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REDUCTION GRAPH AND ITS
APPLICATION ON ALGEBRAIC GRAPHS

SAEID BAGHERI, FATEMEH NABAEI,
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ABSTRACT. Evans, et al., [9] defined an equivalence
relation ∼ on the set of vertices of a simple graph G by
taking a ∼ b if and only if their open neighborhoods are the
same. They introduced a new graph Gred = G/∼, reduction
graph of G, as follows. The vertices are V (Gred) = {[a] : a ∈
V (G)}, and two equivalence classes [a] and [b] are adjacent if
and only if a and b are adjacent in G. Recently, Anderson
and LaGrange [4] defined some equivalence relations on the
set of vertices of the zero-divisor graph of a commutative
ring, one of which yields the reduction graph of the zero-
divisor graph. In this paper, we state some basic graph
theoretic properties of Gred and study the relations between
some properties of graph G and its subgraph, Gred, such as
the chromatic number, clique number, girth and diameter.
Moreover, we study the reduction graph of some algebraic
graphs, such as the comaximal graph, zero-divisor graph
and Cayley graph of a commutative ring. Among other
results, we show that, for every commutative ring R,
Γ2(R)red ≃ Γ1(Zn

2 ), where Γ1(Zn
2 ) is the zero-divisor graph

of the Boolean ring Zn
2 , Γ2(R) is the comaximal graph of R

and n = |Max(R)|.

1. Introduction. Let G be a graph and ∼ an equivalence relation
on V (G). The quotient graph of G with respect to ∼ is a graph whose
vertex set is the quotient set V (G)/∼, and equivalence class [a] is
adjacent to [b] if there is an element in [a] which is adjacent to some
element in [b], see [11, page 24].

Special cases of this concept have been studied separately in many
different contexts. Mulay [19, Section 3] and Spiroff and Wickham
[23], introduced the graph of equivalence classes of the zero-divisor
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graph of a commutative ring, using the concept of an annihilator.
Recently, this graph was investigated by Anderson and LaGrange
[4, 5] under the title of compressed graph. In addition, Aalipour
and Akbari [2] defined another special case of the quotient graph,
using a particular equivalence relation on the vertex set of a graph G.
Moreover, they stated some results on the quotient graph of the Cayley
graph of the additive group of a zero-dimensional semilocal ring.

The main purpose of this paper is the investigation of the reduction
graph as a special case of the quotient graph. As is known, the reduction
graph of a graph G was originally introduced in [9]. The authors used
this concept for studying representation of graphs modulo n. Also,
this concept has been studied by Evans, et al., [10]. In fact, the
reduction graph agrees with the graph corresponding to one of the
equivalence relations defined in [4, 5]. Akhtar, et al., [3] considered the
reduction graph of the Cayley graph of a ring. They showed that the

reduction graph of Cay(R+, U(R)) is isomorphic to Cay(R
+
, U(R)),

where R+ is the additive group of R, R = R/nil(R), nil(R) and
U(R) are the nilradical and the set of unit elements of the artinian
ring R, respectively. Furthermore, Meng and Zhang [18] investigated
the reduction graph of a k-regular vertex transitive graph.

Throughout this paper, R is a commutative ring with unit, G is a
graph and all graphs are simple. Two vertices a and b of a graph G
are said to be equivalent if their open neighborhoods are the same, i.e.,
a ∼ b if and only if NG(a) = NG(b), where NG(a) = {c ∈ V (G) :
a and c are adjacent}. We will use the symbol N(a) to denote NG(a)
and we set N(G) = {N(a) : a ∈ G}. In addition, for a graph G, we
will use the symbol a− c to denote adjacent vertices a and c.

The reduction graph of G, denoted by Gred, is a simple graph whose
vertices are the equivalence classes of graph G, and each pair of distinct
classes is joined by an edge if and only if representatives of the classes
are adjacent. The remarkable thing is that Gred can be considered
as a subgraph of G, and it can inherit many properties of G. In
particular, in many cases, some graph theoretic properties of G and
Gred are the same, such as the chromatic number, clique number, girth
and diameter. In particular, Theorem 2.5 shows that, if G is not a
complete or a complete r-partite graph, then diam(G) = diam(Gred).
For equalities of clique, chromatic number and girth of G and Gred, see
Corollary 3.2. Since Gred is usually smaller than G, its investigation
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is much easier. A graph is called reduced if it is isomorphic to its re-
duction. Inasmuch as Gred is a subgraph of G, then G is a reduced
graph if and only if G = Gred. We note that the number of connected
components of G and Gred are the same. In particular, G is a connected
graph if and only if Gred is a connected graph. Thus, without loss of
generality, we can assume that G is a connected graph.

Recall that d(a, b) is the length of the shortest path from a to b for
two vertices a, b ∈ V (G). If G is a connected graph, the diameter of G,
denoted diam(G), is sup{d(a, b) : a, b ∈ G}. The girth of G, denoted
gr(G), is the length of a minimal cycle in G. If G contains no cycle,
then gr(G) = ∞. A subset C of the vertex set of G is called a clique
if any two distinct vertices of C are adjacent. The clique number ω(G)
is the supremum of the size of the cliques. A proper vertex coloring is
a coloring of the vertices in such a way that any two adjacent vertices
have different colors. By χ(G), we denote the chromatic number of G,
that is, the minimum number of colors with which the vertices of G
may be colored. Graph G is called perfect whenever ω(H) = χ(H),
for all induced subgraphs H of G. Suppose that A ⊆ V (G). If, for
every vertex a of G, either a ∈ A or a is adjacent to an element in A,
then A is called a dominating set. The domination number γ(G) is
the number of vertices in a smallest dominating set of G. B ⊆ V (G)
is called an independent set if any two distinct vertices of B are not
adjacent. The independence number, most commonly denoted by α(G),
is the cardinality of the largest independent set.

The line graph of G is the graph L(G) with the edges of G as its
vertices and where two edges of G are adjacent in L(G) if and only
if they are incident in G. The Cartesian product G × H of graphs
G and H is a graph such that its vertex set is the Cartesian product
V (G)×V (H), and two vertices (a1, a2) and (b1, b2) are adjacent if and
only if either a1 = b1 and a2 is adjacent with b2 in H or a2 = b2 and a1
is adjacent with b1 in G. A graph is called a complete bipartite graph
if there is a partition of its vertex set into two subsets {ai}ni=1 and
{bj}mj=1 such that ai is adjacent to bj for all pairs (i, j), but no two
elements of the same subset are adjacent. We use the symbol Km,n

for the complete bipartite graph. More generally, a graph is complete
r-partite if the vertices can be partitioned into r disjoint subsets such
that each element of a subset is adjacent to every element which is
not in the same subset, but no two elements of the same subset are
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adjacent. An r-partite graph is one whose vertex set can be partitioned
into r disjoint subsets so that no edge has both ends in any one subset.
A graph in which each pair of distinct vertices is joined by an edge is
called a complete graph. We use Kn for the complete graph with n
vertices. A regular graph is a graph where each vertex has the same
degree. A strongly regular graph with parameters (n, k, λ, µ) (for short,
srg(n, k, λ, µ)) is a graph on n vertices which is regular with valency k
and has the following properties:

(1) any two adjacent vertices have exactly λ common neighbors;
(2) any two non-adjacent vertices have exactly µ common neighbors.

Let i, k, ν be fixed positive integers with ν ≥ k ≥ i. Let Λ be
a fixed set of size ν, and define the graph j(ν, k, i) as follows: the
vertices of j(ν, k, i) are the subsets of Λ with size k, where two subsets
are adjacent if their intersection has size i. For ν ≥ 2k, the graphs
j(ν, k, k− 1) are known as the Johnson graphs. Let H be a group with
identity element e and S a generating set for H such that e /∈ S and
S−1 = {s−1 : s ∈ S} = S. The Cayley graph Γ = Cay(H,S) is the
graph with vertex set H, and two distinct vertices a and b are adjacent
if and only if ab−1 ∈ S.

In recent years, researchers have assigned a graph to a ring or a group
and considered the relationship between graph theoretic properties and
algebraic properties that could produce significant results on the ring
or the group.

In Section 2, we state more results on reduction graphs. Among
other results, we investigate some conditions under which G will be
Hamiltonian or Eulerian if Gred has the corresponding property. Sec-
tion 3 is devoted to the investigation of reduced subgraphs and determi-
nation of some common properties between G and Gred such as chro-
matic number, clique number, girth, diameter and perfectness. Fur-
thermore, we consider the relation between the reduction of a Cartesian
product of graphs and its components. In Section 4, we show that the
reduction of the Cayley graph of an abelian group is again a Cayley
graph. Moreover, we give a characterization of a semisimple ring R in
terms of its Cayley graph, see Corollary 4.4. In Section 5, we will also
obtain some new results on the reduction graph of the comaximal graph
and the zero-divisor graph of a ring. For example, we show that the
reduction graph of the comaximal graph of a ring R is isomorphic to
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the zero-divisor graph of a Boolean ring. Finally, we provide a simpler
proof for [13, Main theorem].

2. Reduction of a graph. LetG be a simple graph. The relation ∼
on V (G), defined by

a ∼ b ⇐⇒ N(a) = N(b)

is an equivalence relation.

Definition 2.1. Let G be a simple graph. The reduction graph of G,
denoted by Gred, is the simple graph whose vertex set is V (Gred) =
{[a] : a ∈ V (G)}, and two distinct equivalence classes [a] and [b] are
adjacent in Gred if a and b are adjacent in G.

Define π : G → Gred by π(a) = [a]. The map π is an onto graph
homomorphism. It can be seen that Gred = G/π, where G/π is the
quotient graph of G, see [7, Definition 7.4.1].

In this section, we will compare some properties of graphs G and
Gred, such as diameter, completeness and (vertex, edge and arc) tran-
sitivity. It is clear that, if two graphs G and K are isomorphic, then so
are Gred and Kred. However, the converse does not necessarily follow.

Theorem 2.2. Let f : Gred → Kred be a graph isomorphism such that
|[a]| = |[f(a)]|, a ∈ G. Then, G ≃ K.

Proof. Suppose that Gred = {[ai] : i ∈ I}, f([ai]) = [bi] and Kred =
{[bi] : i ∈ I}. Also, let [ai] = {aiλ : λ ∈ Λ} and [bi] = {biλ : λ ∈ Λ}.
It may be verified that f : G → K by the rule that f(aiλ) = biλ is a
graph isomorphism. �

The hypothesis of the above theorem fails if G = K1,m and K =
K1,n, where m ̸= n.

Proposition 2.3. Let V (Gred) = {[ai] : i ∈ I}. Then,

(1) The map f : V (Gred) → N(G), defined by f([a]) = N(a), is a
bijection.

(2) V (G) =
∪

i∈I N(ai).

(3) Gred is a star graph if and only if |I| = 2.
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Proof.

(1) For any [a], [b] ∈ V (Gred),

[a] = [b] ⇐⇒ a ∼ b ⇐⇒ N(a) = N(b) ⇐⇒ f([a]) = f([b]).

Hence, f is well defined and injective. Moreover, surjectivity of f is
obvious.

(2) V (G) is the union of all of its neighborhoods. Thus, by (1), the
assertion holds.

(3) Suppose that Gred is a star graph. Then, there exists an [ai] ∈
V (Gred) which is adjacent to every other vertex of Gred. Therefore,
for every i′, i′′ ∈ I \ {i}, N(ai′) = N(ai′′) = [ai], i.e., [ai′ ] = [ai′′ ]. It
follows that |I| = 2. The converse is straightforward. �

Proposition 2.4. Let |V (Gred)| > 2. The following statements are
equivalent.

(1) Gred is a complete graph Kr.

(2) G is a complete r-partite graph.

(3) Gred is a complete r-partite graph.

(4) For each distinct vertex [a], [b], [c] ∈ V (Gred),

N(a) ⊆ N(b) ∪N(c).

(5) For each a ∈ V (G),

[a] =
∩
b

N(b),

where b ranges over V (G) \ [a].

Proof.

(1) ⇒ (2). Suppose that V (Gred) = {[a1], . . . , [ar]}. From the as-
sumption, ai is adjacent to aj for every i, j, where 1 ≤ i < j ≤ r. Hence,
G is a complete r-partite graph and each [ai] is one of the r-parts in G.

(2) ⇒ (3). Trivial.

(3) ⇒ (1). Since every complete r-partite graph has exactly r dis-
tinct neighborhoods, by Proposition 2.3 (1), |V (Gred)| = |N(G)| = r.
Hence, Gred ≃ Kr.
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(1) ⇒ (4). Suppose that d ∈ N(a) \ N(b). From the assumption,
[d] and [c] are adjacent for all [c] ∈ V (Gred) with [d] ̸= [c]. Hence,
d ∈ N(c) as required.

(4)⇒ (5). Suppose that c ∈ [a] and b ∈ V (G)\[a]. Then, there exists
[d] ∈ V (G) such that [a] and [d] are adjacent. From the assumption,
a ∈ N(d) ⊆ N(c) ∪N(b). Since a /∈ N(a) = N(c), a ∈ N(b), and thus,
c ∈ N(b). The converse is trivial.

(5) ⇒ (1). From the assumption, for every two distinct vertices [a],
[b] ∈ V (Gred), [a] ⊆ N(b). It follows that [a] and [b] are adjacent, i.e.,
Gred is a complete graph. �

The next theorem compares the concepts of distance and diameter
in graphs G and Gred.

Theorem 2.5. The following statements hold.

(1) For distinct vertices a, b ∈ V (G),

d(a, b) =

{
d([a], [b]) [a] ̸= [b],

2 [a] = [b].

(2) Let G be a graph that is not complete. It follows that diam(G) =
diam(Gred) if and only if G is not a complete r-partite graph. Fur-
thermore, if G is a complete r-partite graph, then diam(G) = 2 and
diam(Gred) = 1.

Proof.

(1) If [a] = [b], then there is a c ∈ N(a) = N(b) and also d(a, b) = 2.
Now, suppose that [a] ̸= [b] and d(a, b) = k. There is a path of length k
between a and b, such as

a = a0 − a1 − · · · − aj − aj+1 − · · · − ak−1 − ak = b.

Thus, we obtain the walk

[a]− [a1]− · · · − [aj ]− [aj+1]− · · · − [ak−1]− [b].

If there exist i, j, where 0 6 i < j 6 k, such that [ai] = [aj ], then we
have

[a]− [a1]− · · · − [ai]− [aj+1]− · · · − [b].
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This yields the walk

a− · · · − ai − aj+1 − · · · − b

between a and b, a contradiction.

(2) Suppose thatG is not a complete r-partite graph and diam(G)= t.
Then, there are a, b ∈ V (G) such that d(a, b) = t. If [a] ̸= [b], applying
part (1), we obtain d([a], [b]) = d(a, b) = t. It follows that diam(G) =
diam(Gred). Now, suppose that [a] = [b]. From (1), diam(G) = 2. We
know that diam(Gred) ≤ diam(G). If diam(Gred) = 1, then, by Propo-
sition 2.4, G is a complete r-partite graph, a contradiction. Hence,
diam(Gred) = 2. The converse is easy to verify. �

Definition 2.6. Suppose that ∼ is an equivalence relation on a set A
and B ⊆ A. We say that B is a saturated subset of A if [a] ⊆ B for all
a ∈ B, i.e., B =

∪
a∈B [a].

Proposition 2.7. Let B ⊆ V (G).

(1) If B is a maximal independent set, then B is a saturated subset
of V (G).

(2) B is a maximal independent set of V (G) if and only if B/∼ is a
maximal independent set of V (Gred).

(3) If α(G) = |B|, then α(Gred) = |B/∼|.

Proof.

(1) For any a ∈ B, B ∪ [a] is an independent set of V (G). From the
maximality of B, B = B ∪ [a], and thus, [a] ⊆ B.

(2)

(⇒). Clearly, B/∼ is an independent set of V (Gred). In order
to establish maximality of B/∼, suppose, for some a ∈ V (G), that
B/∼∪{[a]} is an independent set. If [a] /∈ B/∼, then a /∈ B, and thus,
B∪{a} is not an independent set. Therefore, there exists a b ∈ B such
that b and a are adjacent. This implies that [b] and [a] are adjacent and
[b] ∈ B/∼, which is a contradiction to the independence of B/∼∪{[a]}.

(⇐). Assume that B′ =
∪

[a]∈B/∼[a] and b ∈ V (G) \ B′. Clearly,

B′ is an independent set of V (G). We claim that B′ is a maximal
independent set. In order to establish the claim, we show that B′∪{b}
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is not an independent set of V (G). Since [b] /∈ B/∼, by the assumption,
B/∼ ∪ {[b]} is not an independent set. Thus, there is an [a] ∈ B/∼
such that [b] and [a] are adjacent. Therefore, b and a are adjacent, and
a ∈ B′. This implies that B′ ∪ {b} is not an independent set.

(3) Follows from (2). �

Proposition 2.8. B is a dominating set in graph G if and only if B/∼
is a dominating set in graph Gred.

Proof. B is a dominating set in graph G if and only if, for every
a ∈ V (G), either a ∈ B or there exists a b ∈ B such that a and b are
adjacent if and only if, for every [a] ∈ V (Gred), either [a] ∈ B/∼ or
there exists a [b] ∈ B/∼ such that [a] and [b] are adjacent if and only
if B/∼ is a dominating set in Gred. �

For any a ∈ V (G), the reduction number of a, red(a), is defined
as |[a]|, and the reduction number of G, red(G), as Max{red(a) : a ∈
V (G)}. If red(a) = t for all vertices a of G, then G is said to have the
constant reduction number t.

Recall that a graph containing a cycle passing through all vertices
of the graph is called a Hamiltonian graph. Also, a finite connected
graph is Eulerian, if there exists a closed trail containing every edge.
It is known that a connected graph G is Eulerian if and only if each
vertex of G has even degree, see [12, Theorem 7.1].

Theorem 2.9. Let Gred be a Hamiltonian graph and |V (Gred)| = r.
If G has a constant reduction number t, then G is a Hamiltonian graph.

Proof. Suppose thatGred is a Hamiltonian graph with a Hamiltonian
cycle [a1] − [a2] − · · · − [ar] − [a1], and set [ai] = {ai1, ai2, . . . , ait},
1 6 i 6 r. Then,

a11 − a21 − · · · − ar1 − a12 − a22 − · · · − ar2 − · · · − a1t − · · · − art − a11

is a Hamiltonian cycle in G. �

It must be noted that, if G = Kn,n, then Gred = K1,1 so that the
converse of the preceding theorem does not hold.
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Theorem 2.10. Let G be a graph, and let I be the set of reduction
numbers of all vertices of G. Suppose that I consists entirely of either
odd or even numbers. If Gred is Eulerian, then G is Eulerian also.

Proof. Let V (Gred) = {[ai] : i ∈ I}. Suppose that there are mi ∈ N
such that

deg[ai] = 2mi, N([ai]) = {[b1], . . . , [b2mi ]}.

Hence,

N(ai) = {b11, . . . , b1(2t1−1), b21, . . . , b2(2t2−1), . . . , b2mi(2t2mi
−1)},

where red(bi) = 2ti−1, ti ∈ N and [bi] = {bi1, . . . , bi(2ti−1)}. This shows
that the degree of ai is

∑2mi

i=1 2ti − 1, which is even. Consequently, G
is Eulerian. Similarly, we can prove that, if the reduction number of
every vertex of G is even, then G is Eulerian. �

Lemma 2.11. Let f ∈ Aut(G), and let f : V (Gred) → V (Gred) be the
function given by

f([a]) = [f(a)].

Then, f ∈ Aut(Gred).

Proof. For any a ∈ V (G),

f(N(a)) = {f(b) : b− a} = {f(b) : f(b)− f(a)} = N(f(a)).

We first note that f is well-defined and injective since, for every
[a1], [a2] ∈ V (Gred),

[a1] = [a2] ⇐⇒ N(a1) = N(a2) ⇐⇒ f(N(a1))

= f(N(a2)) ⇐⇒ N(f(a1)) = N(f(a2)) ⇐⇒ [f(a1)]

= [f(a2)] ⇐⇒ f([a1]) = f([a2]).

Moreover, f is clearly surjective. Finally,

[a1]− [a2] ⇐⇒ a1 − a2 ⇐⇒ f(a1)− f(a2)f ⇐⇒ [f(a1)]

= [f(a2)] ⇐⇒ f([a1]) = f([a2]).

Hence, the assertion holds. �
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A graph G is vertex transitive (edge transitive, respectively) if, for
any two vertices a and b (two edges e and e′), there exists a ρ ∈ Aut(G)
such that ρ(a) = b, (ρ(e) = e′, respectively). Also, a graph is arc
transitive if its automorphism group acts transitively upon ordered
pairs of adjacent vertices.

The following corollary is an immediate consequence of Lemma 2.11.

Corollary 2.12. For the graph G, the following statements hold.

(1) If G is vertex transitive, then so is Gred.

(2) If G is edge transitive, then so is Gred.

(3) If G is arc transitive, then so is Gred.

Theorem 2.13. Let G be a graph with the constant reduction number t.
Then,

(1) G is vertex transitive if and only if Gred is vertex transitive.

(2) G is edge transitive if and only if Gred is edge transitive.

(3) G is arc transitive if and only if Gred is arc transitive.

Proof.

(1) Suppose that Gred is vertex transitive and

V (Gred) = {[a1], . . . , [ar]},

where [ai] = {ai1, ai2, . . . , ait}. Then, V (G)= {aij : 1≤ i≤ r, 1≤ j≤ t}.
For every aij , akl ∈ V (G), there exists a θ ∈ Sr such that

θ([ai]) = [aθ(i)] = [ak].

Now, we set µ = (j, l), where j, l ∈ {1, 2, . . . , t} with j ̸= l. Define

ω : V (G) −→ V (G)

by
ω(amn) = aθ(m)µ(n).

It is easy to see that ω ∈ Aut(G). The converse follows from Corollary
2.12 (1).

Statements (2) and (3) can be proven by similar arguments as
presented in the proof of (1). �
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3. Reduced graphs. Let G be a graph. We recall that G is said
to be reduced if G = Gred. In this section, we investigate the reduced
graphs and determine certain common properties between G and Gred

such as the chromatic number, the clique number, the girth and the
perfectness.

Suppose that H is an induced subgraph of G. For every a ∈ V (H),
we define

[a]H = {b ∈ H : NH(a) = NH(b)}, where NH(a) = {b ∈ H : a− b}.

In this case, NH(a) = N(a) ∩ V (H).

The following theorem shows that reduced subgraphs of G and Gred

coincide.

Theorem 3.1. Let H be a subgraph of graph G.

(1) There is a graph monomorphism f : Hred → Gred such that

f(Hred) ≃ Hred.

(2) If H is a reduced graph, then H is isomorphic to a subgraph of
Gred.

(3) (Gred)red = Gred.

Proof.

(1) For every [a]H ∈ V (Hred), we set

A[a]H = {[b] ∈ V (Gred) : [a]H = [b]H}.

Since A[a]H ̸= ∅, a choice function f : Hred → Gred may be constructed
such that f([a]H) ∈ A[a]H . Moreover, for every [a]H , [b]H ∈ V (Hred)
with

f([a]H) = [a′] and f([b]H) = [b′],

we have

f([a]H)− f([b]H) ⇐⇒ a′ − b′ ⇐⇒ [a′]H − [b′]H ⇐⇒ [a]H − [b]H .

Hence f is a graph homomorphism and f(Hred) ≃ Hred.

(2) Clearly, H = Hred ≃ f(Hred).

(3) It is clear. �



REDUCTION GRAPH AND APPLICATIONS 741

In the following corollary, we show that there are several numerical
invariants of both G and Gred that are the same.

Corollary 3.2. The following statements hold.

(1) ω(G) = ω(Gred).

(2) χ(G) = χ(Gred).

(3) If gr(G) ̸= 4, then gr(Gred) = gr(G).

(4) G is perfect if and only if Gred is perfect.

Proof.

(1) C = {a1, . . . , an} is a clique in G if and only if [ai] and [aj ] are
adjacent for all 1 6 i < j 6 n. However, the latter occurs precisely
when C ′ = {[a1], . . . , [an]} is a clique in Gred.

(2) Suppose that χ(Gred) = m. Then, there is a surjective map

f : V (Gred) −→ {1, 2, . . . ,m}

such that every two adjacent vertices have different colors. Define the
function

f : V (G) −→ {1, 2, . . . ,m}

by f(a) = f([a]). Clearly, f is surjective. Moreover, for every
a, b ∈ V (G), [a] and [b] are adjacent whenever a and b are adjacent.
Thus, by our assumption, f([a]) ̸= f([b]), and thus, f(a) ̸= f(b). It
now follows that a and b have different colors and χ(G) = m.

(3) It is well known that the cyclic graph Cn, n ̸= 4 is a reduced
graph. Therefore, the result follows from Theorem 3.1 (2).

(4) The assertion follows by applying parts (1) and (2) to subgraphs
of G and Gred. �

The next theorem determines the relation between the reduction of
Cartesian product of two graphs and its components.

Theorem 3.3. Let G1 and G2 be connected graphs with more than two
vertices. Then, the graph G1 ×G2 is reduced.
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Proof. Suppose that, for distinct vertices (a1, a2), (b1, b2) ∈ G1×G2,

N(a1, a2) = N(b1, b2).

Then,

({a1} ×N(a2)) ∪ (N(a1)× {a2}) = ({b1} ×N(b2)) ∪ (N(b1)× {b2}).

Now, if N(b1) = {a1} and N(a2) = {b2}, then N(a1) = {b1} and N(b2)
= {a2}. However, this would contradict the connectivity of Gi, i = 1, 2.
Therefore, we must have {a1} = {b1} and {a2} = {b2}, which again
is a contradiction since (a1, a2) and (b1, b2) were chosen to be distinct.
This completes the proof. �

We finish this section by providing many examples of reduced graphs.

Example 3.4. Each of the following graphs are reduced.

(1) The complete graph Kn.

(2) The Johnson graph j(ν, k, k − 1), where (ν, k, k − 1) ̸= (4, 2, 1):
suppose that A,B ∈ V (G) are non-adjacent, and thus, |A∩B| ≤ k−2.
First, assume that Λ ̸= A ∪ B, and take c ∈ Λ \ (A ∪ B). Set
C = (B \ {b}) ∪ {c}, where b ∈ B \ A. Hence, B ∩ C = B \ {b}
and |A ∩ C| ≤ k − 2. This implies that B and C are adjacent, but A
and C are not. Now, suppose that Λ = A∪B, and so, A∩B = ∅. Set
C = (B \ {b}) ∪ {a}, where a ∈ A and b ∈ B. Thus, B ∩ C = B \ {b}
and |A∩C| ≤ k− 2; this means that C and B are adjacent, but C and
A are not, i.e., N(A) ̸= N(B).

(3) The cyclic graph Cn, where n ̸= 4.

(4) The line graph of G, where |V (G)| > 4: for every five distinct ver-
tices a, b, c, d, e ∈ V (G), we have {a, e} ∈ NL(G)({a, b}) \NL(G)({c, d}).
In other words, NL(G)({a, b}) ̸= NL(G)({c, d}). In particular, if G is a
reduced graph and |V (G)| > 4, then L(G)red = L(Gred).

(5) The n-cube Qn: we know Qn = Cay(Zn
2 , S), where S = {e1,

. . . , en} and ei = (0, . . . , 0, 1, 0, . . . , 0). Also, for every a ∈ Zn
2 \ {0},

a+ S ̸= S. Hence, for the canonical map π : V (Qn) → V ((Qn)red),

kerπ = {a ∈ Zn
2 : [a] = [0]} = {a ∈ Zn

2 : a+ S = S} = {0},

that is, Qn is a reduced graph, see Theorem 4.1.

(6) The strongly regular graph, srg(n, k, λ, µ), where µ < k.
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4. Reduction of the Cayley graph of a ring. In this section, for
the Cayley graph Γ = Cay(H,S), we show that V (Γred) is an additive
abelian group and the canonical map π : V (Γ) → V (Γred), defined by

π(a) = [a], a ∈ Γ,(4.1)

is a group epimorphism. In fact, we will see that the reduction graph
of the Cayley graph of an abelian group is again a Cayley graph.
Furthermore, we give a characterization of a semisimple ring R in terms
of its Cayley graph.

Theorem 4.1. Let H be an abelian group with identity element e, let
S ⊆ H be a generating set with e /∈ S, and let S−1 = S and Γ =
Cay(H,S). Then, the vertex set

V (Γred) = {[a] : a ∈ H}

forms an abelian group under the addition [a] + [b] = [a+ b] and

Cay(H,S)red = Cay(V (Γred), π(S)),

where π is the canonical map defined in (4.1). Moreover, π is a group
epimorphism with the kernel

HS = {a ∈ H : a+ S = S}.

Proof. Suppose that [a1] = [a2] and [b1] = [b2]. Then, N(a1) =
N(a2) andN(b1) = N(b2), and thus, a1+S = a2+S and b1+S = b2+S.
Hence,

N(a1 + b1) = a1 + b1 + S = a1 + b2 + S

= b2 + a1 + S = b2 + a2 + S = N(a2 + b2).

Therefore, [a1] + [b1] = [a2] + [b2].

We know that vertices [a] and [b] are adjacent in Cay(H,S)red if and
only if a and b are adjacent in Cay(H,S), where the latter occurs if
and only if a − b = s, for some s ∈ S. On the other hand, [a] and [b]
are adjacent in Cay(V (Γred), π(S)) if and only if [a]− [b] ∈ π(S), which
occurs precisely when [a−b] = [s], for some s ∈ S. Therefore, it follows
that [a] and [b] are adjacent in Cay(H,S)red if and only if a and b are
adjacent in Cay(V (Γred), π(S)).
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Finally, we note that it is routine to verify that π is a group epimor-
phism. Moreover,

kerπ = {a ∈ H : [a] = [0]} = {a ∈ H : NΓ(a) = NΓ(0)}
= {a ∈ H : a+ S = S} = HS . �

Let R be a commutative ring with unity, and let R+ be the additive
group of R. We denote by U(R), Z(R), Z∗(R), J(R) and Max(R), the
set of unit elements, zero-divisors, non zero zero-divisors, Jacobson
radical and the set of maximal ideals of R, respectively. We set M(a) =
{M ∈ Max(R) : a ∈ M} and D(a) = Max(R) \M(a).

The next lemma is necessary for the proof of the subsequent theorem.

Lemma 4.2. Let R be a zero-dimensional semilocal ring and a ∈ R.
The following assertions are equivalent.

(1) a+ Z(R) = Z(R).

(2) a ∈ J(R).

(3) a+ U(R) = U(R).

Proof.

(1) ⇒ (2). By hypothesis, R = U(R)∪Z(R). Now, suppose that a /∈
J(R). Then, D(a) ̸= ∅, and thus, there is a b ∈ ∩D(a) \ ∪M(a).
Therefore, b ∈ Z(R) and M(a+b) = ∅. This implies that a+b ∈ U(R);
however, by the assumption, a+ b ∈ Z(R), a contradiction.

(2) ⇒ (1). For any b ∈ Z(R), there is an M ∈ Max(R) such that
a + b ∈ M ⊂ Z(R). On the other hand, if b ∈ Z(R), then there is an
M ∈ Max(R) such that b− a = m ∈ M . Therefore, b ∈ a+ Z(R).

(2) ⇒ (3). Clear.

(3) ⇒ (2). Similar to the proof of (1) ⇒ (2). �

Recall that the unitary Cayley graph of R is the Cayley graph Γ =
Cay(R+, U(R)). For more information regarding Γ, refer to [3, 14, 16].
Akhtar, et al., [3, Proposition 2.5] showed that the reduction graph of
Cay(R+, U(R)) is isomorphic to

Cay

(
R+

J(R)
, U

(
R

J(R)

))
,
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where R is an Artinian ring. In the following theorem, we provide a
generalization of this result with a shorter proof.

Theorem 4.3. Let R be a zero-dimensional semilocal ring. Then,

(1) Cay(R+, U(R))red ≃ Cay(R+/J(R), U(R/J(R))).

(2) If R is the m-Boolean ring Zm
2 , then Cay(R+, Z∗(R))red is

isomorphic to the complete graph K2m−1 . Otherwise, Cay(R+, Z∗(R))
is a reduced graph.

Proof.

(1) Let π be the map defined in (4.1). We have that

π(U(R)) = {a+ J(R) : a ∈ U(R)} = U

(
R

J(R)

)
.

On the other hand, by Lemma 4.2,

kerπ = {a ∈ R+ : a+ U(R) = U(R)}
= {a ∈ R+ : a ∈ J(R)} = J(R).

The statement now follows from Theorem 4.1.

(2) Suppose that Γ′ = Cay(R+, Z∗(R)). If R is a finite Boolean ring,
then R ≃ Zm

2 , for some m ≥ 1 and NΓ′(1) = 1 + Z∗(R) = Z∗(R) =
NΓ′(0). Consequently, Cay(R+, Z∗(R)) is not a reduced graph. On the
other hand, since

kerπ = {a ∈ R : a+ Z∗(R) = Z∗(R)} = {0, 1},

we have

V (Γ′
red) ≃

R+

kerπ
≃ Zm

2

Z2
≃ Zm−1

2 .

This, together with Theorem 4.1, implies that

Cay(R+, Z∗(R))red= Cay(Zm
2 , Z

∗(Zm
2 ))red≃Cay(Zm−1

2 ,Zm−1
2 \{0})≃ k2m−1 .

Now, suppose that R is not a Boolean ring and a ∈ kerπ. Then,

a+ Z∗(R) = Z∗(R).
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Assume, toward contradiction, that a ̸= 0. Then, it is easy to see that
a ∈ U(R) and

Z∗(R) = a−1Z∗(R) = a−1(a+ Z∗(R))

= 1 + a−1Z∗(R) = 1 + Z∗(R).

If J(R) ̸= 0, then there is an M ∈ Max(R) such that a+(J(R)\{0}) ⊆
M . Consequently, a ∈ M , which is impossible. Therefore, J(R) = 0,
and thus, R ≃ F1×F2×· · ·×Fm, where each Fi is a field. On the other
hand, we must have |Fi| = 2, for all i. In order to see this, assume that
|F1| > 2. Then, there is a b = (c, 0, . . . , 0) ∈ R such that c ∈ F1 \ {0, 1}
and

1 + b = (1 + c, 1, . . . , 1) ∈ 1 + Z∗(R) = Z∗(R).

However, this is impossible since 1 + b ∈ U(R). Hence, |Fi| = 2, which
contradicts the assumption that R is not a Boolean ring. Consequently,
a = 0, and thus, kerπ = {0}. This implies that Cay(R+, Z∗(R)) is a
reduced graph. �

The following corollary, whose proof follows routinely from Theo-
rem 4.3, provides an important relation between the semisimplicity of
a zero-dimensional semilocal ring and the reducibility of its Cayley
graph.

Corollary 4.4. Let R be a zero-dimensional semilocal ring. The fol-
lowing assertions are equivalent.

(1) R is a semisimple ring.

(2) Cay(R+, U(R)) is a reduced graph.

5. Reduction of the comaximal graph of a ring. Sharma
and Bhatwadekar in [22] defined the comaximal graph, Γ(R), of a
commutative ring R, as a graph whose vertices are elements of R and
edges are pairs of distinct vertices a and b such that Ra + Rb = R.
Obviously, each a ∈ U(R) is adjacent to every vertex of Γ(R), and each
a ∈ J(R) is an isolated vertex of Γ(R). Thus, the main part of the graph
Γ(R) is the subgraph Γ2(R) induced by V (Γ2(R)) = R\(U(R)∪J(R)),
which is also called the comaximal graph of R.

In this section, we study and investigate the reduction of the comax-
imal graph Γ2(R). As in Section 2, two vertices [a] and [b] are adjacent
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in Γ2(R)red if and only if Ra + Rb = R. This is also equivalent to
the assertion that M(a) ∩M(b) = ∅, where M(a) = {M ∈ Max(R) :
a ∈ M}, see [21, Proposition 2.2].

Lemma 5.1. For each [a], [b] ∈ Γ2(R)red, [a] = [b] if and only if M(a)
= M(b).

Proof. Suppose that [a] = [b] and M ∈ M(a) \ M(b). There exists
a c ∈ M \ ∪M(b) such that M(b) ∩M(c) = ∅ and M(a) ∩M(c) ̸= ∅.
Hence, c ∈ N(b) and c /∈ N(a), a contradiction. Conversely, if M(a) =
M(b), then

N(a) = ∪D(a) \ ∪M(a) = ∪D(b) \ ∪M(b) = N(b). �

The zero-divisor graph of a ring R, denoted by Γ1(R), is defined to
be the graph with elements of Z∗(R) = Z(R) \ {0} as the vertices and
distinct vertices a and b are adjacent if and only if ab = 0, see [6].

As noted in [4], there is an equivalence relation ∼ on vertices of
the graph Γ1(R) such that for two vertices a, b ∈ Z∗(R), a ∼ b ⇔
Ann(a) = Ann(b). We denote a to be the equivalence class of a. The
compressed graph of the zero-divisor graph Γ1(R), denoted by Γ1E(R),
is the graph with the vertex set V (Γ1E(R)) = {a : a ∈ Z∗(R)} and
each pair of distinct classes a and b are adjacent in Γ1E(R) if and only
if vertices a and b are adjacent in Γ1(R). If R is a reduced ring, then
the compressed graph and the reduction graph of Γ1(R) coincide as

[a] = {b ∈ Z∗(R) : Ann(a) \ {a} = Ann(b) \ {b}}
= {b ∈ Z∗(R) : Ann(a) = Ann(b)} = a.

In [5, Question 3.6], for the compressed graph of the zero-divisor
graph of a commutative ring R, the following question was asked:

Question 5.2. Let R be a commutative ring with 1 ̸= 0 such that
Γ1E(R) is finite. Then, is there a finite commutative ring S with 1 ̸= 0
such that Γ1E(R) ≃ Γ1E(S)?

A similar question can be asked for the comaximal graphs: for a
commutative ring R, is there a finite commutative ring S such that
Γ2(R)red ≃ Γ2(S)red?
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In the following theorem, we answer these questions in the case where
|Max(R)| < ∞. Moreover, we show that, in this case, the reduction
graph of this ring is isomorphic to the zero-divisor graph of a finite
Boolean ring.

Theorem 5.3. Let R be a ring such that Max(R) = {M1, . . . ,Mn},
where n > 3. Then, Γ2(R)red ≃ Γ1(Zn

2 ) ≃ Γ2(Zn
2 ) ≃ Γ2(Zn

2 )red.

Proof. Define the function f : V (Γ2(R)red) → V (Γ1(Zn
2 )) by

f([a]) = (χM1(a), . . . , χMn(a)),

where χMi is the characteristic function of Mi. We claim that f is a
graph isomorphism. By Lemma 5.1, f is well defined and injective. In
order to show the surjectivity of f , suppose that x = (a1, a2, . . . , an) ∈
Zn
2 \ {0, 1} and

Λ = {i ∈ {1, 2, . . . , n} : ai ̸= 0}.

Since
∩

i∈Λ Mi *
∪

i/∈Λ Mi, there is an element a ∈ R such that

M(a) = {Mi : i ∈ Λ}.

This implies that f([a]) = x. Finally, for [a], [b] ∈ Γ2(R)red,

[a]− [b] ⇐⇒ M(a) ∩M(b) = ∅
⇐⇒ χMi(a) = 0 ∨ χMi(b) = 0,

⇐⇒ (χM1
(a), . . . , χMn

(a))− (χM1(b), . . . , χMn(b))

⇐⇒ f([a])− f([b]), 1 6 i 6 n.

Hence, f is a graph isomorphism. For the second isomorphism, it is
routine to verify that the function g : V (Γ1(Zn

2 )) → V (Γ2(Zn
2 )), given

by
g(a1, a2, . . . , an) = (1− a1, 1− a2, . . . , 1− an)

is a graph isomorphism. Hence, the assertion holds. The third isomor-
phism is clear. �

Corollary 5.4. Let R be a ring, and let S be a reduced Noetherian
ring. If

|Max(R)| = |Min(S)| = n > 3,

then Γ2(R)red ≃ Γ1(S)red.
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Proof. Follows from Theorem 5.3 and [4, Theorem 1.1]. �

Corollary 5.5. Let R be a reduced finite ring such that Max(R) =
{M1, . . . ,Mn}, where n > 3. Then, Γ2(R) is a reduced graph if and
only if R ≃ Zn

2 .

Proof. The “only if” part holds trivially. Conversely, by our assump-
tion, R ≃ F1 × · · · × Fn, where Fi is a field. Since Γ2(R) is a reduced
graph, |Fi| = 2. Hence R ≃ Zn

2 . �

Corollary 5.6. Let R be a ring such that Max(R) = {M1, . . . ,Mn},
where n > 3. Then, ω(Γ2(R)) = χ(Γ2(R)) = |Max(R)| = n.

Proof. We note that ω(Γ1(Zn
2 )) = χ(Γ1(Zn

2 )) = n, see [8, The-
orem 6.13]. Now, the result follows from Corollary 3.2 and Theo-
rem 5.3. �

Recall that a graph G is called a split graph if its vertex set can be
partitioned into a clique C and an independent set I. It is easy to see
that, if G is a split graph, then so is Gred.

The following theorem is the main result of [13], where a thorough
proof is provided. Below, we provide a simplified proof using the
reduction graph concept.

Theorem 5.7. Let Γ(R) be a split graph with a clique C and an
independent set I. Then, R satisfies one of the following conditions:

(1) R is a local ring.

(2) R ≃ Z2 × F, where F is a field.

(3) R ≃ Z2 × Z2 × Z2.

Proof. It suffices to prove the result for Γ2(R). Suppose that R is
not a local ring. We consider two cases:

Case 1. Max(R) = {M1,M2}. By our assumption and [17, Theorem
2.2], Γ2(R) is a star graph. Thus, by [24, Corollary 3.6], there is a field
F such that R ≃ Z2 × F.

Case 2. |Max(R)| = n > 3. We first claim that n = 3. Suppose
otherwise, and pick four maximal ideals M1,M2, M3 and M4 in R.
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Then, clearly, M1M2 and M3M4 are comaximal ideals. Hence, there
exist a ∈ M1M2 and b ∈ M3M4 such that a + b = 1. If a ∈ C, then
C ∩M1 = C ∩M2 = {a}, which is impossible. Hence, a ∈ I. Similarly,
we can show that b ∈ I. However, this is impossible since a + b = 1.
Thus, R must have precisely three maximal ideals. From Corollary 5.6,
ω(Γ2(R))=3. Hence, Γ2(R)=C ∪ I, where C={x1, x2, x3} and M(xi)
= {Mi}, for each i = 1, 2, 3. If 0 ̸= a ∈ J(R), then the vertices a+ x1

and a + x2 are adjacent as elements of I, which is a contradiction.
Therefore, J(R) = 0, and thus, by the Chinese remainder theorem, R ≃
F1 ×F2 ×F3, where each Fi is a field. Now, if |F1| > 2, then the clique
C of size three in graph Γ2(R) contains the vertices (1, 0, 1), (0, 1, 1)
and (1, 1, 0). If there is an a′1 ∈ F1 \ {0, 1}, then vertices (a′, 1, 0),
(1, 0, a′) ∈ I are adjacent, and we obtain a contradiction. Similarly, we
can show that |Fi| = 2, i = 2, 3. Thus, R ≃ Z2 × Z2 × Z2. �
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