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WHEN FOURTH MOMENTS ARE ENOUGH

CHRIS JENNINGS-SHAFFER, DANE R. SKINNER
AND EDWARD C. WAYMIRE

ABSTRACT. This note concerns a somewhat innocent
question motivated by an observation concerning the use
of Chebyshev bounds on sample estimates of p in the bi-
nomial distribution with parameters n, p, namely, what
moment order produces the best Chebyshev estimate of p?
If Sn(p) has a binomial distribution with parameters n,
p, then it is readily observed that argmax0≤p≤1ES2

n(p) =
argmax0≤p≤1np(1 − p) = 1/2, and ES2

n(1/2) = n/4. Bhat-

tacharya [2] observed that, while the second moment Cheby-
shev sample size for a 95 percent confidence estimate within
±5 percentage points is n = 2000, the fourth moment yields
the substantially reduced polling requirement of n = 775.
Why stop at the fourth moment? Is the argmax achieved at
p = 1/2 for higher order moments, and, if so, does it help in
computing ES2m

n (1/2)? As captured by the title of this note,
answers to these questions lead to a simple rule of thumb for
the best choice of moments in terms of an effective sample
size for Chebyshev concentration inequalities.

1. Introduction. This note concerns a somewhat innocent question
motivated by an observation concerning the use of Chebyshev bounds
on sample estimates of p in the binomial distribution with parameters
n, p, namely, what moment order produces the best Chebyshev estimate
of p? Chebyshev is arguably the most basic concentration inequality to
occur in risk probability estimates, and the use of second moments is
a textbook example in elementary probability and statistics. Consider
iid Bernoulli 0−1 random variables X1, X2, . . . , Xn with parameter p ∈
[0, 1], and let Sn(p) =

∑n
j=1(Xj − p). Then, it is readily observed that

argmax0≤p≤1ES2
n(p) = argmax0≤p≤1np(1− p) = 1/2. It is also a well-
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known probability exercise to check that fourth moment Chebyshev
bounds improve the rate of convergence that can more generally be used
for a proof of the strong law of large numbers, e.g., see [2, page 100].
Somewhat relatedly, Bhattacharya [1] recently noticed, after a mildly
tedious calculation for checking argmax0≤p≤1ES4

n(p) = 1/2, that the
second moment Chebyshev bound is rather significantly improved by
consideration of fourth moments as well. In particular, while the second
moment Chebyshev sample size for a 95 percent confidence estimate
within ±5 percentage points is n = 2000, the fourth moment yields
the substantially reduced polling requirement of n = 775. While the
Chebyshev inequality is one among several inequalities used to obtain
sample estimates, it is no doubt the simplest; see [2] for comparison of
fourth order Chebyshev to other concentration inequality bounds and
[4] for numerical comparisons to higher order Chebyshev bounds.

So why stop at fourth moments? Is argmax0≤p≤1ES2m
n (p) = 1/2

for all m, n, and, if so, does it improve the estimate? Somewhat
surprisingly we were unable to find a resolution of such basic questions
in the published literature. In any case, with the argmax question
resolved in part (a) of the next theorem, part (b) provides a direct
computation of ES2m

n (1/2). Part (c) then provides a more readily com-
putable version.

Theorem 1.1.

(a) For all m ≥ 1 and n sufficiently large, argmax0≤p≤1ES2m
n (p) =

1/2.
(b) For all positive m and n,

ES2m
n

(
1

2

)
= 4−m

∑
µ∈π(m)
|µ|≤m∧n

(
2m

2µ1, . . . , 2µ|µ|

)(
n

|µ|

)
.

(c) For all positive m and n,

ES2m
n

(
1

2

)
= 2−2m−n

n∑
k=0

(
n

k

)
(2k − n)2m.

Here, π(m) is the set of ordered integer partitions of m, also referred
to as integer compositions, and |µ| denotes the number of parts of
µ ∈ π(m). We refer to |µ| as the size of the partition µ.
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The equivalent calculus challenge is to show, for fixed m, that, for
all sufficiently large n,

(1.1) argmax0≤p≤1

d2m

dt2m
(peqt + qe−pt)n

∣∣∣
t=0

=
1

2
.

The example below illustrates the challenge in locating absolute max-
ima for such polynomials (in p), especially for proofs by mathematical
induction. The proof given here is based on explicit combinatorial
computation of ES2m

n (p) in terms of ordered partitions of 2m, after in-
troducing a few preliminary lemmas. The lemmas are relatively easy to
verify using statistical independence and identical distributions of the
terms Xi − p and Xj − p, i ̸= j, and make good exercises in calculus,
probability, and number theory. However, we first observe that part
(a) of the theorem does not hold for m > n.

Counterexample to Theorem 1.1 (a) for (small) n < m. Observe,
for n = 1 and m = 2, the function

ES4
1(p) = p− 4p2 + 6p3 − 3p4, 0 ≤ p ≤ 1,

has a minimum at p = 1/2, with two local maxima at 1/2±
√
2/4. In

particular,

argmax0≤p≤1ES4
1(p) =

1

2
±

√
2

4
.

Specifically, the polynomial is generally not unimodal. Thus, the
restriction to sufficiently large n is necessary for Theorem 1.1 (a).
There is also the question of how large is sufficiently large. We do
not address this here; however, computations suggest a bound along
the lines of m ≤ c · nε, with ε a little less than 1/2. We let mn

denote the largest value of m, dependent on n, such that Theorem
1.1 (a) holds for all m ≤ mn. We leave this as an open problem for
determining an exact formula for mn, as well as determining a formula
for argmax0≤p≤1E2m

n (p), m > mn.

2. Proofs and remarks. Let π(2m) denote the set of ordered
partitions of 2m. We will use |µ| = k to denote the number of parts
of µ. Finally, for µ ∈ π(2m), let

fi(µ, p) = pqµi + q(−p)µi ,

0 ≤ p ≤ 1, q = (1− p), 1 ≤ i ≤ |µ|.
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Lemma 2.1. Let 0 ≤ p ≤ 1 and q = 1− p. The following hold :

(a) Sn(p)
dist
= −Sn(q);

(b) ES2m
n (p) = ES2m

n (q);

(c) ES2m
n (p) =

∑
µ∈π(2m)

(
n

|µ|

)(
2m

µ1, . . . , µ|µ|

) |µ|∏
i=1

fi(µ, p);

(d)
d

dp
ES2m

n (p) =
∑

µ∈π(2m)

(
n

|µ|

)(
2m

µ1, . . . , µ|µ|

) |µ|∑
i=1

f ′
i(µ, p)

|µ|∏
j ̸=i

fj(µ, p).

Lemma 2.2. Let µ ∈ π(2m) and 1 ≤ i ≤ |µ|. Then:

d

dp
fi(µ, p) = qµi

(
1− p

q
µi

)
+ (−1)µi+1pµi

(
1− q

p
µi

)
.

It now follows easily that

fi

(
µ,

1

2

)
=

{
2−µi for even µi,

0 for odd µi;
(2.1)

f ′
i

(
µ,

1

2

)
=

{
0 for even µi,

−2(µi − 1)2−µi for odd µi.
(2.2)

The keys to the following proof of Theorem 1.1 reside in:

(1) the parity conflicts between (2.1) and (2.2), and

(2) the expansion (d) in Lemma 2.1, viewed as a polynomial in n.

Proof of Theorem 1.1. That p = 1/2 is a critical point follows from
Lemma 2.1 (d), together with (2.1) and (2.2), by examining the terms

f ′
i(µ, 1/2)

∏|µ|
j ̸=i fj(µ, 1/2). In particular, for partitions of 2m, if µi is

odd, then there must be a j ̸= i such that µj is odd as well. In order
to see that p = 1/2 is an absolute maximum, the trick is to observe
that, for 0 ≤ p < 1/2 < q, the leading coefficient of (d/dp)ES2m

n (p),
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viewed as a polynomial in n, is obtained at the m-part composition,
µ = (2, 2, . . . , 2) of 2m, namely, it is obtained from(

n

m

)(
2m

2, 2, . . . , 2

)
m(q2 − p2)(pq)m−1

and, therefore, is positive for all p < 1/2. Thus, for sufficiently large n,

d

dp
ES2m

n (p) > 0 for 0 ≤ p < 1/2.

In view of the symmetry expressed in Lemma 2.1 (b), it follows that
p = 1/2 is the unique global maximum.

For Theorem 1.1 (b), simply compute from independence, writing

X̃i = Xi − 1/2, i = 1, 2, . . . , n. In particular, X̃i = ±1/2 with equal
probabilities. Thus, for m ≥ 1,

ES2m
n

(
1

2

)
=

∑
1≤j1,...,j2m≤n

E
2m∏
i=1

X̃ji

=
∑

2m1+···+2mn=2m

n∏
i=1

EX̃2mi
i

=
m∧n∑
k=1

∑
2m1+···+2mn=2m

#{j:mj≥1}=k

n∏
i=1

4−mi

=
m∧n∑
k=1

(
n

k

) ∑
µ=(µ1,...,µk)∈π(m)

(
2m

2µ1, . . . , 2µk

)
4−m.

Here, we adopt the convention that a sum over an empty set is zero so
that, if there are no partitions µ of m with |µ| = k, then the indicated
sum is zero for this choice of k. Thus, nonzero contributions to the sum
are provided by ordered partitions µ of size |µ| ≤ m ∧ n.

In order to simplify the computation in terms of ordered partitions
(b), we may proceed as follows to obtain the formula in (c). We com-
pute ES2m

n (1/2) as the 2mth moment of Sn(1/2), as given in (1.1). By
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the binomial theorem, we have that

ES2m
n

(
1

2

)
=

d2m

dt2m

[(
et/2

2
+

e−t/2

2

)n]
t=0

=
d2m

dt2m

[
2−n

n∑
k=0

(
n

k

)
et(2k−n)/2

]
t=0

= 2−n−2m
n∑

k=0

(
n

k

)
(2k − n)2m. �

A linear recurrence in m is also possible in aiding the pre-asymptotic
(in n) iterative computations of ES2m

n (1/2), namely,

Proposition 2.3.

(2.3) ES2m+2ℓ+2
n

(
1

2

)
=

ℓ∑
j=0

cj2
2j−2ℓ−2ES2m+2j

n

(
1

2

)
,

where ℓ = ⌊(n− 1)/2⌋, ak = (2k−n)2 and (c0, c1, . . . , cℓ) is the unique
solution to 

a00 a10 · · · aℓ0
a01 a11 · · · aℓ1
...
a0ℓ a1ℓ · · · aℓℓ



c0
c1
...
cℓ

 =


aℓ+1
0

aℓ+1
1
...

aℓ+1
ℓ

 .

Proof. In order to see this, write

ES2m
n

(
1

2

)
= 2−2m−n+1

ℓ∑
k=0

(
n

k

)
(2k − n)2m.

Then, (2.3) follows, since

ES2m+2ℓ+2
n

(
1

2

)
−

ℓ∑
j=0

cj2
2j−2ℓ−2ES2m+2j

n

(
1

2

)

= 2−2m−2ℓ−n−1
ℓ∑

k=0

(
n

k

)
am+ℓ+1
k
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−
ℓ∑

j=0

cj2
−2m−2ℓ−n−1

ℓ∑
k=0

(
n

k

)
am+j
k

= 2−2m−2ℓ−n−1
ℓ∑

k=0

(
n

k

)
amk

(
aℓ+1
k −

ℓ∑
j=0

cja
j
k

)
= 0. �

For an application to the statistical estimate, we may combine
Theorem 1.1 with Chebyshev’s inequality to obtain the following.

Corollary 2.4. For ε > 0, we have that

P

(∣∣∣∣ 1nSn(p)

∣∣∣∣ > ε

)
≤ min

1≤m≤mn

(
2m
√

ES2m
n (1/2)

nε

)2m

.

Noting the scaling invariance,

argmax
0≤p≤1

ES2m
n (p) = argmax

0≤p≤1
E
S2m
n (p)

nm
,

and EZ2m = 2−m(2m)!/m! for the standard normal random variable Z.
In the limit n → ∞, ε → 0, nε2 → ñ, we have

Bm :=E
S2m
n (1/2)

n2mε2m
=E

(Sn(1/2)/
√
n/4)2m

n2mε2m

(
n

4

)m

−→2−2mñ−mEZ2m

=2−3m (2m)!

m!
ñ−m.

In particular, we ask for the best choice of m for large n, i.e., in the
above limit as n → ∞, ε ↓ 0, nε2 → ñ. The quantity ñ = nε2

denotes an effective sample size in the sense of the risk assessment
defined by P (|Sn(p)| > nε) < ε, see [3] for an introduction of this
artful terminology in a much broader context. Observe that, in the
limit of large n,

lim
n→∞
ε↓0

nε2=ñ

Bm+1

Bm
=

2m+ 1

4ñ


≤ 1,

= 1,

≥ 1,
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if and only if

m


≤ 2ñ− 1/2,

= 2ñ− 1/2,

≥ 2ñ− 1/2.

The conclusion is perhaps best summarized in terms of the following,
informally interpreted optimal estimation principle.

Approximate rule of thumb. For large n, the optimal moment
order 2m for the Chebyshev bound is quadruple the effective sample
size. In particular, the fourth moment is optimal for a one unit effective
sample size.
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