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INTROVERTED SUBSPACES OF
THE DUALS OF MEASURE ALGEBRAS

HOSSEIN JAVANSHIRI AND RASOUL NASR-ISFAHANI

ABSTRACT. Let G be a locally compact group. In con-
tinuation of our studies on the first and second duals of
measure algebras by the use of the theory of generalized
functions, here we study the C∗-subalgebra GL0(G) of
GL(G) as an introverted subspace of M(G)∗. In the case
where G is non-compact, we show that any topological left
invariant mean on GL(G) lies in GL0(G)⊥. We then endow
GL0(G)∗ with an Arens-type product, which contains M(G)
as a closed subalgebra and Ma(G) as a closed ideal, which is
a solid set with respect to absolute continuity in GL0(G)∗.
Among other things, we prove that G is compact if and
only if GL0(G)∗ has a non-zero left (weakly) completely
continuous element.

1. Introduction. Throughout this paper, G is a locally compact
group with left Haar measure λ and identity element e, and the
notations Cc(G) and C0(G) refer to the space of all bounded complex-
valued continuous functions with compact support and the space of
all functions vanishing at infinity, respectively. Moreover, M(G) refers
to the measure algebra of G consisting of all complex regular Borel
measures on G with the total variation norm and the convolution
product ∗ defined by the formula

⟨µ ∗ ν, g⟩ =
∫
G

∫
G
g(xy) dµ(x) dν(y)

for all µ, ν ∈ M(G) and g ∈ C0(G). It is folklore that M(G) is the first
dual space of C0(G) for the pairing
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⟨µ, g⟩ :=
∫
G
g(x) dµ(x), µ ∈ M(G), g ∈ C0(G).

In the last 30 years, research on the second duals of Banach algebras
has mostly centered around the Banach algebras related to locally
compact groups and has been dealt with by Lau, et al., in the works
[3, 4, 7, 12]. In particular, [7] is the first important work devoted to
the study of the second duals of measure algebras. Among other things,
the authors of [7] have conjectured that the Banach algebra M(G) is
strongly Arens irregular, and its second dual M(G)∗∗ determines G in
the category of all locally compact groups. Later, the second duals of
measure algebras were studied in a series of papers. Here, we would like
to mention that the Gharahmani-Lau conjecture on the strong Arens
irregularity of M(G), stated in [7] as well as earlier in [11], has recently
been solved [14]. Particularly, [4] is the second important work devoted
to the study of M(G)∗∗, where most of the known results about these
Banach algebras up to the year 2012 may be found. Recall from [4]
that M(G)∗, the first dual space of M(G), as the second dual of the
C∗-algebra C0(G), is a commutative unital C∗-algebra, and therefore,

if G̃ denotes the hyper-Stonean envelope of G, then we can recognize

M(G)∗ as C(G̃), the space of all bounded complex-valued continuous

functions on G̃. It follows that
M(G)∗∗ ∼= M(G̃),

where ∼= denotes the isometric algebra isomorphism. Many authors, up
until the year 2012, have used a type of this identification as a tool for
the study of M(G)∗∗, see [4] and the references therein for more details.

Recently, in the works [6, 10], we studied the first and second
duals of measure algebras by the use of the theory of generalized
functions, which were introduced and investigated by S̆rĕidr [16] and
Wong [17, 18]. In those papers, we observed that GL0(G), the space
of all generalized functions which vanishes at infinity, plays a crucial
role in our investigation. Motivated by this, here we study the C∗-
algebra GL0(G) as an introverted subspace of M(G)∗. In particular,
in the case where G is non-compact, we show that any topological left
invariant mean on GL(G) lies in GL0(G)⊥, which demonstrates that
the weak∗-closed subspace GL0(G)⊥ of M(G)∗ is far from devoid of
interest. We then endow GL0(G)∗ with an Arens-type product which
contain M(G) and Ma(G) as a closed subalgebra and a closed ideal,
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respectively. Among other things, we prove that the existence of a
non-zero left (weakly) completely continuous element in GL0(G)∗ is
equivalent to the compactness of G.

2. Generalized functions: An overview. In this section, we
give a brief overview of generalized functions in the sense of Wong
[17]. Nevertheless, we shall require some facts regarding the theory
of C∗-algebra. For background on this theory, we use [15] as a
reference and adopt that book’s notation. Moreover, our notation and
terminology are standard and, concerning Banach algebras related to
locally compact groups, they are in general those of Hewitt and Ross
[9]. This section is mostly contained in the papers of Wong [17, 18].

For any complex regular Borel measure µ on G, let L∞(|µ|) denotes
the Banach space of all essentially bounded |µ|–measurable complex
functions fµ on G with the essential supremum norm

∥fµ∥µ,∞ = inf{α ≥ 0 : |fµ| ≤ α, |µ|-almost everywhere}.

Consider the product linear space∏
{L∞(|µ|) : µ ∈ M(G)}.

An element f = (fµ)µ∈M(G) in this product is called a generalized
function if fµ = fν |µ|-almost everywhere for any µ, ν ∈ M(G) with
µ ≪ ν, where µ ≪ ν means that |µ| is absolutely continuous with
respect to |ν|. We note that this condition implies that, for given
generalized functions f = (fµ)µ∈M(G),

sup{∥fµ∥µ,∞ : µ ∈ M(G)} < ∞;

otherwise, there is a sequence (µn) in M(G) for which ∥fµn∥µn,∞ ≥ n
for all n ∈ N. Set

µ =
∞∑

n=1

2−n∥µn∥−1|µn|.

Then, µn ≪ µ, and hence, ∥fµ∥µ,∞ ≥ ∥fµn∥µn,∞ ≥ n for all n ∈ N,
which is a contradiction.

Now, following Wong [17], we use the notation GL(G) to denote
the commutative unital C∗-algebra of all generalized functions endowed
with the coordinatewise operations, the involution f 7→ f∗, where f∗ :=
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( fµ )µ∈M(G), and the norm

∥f∥∞ := sup{∥fµ∥µ,∞ : µ ∈ M(G)},

where f = (fµ)µ∈M(G) is in GL(G). The identity element of GL(G) is,
of course, the generalized function 1 := (1µ)µ∈M(G), where 1µ is the
identity element of L∞(|µ|). Moreover, we write f = (fµ)µ∈M(G) ≥ 0
to mean that the generalized function f is positive in the C∗-algebra
sense, and denote by GL(G)+ the set of all positive elements of GL(G).

Remark 2.1. It is not difficult to verify that a generalized function
f = (fµ)µ∈M(G) is positive in the C∗-algebra sense if and only if
fµ(x) ≥ 0 for all x ∈ G and all µ ∈ M(G); see [15, page 45], [17,
page 85] for more information.

As a main result, Wong [17] has shown that, for each f = (fµ)µ∈M(G)
in GL(G), the equation

⟨Ψ(f), ζ⟩ :=
∫
G
fζ(x) dζ(x), ζ ∈ M(G),

defines a linear functional Ψ(f) on M(G). In particular, the map f 7→
Ψ(f) is an isometric linear mapping from GL(G) onto M(G)∗; see [16]
and [17, Theorems 2.1, 2.2] for the same result on the special case
where G is a certain locally compact abelian group. In particular, any
L ∈ M(G)∗ can be considered as a generalized function Ψ−1(L), and
we do not distinguish between a generalized function f and its unique
corresponding linear functional Ψ(f). In particular, this duality allows
us to consider GL(G) as a Banach M(G)-bimodule. In particular, if
ζ and f = (fµ)µ∈M(G) are arbitrary elements of M(G) and GL(G),
respectively, then, one can consider the linear functionals fζ and ζf on
M(G) defined by

⟨fζ, µ⟩ = ⟨f, ζ ∗ µ⟩, ⟨ζf, µ⟩ = ⟨f, µ ∗ ζ⟩, µ ∈ M(G).

In order to find the generalized functions corresponding to these linear
functionals, following Wong [17], [18, page 610], we define

ζ ◦ f ∈
∏

{L∞(|µ|) : µ ∈ M(G)}

as
(ζ ◦ f)µ = lζfζ∗µ, µ ∈ M(G),
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where

lζfζ∗µ(y) =

∫
G
fζ∗µ(xy) dζ(x) for |µ|-almost everywhere y ∈ G.

Then, ζ ◦ f is again a generalized function such that

⟨ζ ◦ f, µ⟩ = ⟨f, ζ ∗ µ⟩, µ ∈ M(G),

see [17, pages 88, 89]. Thus, ζ ◦ f is the generalized function corre-
sponding to the functional fζ ∈ M(G)∗ such that Ψ(ζ ◦ f) = fζ. In
addition, by using the right convolution notation, we can show that f ◦ζ
is the generalized function corresponding to the functional ζf ∈ M(G)∗.
In what follows, we do not distinguish between the linear functionals
fζ and ζf and their corresponding generalized functions. Later on, we
will need the next remark in our present investigation.

Remark 2.2. Suppose that BM(G) denotes the Banach space of all
bounded Borel measurable functions on G with the supremum norm
∥·∥u. Then, each f ∈BM(G) may be regarded as an element (fµ)µ∈M(G)
in GL(G) where, for each µ ∈ M(G), the functions fµ denote the
equivalent class of f in L∞(|µ|). Hence, BM(G) can be considered as
a closed subspace of GL(G) containing the space Cb(G) of all complex-
valued continuous bounded functions on G. Moreover, each f ∈ BM(G)
may be regarded as an element inM(G)∗ by the pairing ⟨f, µ⟩ =

∫
G fdµ,

µ ∈ M(G). In this case, the restriction of the map Ψ to BM(G) is pre-
cisely the embedding of BM(G) into M(G)∗.

3. Generalized functions that vanish at infinity. We com-
mence this section by recalling the main object of the work which is
introduced and studied by the authors in [10].

Definition 3.1. A generalized function f = (fµ)µ∈M(G) vanishes at
infinity if, for each ε > 0, there is a compact subset Kε of G for which
∥fµχG\Kε

∥µ,∞ < ε for all µ ∈ M(G); formally, for all ε > 0, there exists
a Kε ∈ K(G) such that, for all µ ∈ M(G),

|fµ(x)| < ε for |µ|-almost all x ∈ G \Kε,

where χKε denotes the characteristic function of Kε on G, and K(G)
denotes the set of all compact subsets in G.
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We denote by GL0(G) the C∗-subalgebra of GL(G) consisting of all
generalized functions that vanish at infinity.

The aim of the present section is to study some aspects of GL0(G)
as a C∗-subalgebra of GL(G). We give a simple but important result
whose proof involves nothing more than routine calculations.

Lemma 3.2. Suppose that K(G) is directed downwards and, for each
α, uKα ∈ Cc(G) is chosen such that 0 ≤ uKα ≤ 1 and uKα(x) = 1
for all x ∈ Kα. Then, (uKα) is a bounded approximate identity for
GL0(G).

Our next result shows that the subspaces

M(G) ◦GL0(G) := {ζ ◦ f : ζ ∈ M(G) and f ∈ GL0(G)}

and

GL0(G) ◦M(G) := {f ◦ ζ : ζ ∈ M(G) and f ∈ GL0(G)}

of GL(G) coincide with GL0(G).

Lemma 3.3. The following assertions hold.

(i) M(G) ◦GL0(G) = GL0(G);
(ii) GL0(G) ◦M(G) = GL0(G).

Proof. We prove the first; the proof of the second is similar. Since
the inclusion GL0(G) ⊆ δe ◦GL0(G) ⊆ M(G) ◦GL0(G) holds, it will be
sufficient to prove the reverse inclusion. Toward this end, let ζ ∈ M(G),
f = (fµ)µ∈M(G) ∈ GL0(G) and ϵ > 0 be given. Without loss of gener-
ality, we may assume that ζ is non-zero and positive and that f ̸= 0. By
the regularity of ζ, we can choose a compact subset K1 of G such that
0 < ζ(G \K1) < (ϵ/2)∥f∥∞. Also, since f vanishes at infinity, there is
a compact subset K2 in G with ∥f − χK2f∥∞ < (ϵ/2)∥ζ∥. Therefore,

∥ζ◦f−(χK1ζ)◦(χK2f)∥∞≤∥ζ−χK1ζ∥∥f∥∞+∥χK1ζ∥∥f−χK2f∥∞≤ ϵ,

(3.1)

where χK1ζ is the measure in M(G) defined on each Borel subset A of
G by

χK1
ζ(A) =

∫
A

χK1
dζ.
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Now, suppose that µ is an arbitrary element of M(G). Observe that

((χK1ζ) ◦ (χK2f))µ(x) =

∫
K1

χK2(yx)f(χK1
ζ)∗µ(yx) dζ(y).

For each x ∈ G \K1
−1K2, we get K1x ⊆ G \K2, and hence, ((χK1ζ) ◦

(χK2
f))(x) = 0 for µ-almost all x ∈ G\K1

−1K2. Thus, inequality (3.1)
implies that

|(ζ ◦ f)µ(x)| < ε for µ-almost all x ∈ G \K1
−1K2.

It follows that ζ ◦ f ∈ GL0(G). We have now completed the proof of
Lemma 3.3. �

Now, let Ma(G) be the closed ideal of M(G) consisting of all abso-
lutely continuous measures with respect to λ, and let L1(G) denote the
group algebra of G as defined in [9, Theorems 14.17, 14.18]. Then,
the Radon-Nikodym theorem can be interpreted as an identification of
Ma(G) with {νφ : φ ∈ L1(G)}, where νφ is the measure in M(G) defined
on each Borel subset A of G by

νφ(A) =

∫
A

φdλ.

This allows us to show that Ma(G)∗, the first dual space of Ma(G),
is L∞(G), where L∞(G) denotes the Lebesgue space as defined in [9,
Definition 12.11] equipped with the essential supremum norm. Given
any σ ∈ Ma(G) and g ∈ L∞(G), define the complex-valued functions
g ⋆ σ and σ ⋆ g on G by

(g ⋆ σ)(x) = ⟨g, δx ∗ σ⟩ =
∫
G
g(xy) dσ(y)

and

(σ ⋆ g)(x) = ⟨g, σ ∗ δx⟩ =
∫
G
g(yx) dσ(y)

for all x ∈ G, where δx denotes the Dirac measure at x. Then, it is
easy to verify that the functions g ⋆ σ and σ ⋆ g are in Cb(G); this is
due to the fact that Ma(G) can be identified with all ν ∈ M(G) such
that the maps x 7→ δx ∗ |ν| and x 7→ |ν| ∗ δx from G into M(G) are norm
continuous, see, for example, [9, 19.27, 20.31]. In particular, if

P : GL(G) −→ L∞(G)
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is the adjoint of the natural embedding from Ma(G) into M(G), then
P is the restriction mapping, and hence, norm decreasing and onto.

For the formulation of the following statements, we recall Remark
2.2 which allows us to consider Cb(G) as a closed subspace of GL(G)
containing C0(G).

Lemma 3.4. If σ is an arbitrary element of Ma(G), then, for a given
f = (fµ)µ∈M(G) in GL(G) and all µ ∈ M(G), we have

(i) (σ ◦ f)µ = σ ⋆ P(f), |µ|-almost everywhere,
(ii) (f ◦ σ)µ = P(f) ⋆ σ, |µ|-almost everywhere.

In particular, (σ ◦ f)µ and (f ◦ σ)µ are in Cb(G) for all µ ∈ M(G).

Proof. We prove assertion (i); the proof of (ii) is similar. First, note
that σ ◦ f is the generalized function h = (hµ)µ∈M(G), where, for each
µ ∈ M(G), the following equality is satisfied:

hµ(x) = (σ ◦ f)µ(x) = lσfσ∗µ(x) =

∫
G
fσ∗µ(yx) dσ(y).

On the other hand, for an arbitrary µ in M(G) and any Borel subset
A of G, since χAµ ≪ µ, we have∫

G
χAhµ dµ =

∫
G
fσ∗χAµd(σ ∗ χAµ)

= ⟨P(f), σ ∗ χAµ⟩

=

∫
G

∫
G
P(f)(yx) dσ(y) d(χAµ)(x)

=

∫
G
χA (σ ⋆ P(f)) dµ.

Hence, (σ ◦ f)µ = σ ⋆P(f) |µ|-almost everywhere µ ∈ M(G). It follows
that σ ◦ f ∈ Cb(G). �

Now, in light of Lemmas 3.3 and 3.4, the following proposition is
immediate.

Proposition 3.5. The following assertions hold.

(i) Ma(G) ◦GL0(G) = C0(G);
(ii) GL0(G) ◦Ma(G) = C0(G).
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Recall from [17, page 90] that a linear functional m in GL(G)∗ is
called a mean if m(1) = 1 and m(f) ≥ 0 whenever f ∈ GL(G) with
f ≥ 0, and it is topological left invariant if m(ζ ◦ f) = m(f) for all
f ∈ GL(G) and

ζ ∈ P (G) = {ν ∈ M(G) : ν ≥ 0 and ∥ν∥ = 1}.

In [17, Theorem 4.1], Wong proved that GL(G) has a topological left
invariant mean if and only if M(G)∗ has a topological left invariant
mean. In particular, he showed that Ψ∗, the adjoint of Ψ, maps the set
of all topological left invariant means on M(G)∗ onto that of GL(G).
Related to this result, we have the following result which asserts that, in
the case where G is non-compact, any topological left invariant mean
on GL(G) lies in GL0(G)⊥, where here and in the sequel, GL0(G)⊥
denotes the following weak∗-closed subspace of GL(G)∗

{m ∈ GL(G)∗ : ⟨m, f⟩ = 0 for all f ∈ GL0(G)}.

In fact, the next result shows that GL0(G)⊥ is far from devoid of in-
terest.

Proposition 3.6. If G is non-compact, then any topological left in-
variant mean on GL(G) lies in GL0(G)⊥.

Proof. Suppose that m is a topological left invariant mean on GL(G).
First, note that the non-compactness of G implies that there exists
a sequence (xn) of disjoint elements of G and a compact symmetric
neighborhood V of e such that the sets xnV for all n ∈ N are pairwise
disjoint, see [9, 11.43(e)]. Now, it is not difficult to verify that χxV =
δx−1◦χV , |µ|-almost everywhere for all x ∈ G and µ ∈ M(G). Moreover,
by Remark 2.2, for each p ∈ N, the function

p∑
n=1

χxnV =

p∑
n=1

δxn
−1 ◦ χV

is in GL(G) for which
∑p

n=1 χxnV ≤ 1. It follows that

p⟨m, χV ⟩ =
⟨
m,

p∑
n=1

χxnV

⟩
≤ 1, p ∈ N.

Thus, ⟨m, χV ⟩ = 0, and therefore, we have

⟨m, χxV ⟩ = ⟨m, δx−1 ◦ χV ⟩ = 0, x ∈ G.(3.2)
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Now, suppose that f = (fµ)µ∈M(G) is a non-zero element of GL0(G).
The proof will be completed by showing that ⟨m, f⟩ = 0. Toward this
end, without loss of generality, we may assume that ∥f∥∞ = 1. Then,
since f∗f = (|fµ|2)µ∈M(G) vanishes at infinity, for a given ε > 0, one
can choose y1, . . . , yq ∈ G such that

|fµ|2 ≤
q∑

i=1

χyiV + ε, |µ|-almost everywhere µ ∈ M(G).

Now, by considering

h =

q∑
i=1

χyiV + ε ∈ BM(G)

as an element of GL(G), we have f∗f ≤ h, see Remark 2.1. Hence, in
light of [15, Theorem 3.3.2] and equality (3.2), we see that

|⟨m, f⟩|2 ≤ ⟨m, f∗f⟩ ≤ ⟨m, h⟩ ≤ ε.

It follows that ⟨m, f⟩ = 0. Hence, m ∈ GL0(G)⊥. �

4. GL0(G)∗ as a subalgebra of M(G)∗∗. As is known, there exist
two natural products on M(G)∗∗ extending the one on M(G), known
as the first and second Arens products of M(G)∗∗. The first Arens
product on M(G)∗∗ is defined in three steps as follows. For m, n in
M(G)∗∗, the element m⊙ n of M(G)∗∗ is defined by

⟨m⊙ n, f⟩ = ⟨m, nf⟩, f ∈ GL(G),

where ⟨mf, ζ⟩ = ⟨m, fζ⟩ and fζ = ζ ◦ f for all ζ ∈ M(G). Equipped
with this product, M(G)∗∗ is a Banach algebra which contains M(G)
as a subalgebra. Moreover, by the duality relation between M(G) and
GL(G), there exists a unique generalized function h ∈ GL(G) such
that mf = Ψ(h); in what follows, we denote the generalized function
Ψ−1(mf) corresponding to mf ∈ M(G)∗ by mf . Moreover, M(G) and
GL0(G) are in duality with respect to the natural bilinear map given
for each η ∈ M(G) and f = (fµ)µ∈M(G) in GL0(G) by

⟨f, η⟩ =
∫
G
fη dη.

Therefore, M(G) may be identified with a closed subspace of GL0(G)∗.
Furthermore, if f = (fµ)µ∈M(G) ∈ GL0(G) and ζ ∈ M(G), then, by
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Lemma 3.3, ζ ◦ f and f ◦ ζ are also in GL0(G) and

⟨ζ ◦ f, ν⟩ = ⟨f, ζ ∗ ν⟩ and ⟨f ◦ ζ, ν⟩ = ⟨f, ν ∗ ζ⟩,

for all ν ∈ M(G). Hence, the product ⊙ is well defined on GL0(G)∗,
and GL0(G)∗ is a Banach algebra with this product, if we show that
GL0(G) is a topologically introverted subspace of GL(G). Toward this
end, we have the following result.

Proposition 4.1. The space GL0(G) is left (right) topologically in-
troverted in GL(G), that is, mf ∈ GL0(G) (fm ∈ GL0(G)) for all
m ∈ GL0(G)∗ and f ∈ GL0(G).

Proof. We need only show that GL0(G) is a left topologically intro-
verted subspace of GL(G); the proof of the other assertion is similar.
Toward this end, let m ∈ GL0(G)∗, f = (fµ)µ∈M(G) ∈ GL0(G) and
ε > 0 be given. Since GL0(G) is spanned by its positive elements, we
can suppose that m ≥ 0. Also, since f vanishes at infinity, there is a
compact set B in G with |fµ(x)| < ε for µ-almost all x ∈ G \ B (µ ∈
M(G)).

Now, let ϱ denote the restriction of m to C0(G). Then, there exists
a compact subset K of G such that ϱ(G \ K) < ε/2. In particular, if
mK denotes the continuous linear functional on GL0(G), defined by

⟨mK , h⟩ := ⟨m, h− uKh⟩, h ∈ GL0(G),

where uK is a fixed function in Cc(G) such that 0 ≤ uK ≤ 1, and
uK(x) = 1 for all x ∈ K. Then, the positivity of the linear functional
mK on GL0(G) implies that ∥mK∥ = limα⟨mK , uKα⟩, where (uKα) is
the net introduced in Lemma 3.2. Hence, there exists an α0 such that

∥mK∥ − ε

2
≤ ⟨mK , uKα0

⟩ ≤ ∥mK |C0(G)∥.

It follows that ∥mK∥ < ε. Indeed,

∥mK |C0(G)∥ = sup{|⟨ϱ, g − uKg⟩| : g ∈ C0(G) and ∥g∥ ≤ 1}
= sup{|⟨χG\Kϱ, (g − uKg)⟩| : g ∈ C0(G) and ∥g∥ ≤ 1}
≤ ∥χG\Kϱ∥ = ϱ(G \K).

If, now, ν is an arbitrary probability measure in M(G), then ζ :=
(χG\BK−1)ν is a measure in M(G) for which supp(ζ) ⊆ G \ BK−1.

Further, choose a compact subset D in G for which D ⊆ G \BK−1 and
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|ζ|(G \ D) < ε. Trivially, for each x ∈ G \ D−1B, we see that Dx ⊆
G \B, and therefore, for each µ ∈ M(G), we have

|(ζ ◦ f)µ(x)| ≤
∫
G\D

|fζ∗µ(yx)| d|ζ|(y)

+

∫
D

|fζ∗µ(yx)| d|ζ|(y) ≤ ε(∥f∥∞ + 1),

that is, |(ζ ◦ f)µ(x)| ≤ ε(∥f∥∞ + 1) for µ-almost all x ∈ G \D−1B. In
particular, since D−1B ∩K = ∅, we see that

∥(ζ ◦ f)χK∥∞ = sup
µ∈M(G)

∥(ζ ◦ f)µχK∥µ,∞ ≤ ε(∥f∥∞ + 1).

Thus, ∫
G\BK−1

(mf)ζ(x) dζ(x) = ⟨mf, ζ⟩

= ⟨m, uK(ζ ◦ f)⟩+ ⟨mK , ζ ◦ f⟩
≤ ε(∥f∥∞ + 1)∥m∥+ ε∥ζ∥∥f∥∞.

On the other hand, since ζ ≪ ν, we have∫
G\BK−1

(mf)ζ(x) dζ(x) =

∫
G\BK−1

(mf)ν(x) dζ(x)

=

∫
G\BK−1

(mf)ν(x) dν(x).

This shows that, if ν ∈ M(G), then

(mf)ν(x) ≤ ε[(∥f∥∞ + 1)∥m∥+ ∥f∥∞]

for ν-almost all x ∈ G \BK−1, and thus, mf ∈ GL0(G). �

A linear functional m in GL0(G)∗, respectively, M(G)∗∗, has compact
carrier if there exists a compact setK in G such that ⟨m, f⟩ = ⟨m, χKf⟩
for all f ∈ GL0(G), respectively, GL(G), such a compact set K is called
a compact carrier for m. In the sequel, the notation Mc(G)∗∗ is used to
denote the norm closure of functionals in M(G)∗∗ with compact carrier.

Now, with an argument similar to the proof of [12, Propositions 2.6,
2.7 and Theorems 2.8, 2.11], the following result can be proved which,
in particular, shows that the restriction map is an isometric algebra
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isomorphism from Mc(G)∗∗ onto GL0(G)∗. In other words, this result
allows us to view GL0(G)∗ as a subalgebra of M(G)∗∗.

Theorem 4.2. The following assertions hold.

(i) Functionals in GL0(G)∗ with compact carriers are norm dense
in GL0(G)∗.

(ii) If m and n are elements in GL0(G)∗, respectively, Mc(G)∗∗,
with compact carriers K and K ′ respectively, then m ⊙ n has
compact carrier KK ′.

(iii) The restriction map is an isometry and an algebra isomorphism
from Mc(G)∗∗ onto GL0(G)∗.

(iv) M(G)∗∗ = GL0(G)∗ ⊕GL0(G)⊥. In fact, any m ∈ M(G)∗∗ has
a unique decomposition m = m∗ + m⊥, where m∗ ∈ GL0(G)∗,
m⊥ ∈ GL0(G)⊥ and ∥m∥ = ∥m∗∥+ ∥m⊥∥. Moreover, m ≥ 0 if
and only if m∗ ≥ 0 and m⊥ ≥ 0.

(v) GL0(G)⊥ is a weak∗-closed ideal of M(G)∗∗.
(vi) GL0(G)∗ is a left or right ideal of M(G)∗∗ if and only if G is

compact.
(vii) M(G) is a left or right ideal of GL0(G)∗ if and only if G is

discrete.
(viii) Ma(G) is a two-sided ideal in GL0(G)∗.

Proof. The details are omitted, and we only give a proof for (ii) and
(viii).

(ii) Suppose that m and n are elements in GL0(G)∗, respectively,
Mc(G)∗∗, with compact carriers K and K ′, respectively, and that f is
an arbitrary element in GL0(G), respectively, GL(G). First, observe
that

⟨m⊙ n, f⟩ = ⟨m, nf⟩ = ⟨m, χK(nf)⟩.

On one hand, for µ ∈ M(G), we have ζ := χKµ ≪ µ, and thus,

⟨χK(nf), µ⟩ =
∫
G
χK(nf)µ dµ

=

∫
G
(nf)ζ dζ = ⟨n, χK′(ζ ◦ f)⟩.

On the other hand, χK′(ζ◦f) = ζ◦(χKK′f). Indeed, for each ν ∈ M(G)
and h ∈ C0(G), we have
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(χKK′(ζ ∗ ν))(h) =
∫
G
χKK′h d(ζ ∗ ν)

=

∫
G

∫
G
χKK′(xy)χK(x)h(xy) dµ(x) dν(y)

=

∫
G

∫
G
χK′(y)χK(x)h(xy) dµ(x) dν(y)

= (ζ ∗ (χK′ν))(h),

and this implies that

⟨χK′(ζ ◦ f), ν⟩ = ⟨ζ ◦ f, χK′ν⟩ = ⟨f, χKK′(ζ ∗ ν)⟩ = ⟨ζ ◦ (χKK′f), ν⟩.

Hence, by using these equalities, we have

⟨χK(nf), µ⟩ = ⟨n, ζ ◦ (χKK′f)⟩ = ⟨n(χKK′f), ζ⟩ = ⟨χK(n(χKK′f)), µ⟩.

Consequently,

⟨m⊙ n, f⟩ = ⟨m, χK(nf)⟩ = ⟨m, χK(n(χKK′f))⟩
= ⟨m, n(χKK′f)⟩ = ⟨m⊙ n, χKK′f⟩.

It follows that m⊙ n has compact carrier KK ′.

(viii) That Ma(G) is a closed subalgebra of GL0(G)∗ is trivial.
Now, suppose that σ ∈ Ma(G) and m ∈ GL0(G)∗. We show that
m ⊙ σ ∈ GL0(G)∗; that σ ⊙m ∈ GL0(G)∗ is similar. Let ζ denote the
restriction of m to C0(G). Since Ma(G) is an ideal in M(G), we have
ζ ∗ σ ∈ Ma(G). We now invoke Proposition 3.5 to conclude that

⟨m⊙ σ, f⟩ = ⟨ζ, f ◦ σ⟩ = ⟨ζ ∗ σ, f⟩, f ∈ GL0(G),

whence m⊙ σ = ζ ∗ σ ∈ Ma(G). �

As is standard, for a locally compact space X, we say that a subset
S ⊆ M(X), the Banach space of all complex regular Borel measures
on X, is solid with respect to absolute continuity, if t ∈ S wherever
t ≪ s, for some s ∈ S. Now, as an application of Theorem 4.2 above,
by a method similar to that of [8, Lemma 5, Theorem 6], the following
generalization of that theorem may be obtained. The reader will see
that the compactness of G is assumed in that proof only to conclude
that Ma(G) is an ideal in M(G)∗∗, whereas Ma(G) is always an ideal of
GL0(G)∗. The details are omitted.
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Theorem 4.3. Ma(G) is the unique minimal proper closed subset of
GL0(G)∗ which is an algebraic ideal and a solid set with respect to
absolute continuity in GL0(G)∗.

Next, we turn our attention to the study of left (weakly) completely
continuous elements of GL0(G)∗. Toward this end, recall that, if A is
a Banach algebra, then a ∈ A is said to be a left (weakly) completely
continuous element ofA whenever the operator ℓa : b 7→ ab is a (weakly)
compact operator on A.

In what follows, for I ⊆ GL0(G)∗, the left annihilator of I is denoted
by lan(I) and defined by

lan(I) = {l ∈ GL0(G)∗ : l⊙ I = {0}};

also, the right annihilator of I is denoted by ran(I) and defined by

ran(I) = {r ∈ GL0(G)∗ : I ⊙ r = {0}}.

Moreover, L∞
0 (G) stands for the C∗-subalgebra of L∞(G) consisting of

all functions g on G such that, for each ε > 0, there is a compact subset
K of G for which |g(x)| < ε for all x ∈ G \K.

Theorem 4.4. The following assertions hold.

(i) If σ ∈ Ma(G), then σ is a left (weakly) completely continuous
element of Ma(G) if and only if σ is a left (weakly) completely
continuous element of GL0(G)∗.

(ii) Any left (weakly) completely continuous element m of GL0(G)∗
has the form m = σ + r for some σ ∈ Ma(G) and r ∈ ran×
(P∗(L∞

0 (G)∗)).

Proof. We only give the proof for the left completely continuous ele-
ment.

(i) The direct implication being trivial, we give the proof of the
backward implication only. Toward this end, suppose that σ ∈ Ma(G)
is a left completely continuous element of Ma(G). Then, the closure of
the following set is compact in Ma(G)

{σ ∗ υ : υ ∈ Ma(G), ∥υ∥ ≤ 1}.
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On the other hand, if (eα)α is an approximate identity for Ma(G)
bounded by one, then for each α and m ∈ GL0(G)∗ with ∥m∥ ≤ 1, we
have

∥σ ⊙m− σ ∗ (eα ⊙m)∥ ≤ ∥σ − σ ∗ eα∥.

This, together with the fact that Ma(G) is an ideal in GL0(G)∗, implies
that

{σ ⊙ m : m ∈ GL0(G)∗, ∥m∥ ≤ 1} ⊆ {σ ∗ υ : υ ∈ Ma(G), ∥υ∥ ≤ 1}Ma(G)
.

Thus, the operator ℓσ : GL0(G)∗ → GL0(G)∗ is compact.

(ii) Suppose that m is a left completely continuous element of
GL0(G)∗. Then, since Ma(G) is an ideal in GL0(G)∗, the operator
ℓm|Ma(G) is a compact operator on Ma(G). From this, we can conclude
that there exists a σ ∈ Ma(G) such that ℓm = ℓσ on Ma(G), see
[1]. In particular, Proposition 3.5 implies that ⟨m, f⟩ = ⟨σ, f⟩ for all
f ∈ C0(G), and thus, we have υ ⊙ m = υ ∗ σ (υ ∈ Ma(G)). We now
invoke the weak∗-density of Ma(G) in P∗(L∞

0 (G)∗) to conclude that
P∗(L∞

0 (G)∗)⊙ r = 0, where r = m−σ, that is, r∈ran(P∗(L∞
0 (G)∗)). �

In [13, page 467], Losert, using the C∗-algebra structure of M(G)∗,
proved that M(G)∗∗ has a non-zero left (weakly) completely continuous
element if and only if G is compact. Related to this result, we have the
following result for GL0(G)∗ where our approach in its proof is totally
different from Losert’s result and relies on the theory of generalized
functions.

Theorem 4.5. The following conditions are equivalent.

(i) G is compact.
(ii) GL0(G)∗ has a non-zero left completely continuous element.
(iii) GL0(G)∗ has a non-zero left weakly completely continuous ele-

ment.

Proof. We need only show that (iii) implies (i). Indeed, if G is
compact, then M(G)∗∗ = GL0(G)∗, and the normalized Haar measure
m on G is a left (weakly) completely continuous element of GL0(G)∗
and (ii) ⇒ (iii) is trivial. Toward this end, suppose that m is a nonzero
left weakly completely continuous element of GL0(G)∗. Then, the set
{m⊙ δx : x ∈ G} is weakly compact, and therefore, {|m⊙ δx| : x ∈ G}
is weakly compact in GL0(G)∗ by Dieudonne’s characterization of
weakly compact subsets; see [5, Theorem 4.22.1]. It follows that
E := {|m| ⊙ δx : x ∈ G} is weakly compact. This is due to the fact
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that |m ⊙ δx| = |m| ⊙ δx for all x ∈ G. Now, we apply the Kerin-
Smulyan theorem [2] to infer that the closed convex hull K of E is
weakly compact in GL0(G)∗.

On the other hand, it is easy to see that the map Tx : K → K defined
by Tx(n) = n⊙ δx is affine for all x ∈ G. Moreover, we have

∥n⊙ δx∥ = sup{|⟨n⊙ δx, f⟩| : f ∈ GL0(G)∗, ∥f∥∞ ≤ 1}
= sup{|⟨n, f ◦ δx⟩| : f ∈ GL0(G)∗, ∥f∥∞ ≤ 1}
= sup{|⟨n, h⟩| : h ∈ GL0(G)∗, ∥h∥∞ ≤ 1}
= ∥n∥,

for all n ∈ GL0(G)∗. It follows that the map Tx is distal for all x ∈ G.
Thus, there exists a fixed point q ∈ K for the maps Tx (x ∈ G), that is,
q ⊙ δx = q for all x ∈ G by the Ryll-Nardzewski fixed point theorem;
see [2, Theorem 10.8]. In particular,

q =

t∑
i=1

ai|m| ⊙ δxi

for some x1, . . . , xt ∈ G and a1, . . . , at with
∑t

i=1 ai = 1. Now, if (Kα)
denotes the family of compact subsets of G ordered by the upward
inclusion, then (χKαx−1) is a bounded approximate identity for GL0(G)
for all x ∈ G. Thus,

∥q⊙ δx∥ =

∥∥∥∥ t∑
i=1

ai|m| ⊙ δxix

∥∥∥∥ = lim
α

t∑
i=1

ai⟨|m| ⊙ δxix, χKα⟩

=
t∑

i=1

ai lim
α
⟨|m|, χKαxix−1⟩ = ∥m∥.

Therefore, ∥q∥ = ∥m∥; since m ̸= 0, it follows that q ̸= 0.

In order to prove (i), suppose on the contrary that G is not compact
and that q is an extension of q from GL0(G) to a positive functional
with the same norm on GL(G), see for example, [15, Theorem 3.3.8].
Then, in the same manner as in the proof of Proposition 3.6, it may
be shown that q|GL0(G) = 0. This implies that q = 0, a contradiction.
The proof of Theorem 4.5 is now complete. �
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We conclude this work with the following result which is of interest
in its own right. In this proposition, the notation C0(G)⊥ is used to
denote the set of all m ∈ GL0(G)∗ such that m|C0(G) = 0 and

E1(G)={E ∈ L∞
0 (G)∗ :∥E∥=1 and E is a right identity for L∞

0 (G)∗}.

It should be noted that E ∈ E1(G) if and only if it is a weak∗-cluster
point of an approximate identity in Ma(G) bounded by one, see [12].

Proposition 4.6. GL0(G)∗ is commutative if and only if G is discrete
and abelian.

Proof. The necessity of the condition “GL0(G)∗ is commutative” is
clear. We prove its sufficiency. Toward this end, suppose that GL0(G)∗
is commutative. That G is abelian follows trivially. In order to prove
that G is discrete, we note that Proposition 3.5, together with the fact
that the right translations on GL0(G)∗ are weak∗-continuous, implies
that

ran(P∗(L∞
0 (G)∗)) = C0(G)⊥.

Moreover, from another application of Proposition 3.5, we can obtain
that P∗(E)− δe ∈ C0(G)⊥ for all E ∈ E1(G).

On the other hand, from the commutativity of GL0(G)∗, we get that
C0(G)⊥ = lan(P∗(L∞

0 (G)∗)). We, therefore, have

P∗(E)− δe ∈ lan(P∗(L∞
0 (G)∗)) for all E ∈ E1(G).

It follows that each element of P∗(E1(G)) is also a left identity for
P∗(L∞

0 (G)∗). We now invoke parts (ii) and (iii) of [12, Theorem 2.11]
to conclude that Ma(G) = M(G). This implies that G is discrete. �
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