1, 1), (2, 2),
(2, 0), (2, 1),

(3, 1), (4, 2), (5, 3), (6, 4).

(2) The line bundle L = αf1+βf2 is not a rational multiple of −KF0 .
In this case, up to switch f1 and f2, it is not restrictive to assume that
β > α > 0, and, arguing as we did previously in this section, we can
conclude that the possible pairs (a, b) are the following:

(0, 0), (1, 0), (1, 1), (2, 2); (2, 0) if α = 1,
(0, 0), (1, 1); (1, 0) if α = 2,
(0, 0) if α ≥ 3.
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