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ALMOST COMPATIBLE FUNCTIONS
AND INFINITE LENGTH GAMES

STEVEN CLONTZ AND ALAN DOW

ABSTRACT. A′(κ) asserts the existence of pairwise al-
most compatible finite-to-one functions A → ω for each
countable subset A of κ. The existence of winning 2-
Markov strategies in several infinite-length games, including
the Menger game on the one-point Lindelöfication κ† of κ,
are guaranteed by A′(κ). A′(κ) is implied by the existence
of cofinal Kurepa families of size κ, and thus, holds for all
cardinals less than ℵω . It is consistent that A′(ℵω) fails;
however, there must always be a winning 2-Markov strategy

for the second player in the Menger game on ω†
ω .

1. Introduction.

Definition 1.1. Two functions f, g are almost compatible, that is,
f ∼ g when {a ∈ dom f ∩ dom g : f(a) ̸= g(a)} is finite.

Scheepers used almost compatible functions in [11] in order to study
the existence of limited information strategies on a variation of the
meager-nowhere dense game he introduced in [12].

Game 1.2. Let Sch∪,((κ) denote Scheepers’ strict countable-finite
union game with two players C , F . In round 0, C chooses C0 ∈ [κ]≤ω,
followed by F choosing F0 ∈ [κ]<ω. In round n+1, C chooses Cn+1 ∈
[κ]≤ω such that Cn+1 ⊃ Cn, followed by F choosing Fn+1 ∈ [κ]<ω.

F wins the game if
∪
n<ω

Fn ⊇
∪
n<ω

Cn; otherwise, C wins.
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Of course, with perfect information, this game is trivial: during
round n player F simply chooses n ordinals from each of the n count-
able sets played by C . However, if F is limited to using information
from the last k moves by C during each round, the task becomes more
difficult. Such a strategy is called a k-tactical strategy or k-tactic; if us-
ing the round number is allowed, then the strategy is called a k-Markov
strategy or a k-mark.

Definition 1.3. The statement A(κ) (given as S(κ,ℵ0, ω) in [11])
claims that there exist one-to-one functions fA : A → ω for each
A ∈ [κ]≤ℵ0 such that the collection {fA : A ∈ [κ]≤ℵ0} is pairwise
almost compatible.

In [11], Scheepers noted that A(ω1) holds in ZFC, and that it is
possible to force c to be arbitrarily large while preservingA(c); however,
it was also shown that A(c+) always fails. This axiom may be applied
to obtain a winning 2-tactic for F in the countable-finite game.

In [1], Clontz related this game to a game which may be used to
characterize the Menger covering property of a topological space.

Game 1.4. Let Men(X) denote the Menger game with players C , F .
In round n, C chooses an open cover Un, followed by F choosing a
subset Fn of X which may be finitely covered by Un.

F wins the game if X =
∪
n<ω

Fn, and C wins otherwise.

This characterization is slightly different than the typical character-
ization in which the second player first chooses a specific finite subcol-
lection Fn of the cover itself and lets

Fn =
∪

Fn,

denoted as Gfin(O,O) in [13]. However, it is easily seen that these
games are equivalent for perfect information strategies (so both charac-
terize the Menger property in the same way), and this characterization
is more convenient for our concerns.

Definition 1.5. Let κ† = κ ∪ {∞} where κ is discrete and ∞’s
neighborhoods are the co-countable sets which contain it.
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The relationship between Sch∪,((κ) and Men(κ†) is strong; in both
games, C essentially chooses a countable subset of κ followed by F
choosing a finite subset of that choice, and it is easy to see the winning
perfect information strategy for F in both games. In addition, it was
shown in [1] that, whenA(κ) holds, F has a winning 2-Markov strategy
in Men(κ †).

One source of motivation is to make progress on the following open
question:

Question 1.6. Does there exist a topological space X for which
F↑Men(X) but

F ̸↑
2-mark

Men(X)?

In other words, the second player can win the Menger game on X with
perfect information but not with 2-Markov information.

2. One-to-one and finite-to-one almost compatible functions.
We may weaken Scheeper’s A(κ) as follows:

Definition 2.1. The statement A′(κ) weakens A(κ) by only requiring
the witnessing almost-compatible functions fA : A→ ω to be finite-to-
one.

Proposition 2.2. A(κ) and A′(κ) need only be witnessed by functions
{fA : A ∈ S} for some family S cofinal in [κ]≤ℵ0 .

Proof. For each A ∈ [κ]≤ℵ0 , choose A′ ⊇ A from S, and let
gA = fA′�A. �

In the final section, we will show that A′(κ) is sufficient for many
applications to the Scheepers and Menger games. In the meantime, we
will demonstrate that A′(κ) is strictly weaker than A(κ).

Recall the following.

Definition 2.3. A Kurepa family K ⊆ [κ]ℵ0 on κ satisfies that

K�A = {K ∩A : K ∈ K}

is countable for each A ∈ [κ]ℵ0 . Let K(κ) be the statement claiming
there exists a Kurepa family on κ cofinal in [κ]ℵ0 .
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Theorem 2.4. K(κ) ⇒ A′(κ).

Proof. Let K = {Kα : α < θ} be a cofinal Kurepa family on κ. We
first define fα : Kα → ω for each α < θ.

Suppose that we have already defined pairwise almost compatible
finite-to-one functions {fβ : β < α}. In order to define fα, we first
recall that K�Kα is countable, so we may choose βn < α for n < ω
such that

{Kβ : β < α}�Kα \ {∅} = {Kα ∩Kβn : n < ω}.

Let Kα = {δi,j : i ≤ ω, j < wi} where wi ≤ ω for each i ≤ ω,

Kα ∩
(
Kβn \

∪
m<n

Kβm

)
= {δn,j : j < wn},

and
Kα \

∪
n<ω

Kβn = {δω,j : j < wω}.

Then, let fα(δn,j) = max(n, fβn(δn,j)) for n < ω and fα(δω,j) = j
otherwise.

We should show that fα is finite-to-one. Let n < ω. Since
fα(δm,j) ≥ m, we only consider the finite cases where m ≤ n. Since
each fβm is finite-to-one, fβm(δm,j) ≤ n for only finitely many j. Thus,
fα(δm,j) = max(m, fβm(δm,j)) maps to n for only finitely many j.

We now want to demonstrate that fα ∼ fβn for all n < ω.
Note that δm,j ∈ Kβn implies m ≤ n. For m = n, we have
fα(δn,j) = max(n, fβn(δn,j)) which differs from fβn(δn,j) for only the
finitely many j which are mapped below n by fβn . For m < n and
δm,j ∈ Kβn , we have

fα(δm,j) = max(m, fβm(δm,j))

which can only differ from fβn(δm,j) for only the finitely many j which
are mapped belowm by fβm or the finitely many j for which the almost
compatible fβn ∼ fβm differ.

Finally, for any β < α, we may conclude that fα ∼ fβ since there is
some βn with

Kα ∩Kβ = Kα ∩Kβn , fα ∼ fβn and fβn ∼ fβ . �
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We now make use of a topology on ωn for each n < ω that witnesses
a Kurepa family of size ℵn [6].

Definition 2.5. A topological space is said to be ω-bounded if each
countable subset of the space has compact closure. As in [6], we call a
T2, locally countable, ω-bounded space splendid, and let S(κ) represent
the claim that there exists a splendid space of cardinality κ.

Theorem 2.6 ([6]). S(ℵk) for k < ω.

Lemma 2.7. The family of compact open sets in a locally countable,
ω-bounded topological space X is a Kurepa family cofinal in [X]ω, that
is,

S(κ) =⇒ K(κ).

Proof. Let K collect all compact open subsets of X. Of course, every
Lindelöf set in a locally countable space is countable, and the closure
of every countable set is a compact countable set; thus, K is cofinal in
[X]ω. It is Kurepa since every countable set is contained in a countable
compact open subspace of X. This subspace has a countable base of
compact open sets, which, closed under finite unions, enumerates all
compact open subsets of the subspace. �

Corollary 2.8. K(ℵk) for all k < ω.

Alternatively, the previous corollary may be obtained via an obser-
vation of Todorcevic communicated by Dow in [3]: if every Kurepa
family of size at most κ extends to a cofinal Kurepa family, then the
same is true of κ+.

Nyikos pointed out [10] that a cofinal Kurepa family may be used to
construct a locally metrizable, ω-bounded, zero-dimensional space with
appropriate cardinality; whether this can be strengthened to locally
countable and ω-bounded (as asked in [6]) remains an open question.

Also left open is this extension of the question asked in [6, 10] on
the possible equivalence of S(κ) and K(κ).

Question 2.9. Can any of the implications in the theorem

S(κ) =⇒ K(κ) =⇒ A′(κ)

be reversed?
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Regardless, we have obtained our desired result.

Corollary 2.10. A′(ℵk) for all k < ω.

3. Consistency results. As noted in [3], Jensen’s one gap two-
cardinal theorem under V = L introduced in [5] implies that K(κ),
and therefore, A′(κ), holds for all cardinals κ.

Corollary 3.1. Assume the covering lemma over the Core Model holds.
Then A′(κ) holds for all cardinals κ.

Proof. Juhász and Weiss note [7, page 186] that the covering lemma
over the Core Model guarantees S(κ), and therefore, K(κ) and A′(κ),
when cf κ > ω. �

As noted earlier, Scheepers proved [11] that ¬A(c+) is a theorem of
ZFC, showing A′(κ) is not equivalent to A(κ).

We now demonstrate that CH is not required to haveA(ℵ2) fail. The
forcing extension of a model M by a poset P ∈ M is simply obtained
by evaluating all P-names from M by a generic filter G. A set τ is a
P-name if τ is a (possibly empty) set of ordered pairs (σ, p) where p ∈ P
and σ is also itself a P-name. If G is a P-generic filter, then valG(τ) is
defined to equal

{valG(σ) : (there exists a p ∈ G) (σ, p) ∈ τ}.

If x ∈M , then the canonical P-name, x̌, is generally, and recursively,
taken to be {(y̌, 1) : y ∈ x}, where 1 is the maximum element of P.
However, it will be convenient to consider, when the context is clear,
(x, p) (for any p ∈ P) as a type of P-name. In particular, if τ ⊂ X × P,
for some fixed X ∈M , then we may let

τ [G] = {x : (there exists a p ∈ G)(x, p) ∈ τ}.

Thus, valG(τ) will denote the recursive evaluation by G and τ [G] will
be defined as above. In fact, if τ ∈ M is any set, then each of valG(τ)
and τ [G] are well defined. It is a standard convention to use a dotted
letter, such as ẋ, to indicate that we are discussing a P-name.

It may be stated that a condition p ∈ P forces a statement φ to hold,
denoted p 
 φ, if that statement holds in M [G] for all P-generic filters
with p ∈ G. The forcing theorem states that, if M [G] |= φ, then there
is some p ∈ G forcing that φ holds. The following is an immediate
consequence of the forcing theorem.
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Lemma 3.2. If X ∈M and ẋ is a P-name, then there is a τ ⊂ X×P,
such that for any generic G, τ [G] = X ∩ valG(ẋ).

In other words, the family of subsets of any X ∈M in the extension
M [G] is equal to

{τ [G] : τ ⊂ X × P, τ ∈M}.

We will be using the forcing poset Fn(ω2, 2). The elements of this
poset are all of the finite partial functions from ω2 into 2 ordered by
reverse inclusion. It follows that, for any λ ∈ ω2, each of Fn(λ, 2) and
Fn(ω2 \λ, 2) are subposets. For any Fn(ω2, 2)-generic filter G, it easily
follows that Gλ = G ∩ Fn(λ, 2) and Gλ = G ∩ Fn(ω2 \ λ, 2) are also
generic filters. However, a much stronger statement is true.

Lemma 3.3 ([8]). Assume that G ⊂ Fn(ω2, 2) is a generic filter, and
let λ ∈ ω2. Then, the final model M [G] is equal to (M [Gλ])[G

λ] in the
sense that Gλ is a Fn(ω2 \ λ, 2)-generic filter over the model M [Gλ].

In addition, for each X ∈ M and name Ȧ ⊂ X × Fn(ω2, 2), we

obtain (Ȧ(Gλ))[G
λ] = Ȧ[G] where

Ȧ(Gλ) = {(x, p � [λ, ω2)) : (x, p) ∈ Ȧ and p � λ ∈ Gλ}.
With these lemmas at hand, we are ready to prove the theorem. The

idea of the proof comes from Kunen’s result regarding no ω2 length
mod finite chains of subsets of ω. We consider any family of names of
suitable one-to-one functions from countable subsets of ω2 into ω. We
identify a large enough λ ∈ ω2 such that a pattern has emerged, and
we pass to the model M [Gλ]. We then show that this pattern cannot
continue out to ω2.

Theorem 3.4. There exists a model of ZFC for which c = ℵ2 and
¬A(ℵ2).

Proof. We start with a model M of GCH and suppose that G is an
Fn(ω2, 2)-generic filter. The argument takes place in M . Let {ḟA :
A ∈ [ω2]

ω} be a family of names (in M) such that, for any generic G

and each A ∈ [ω2]
ω ∩M , ḟA[G] is a one-to-one function from A into ω.

We also assume that, whenever B ⊂ A are members of [ω2]
ω, we have

that ḟB [G] ⊂∗ ḟA[G]. If we now obtain a contradiction, then we will
have shown that A(ℵ2) fails.

From [2, 1.5], there is a set H ⊂ H(ℵ3) such that the family {ḟA :
A ∈ [ω2]

ω} is an element of H, H is an elementary submodel of H(ℵ3),
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H has cardinality ℵ1 and Hω ⊂ H (every countable subset of H is an
element of H).

Let λ = H ∩ω2, the same as the supremum of H ∩ω2. Consider the
name ḟ[λ,λ+ω). What is such a name? By Lemma 3.2, we can assume
that it is a set of pairs of the form ((λ+ k,m), p) where p ∈ Fn(ω2, 2)
and, of course, k,m ∈ ω. Furthermore, for each k and m, it is enough
(see [8, 5.11, 5.12]) to take a countable set of such p to get an equivalent

(nice) name. Given any such nice name ḟ , let supp(ḟ) denote the union
of the domains of conditions p appearing in the name.

Now, let Y equal supp(ḟ[λ,λ+ω))\λ. Furthermore, fix any µ ∈ λ ⊂ H

such that supp(ḟ[λ,λ+ω)) ∩ λ is contained in µ. Let δ ∈ ω1 denote the
order type of Y , and let φµ,λ be the order-preserving function from
µ∪Y onto the ordinal µ+δ. This lifts canonically to an order-preserving
bijection

φµ,λ : Fn(µ ∪ Y, 2) 7−→ Fn(µ+ δ, 2).

We can similarly make sense of the name φµ,λ(ḟ[λ,λ+ω)), call it FH .

Here, simply, for each tuple ( (λ + k,m), p) ∈ ḟ[λ,λ+ω), we have that

( (µ+ k,m), φµ,λ(p)) is in FH . Again, let φµ,λ(ḟ[λ,λ+ω)) be interpreted
in the above sense as giving FH , which is an element of H.

Other values replacing λ > µ will result in their own set Y and
canonical map φµ,λ. Now, the object FH is an element of H, and H
supposes this statement is true:

(for all β ∈ ω2)(there exists a λ ∈ ω2 \ β) supp(ḟ[λ,λ+ω)) ∩ λ ⊂ µ

and FH = φµ,λ(ḟ[λ,λ+ω)). However, now, this means that not only

is there an α ∈ H, FH = φµ,α(ḟ[α,α+ω)) but also that there is an
increasing sequence {αξ : ξ ∈ ω1} ⊂ λ of such αs satisfying that, for

each ξ, we have that supp(ḟ[αξ,αξ+ω)) is contained in αξ+1.

Choose such a sequence. This means that, if we let

A =
∪
n>0

[αn, αn + ω),

we have the name ḟA in H. This then means that all of the ((β,m), p)

appearing in (the nice name) ḟA have the property that dom(p) is
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contained in H. There is, also within H, a name ġ satisfying that

ḟA(αn + k) = ḟ[αn,αn+ω)(αn + k) for all k > ġ(n),

or more precisely, ġ ⊂ (ω × ω)× Fn(ω2, 2) satisfies that ġ[G] ∈ ωω and

ḟA[G](αn + k) = ḟ[αn,αn+ω)[G](α+ k) for all k > ġ[G](n).

We now apply Lemma 3.3 and work in the extension M [Gµ] for
a contradiction. Something special has now happened, namely, the
supports of the names

{ḟ[αn,αn+ω)(Gµ) : 0 < n < ω}

are pairwise disjoint and also disjoint from the support of the name
ḟ[λ,λ+ω)(Gµ). Further, these names are pairwise isomorphic (in a
manner that they all map to FH).

Since A is disjoint from [λ, λ + ω), there must be an integer ℓ
together with a condition q ∈ Fn(ω2 \ µ, 2) satisfying that, for all

n > ℓ, q forces that, “if k > ġ(n) then (ḟ[αn,αn+ω)(Gµ))(αn + k) ̸=
(ḟ[λ,λ+ω)(Gµ))(λ+ k).”

Choose n > ℓ large enough such that dom(q) ∩ [αn, αn+1) is empty.
Choose q1 < q � λ (in H) so that

φµ,αn(q1 � supp(ḟ[αn,αn+ω)) = φµ,λ(q � supp(ḟ[λ,λ+ω))

and then (again in H) choose q2 < q1 so that it both forces a value L on

ℓ+ ġ(n) and subsequently forces a value m on ḟ[αn,αn+ω)(αn +L+ 1).
However, now, again calculate

q3 = φ−1
µ,λ ◦ φµ,αn(q2 � supp(ḟ[αn,αn+ω)))

and, by the isomorphisms, we have that q3 forces that

ḟ[λ,λ+ω)(λ+ L+ 1) = m.

Technically (or with more specificity) all of this takes place in the
poset Fn(ω2 \ µ, 2), which means that q3 and q are with each other.
In order to verify this, it suffices to consider q(β) = e and to assume
that q3(β) is defined. Since q3(β) is defined, we have that there is a
β′ ∈ dom(q2) such that φµ,λ(β) = φµ,αn(β

′) and that q3(β) = q2(β
′).

However, by the definition of q1, β
′ ∈ dom(q1) and even q1(β

′) = q(β).
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Then, since q2 < q1, we have that q2(β
′) = q1(β

′) = q(β). This
completes the argument that q3(β) = q(β).

Finally, our contradiction is that q3 ∪ q2 ∪ q forces k = L+ 1, which
violates the quoted statement above. �

We are also able to force A′(κ) to fail for every cardinal other than
the first ω, which was just substantiated. Large cardinals are necessary
to find κ > ℵω with cf κ > ω where S(κ) fails.
Theorem 3.5. It follows from the existence of a 2-huge cardinal that
there is a model of ZFC for which ¬A′(ℵω).

Proof. We need the model constructed in [9], in which an instance
of Chang’s conjecture

(ℵω+1,ℵω)→→(ℵ1,ℵ0)

is shown to hold.

It may be assumed [9, Theorem 5] that we have a model V of GCH
in which there are regular limit cardinals κ < λ satisfying that

(λ+ω+1, λ+ω)→→(κ+ω+1, κ+ω).

This means that, if L is a countable language with at least one unary
relation symbol R, andM is a model of L with base set λ+ω+1 in which
the interpretation of R has cardinality λ+ω, then M has an elementary
submodel N of cardinality κ+ω+1 in which R ∩N has cardinality κ+ω

(of course, R ∩N is the interpretation of R in N since N ≺M).

The interested reader should know that it is shown in [9] that, if κ is
a 2-huge cardinal and j is the 2-huge embedding with critical point κ,
then, with λ = j(κ), it is obtained that (λ+ω+1, λ+ω)→→(κ+ω+1, κ+ω)
holds. There is no loss of generality to assume in addition that GCH
holds in this model.

Let {hξ : ξ ∈ λ+ω+1} be a scale in Π{λ+n+1 : n ∈ ω}, ordered by
the usual mod finite coordinatewise ordering. For convenience, we may
assume that hξ(n) ≥ λ+n for all ξ and all n. For each integer m, the
cofinality of the mod finite ordering on

Π{λ+n+1 : m < n ∈ ω}

is the same as it is for the entire product

Π{λ+n+1 : n ∈ ω}.
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If P is any poset of cardinality less than λ+m, then, in the forcing
extension by P , every function in Π{λ+n+1 : m < n ∈ ω} is bounded
above by a ground model function. It therefore follows easily that, in
the forcing extension by P , the sequence

{hξ : ξ ∈ λ+ω+1}

remains cofinal in Π{λ+n+1 : n ∈ ω}.

The forcing notion P0 is simply the finite condition collapse of κ+ω,
i.e., P0 = (κ+ω)<ω. In the forcing extension by P0, it is now obtained
that the ordinal κ+ω+1 from V is the first uncountable cardinal ℵ1.
Then, in this forcing extension, we let P1 be the countable condition
Levy collapse, Lv(λ, ω2), which collapses all cardinals less than λ to
have cardinality at most ℵ1. The poset P1 has cardinality λ. We treat
P0∗P1 as containing P0 as a subposet by identifying each (p0, 1) with p0.
After forcing with P0∗P1, we will have that ω1 is the ordinal (κ+ω+1)V ,
ω2 is the ordinal λ and ωω is the ordinal (λ+ω)V .

Now, assume that we have an assignment ḟȦ of a P0 ∗ P1-name

of a finite-to-one function from Ȧ into ω for each P0 ∗ P1-name of a
countable subset of λ+ω+1. We will obtain a contradiction to the claim
of coherence.

Let {Ȧξ : ξ ∈ λ+ω+1} be an enumeration of all of the nice P0-

names of countable subsets of λ+ω. For each ξ ∈ λ+ω+1, let ḟξ be

another notation for ḟȦξ
. Since P0 forces that P1 be countably closed,

the collection of all nice P0-names will produce all of the countable
sets in the extension by P0 ∗ P1; however, P0 ∗ P1 can introduce new
enumerations of these names. For each ξ ∈ λ+ω+1, there is a minimal
ζξ so that Ȧζξ is the canonical name for the range of hξ. This means

that ḟζξ ◦hξ is simply the P0 ∗P1-name of a finite-to-one function from

ω to ω. For each ξ ∈ λ+ω+1, choose any pξ ∈ P0 ∗ P1 such that there

is a nice P0-name Ḣξ that is forced by pξ to equal ḟζξ ◦ hξ. Choose

Λ ⊂ λ+ω+1 of cardinality λ+ω+1 and such that there is a pair p, Ḣ
satisfying that pξ = p and Ḣξ = Ḣ for all ξ ∈ Λ. We may assume
that p is in a generic filter G.

Let {xξ : ξ ∈ λ+ω+1} be any enumeration of H(λ+ω+1) such that
{xξ : ξ ∈ λ+ω} is also equal to H(λ+ω). We choose this enumeration
in such a way that xξ ∈ xη implies ξ < η. We use the relation symbol
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R0 to code (and well order) (H(λ+ω+1),∈) as follows: (ξ, η) ∈ R0 if
and only if xξ ∈ xη. Let R1 be a binary relation on κ+ω so that
(κ+ω, R1) is isomorphic to P0. Let R2 be a binary relation on λ so that
R2 ∩ (κ+ω × κ+ω) = R1 and (λ,R2) is isomorphic to P0 ∗ P1. Let ψ be
the poset isomorphism from (λ,R2) to P0 ∗ P1.

The coding is continued by coding the sequence {hξ : ξ ∈ λ+ω+1} as
another binary relation R3 on λ+ω+1 where

R3 ∩ ({ξ} × λ+ω+1) = {(ξ, hξ(n)) : n ∈ ω}

for each ξ ∈ λ+ω+1. The relation symbol R4 can code the sequence
{Ȧξ : ξ ∈ λ+ω+1} where (ξ, α, ζ) ∈ R4 if and only if (α̌, ψ(ζ)) is in

the name Ȧξ. Let R5 code this collection, i.e., (γ, n,m, η) ∈ R5 if and

only if ( ˇ(n,m), ψ(η)) ∈ Ḣγ . In addition, let R6 code (equal) the set Λ.
Finally, use the relation symbol R7 to similarly code the sequence

{ḟξ : ξ ∈ λ+ω+1} : (ξ, α, n, ζ) ∈ R7

if and only if ( ˇ(α, n), ψ(ζ)) is in the name ḟξ.

It is evident that, the unary relation symbol R is interpreted as the
set λ+ω for the application of (λ+ω+1, λ+ω)→→(κ+ω+1, κ+ω). Now, we
have defined our modelM of the language L = {∈, R,R0, . . . , R7}, and
we choose an elementary submodel N witnessing

(λ+ω+1, λ+ω)→→(κ+ω+1, κ+ω).

Of course, N is really just a κ+ω+1 sized subset of λ+ω+1 with the
additional property that N ∩ λ+ω has cardinality κ+ω. In the forcing
extension, N has cardinality ω1 and A = N ∩ λ+ω is countable.

We will need the following claim from [9].

Claim 3.6. We may assume that N satisfies that N ∩ κ+ω+1 is
transitive, i.e., an initial segment.

Proof of Claim 3.6. Suppose that our originally supplied N fails the
conclusion of the claim. We know that κ+ω ∈ N , via R1, in which case
so is κ+ω+1.

Then, set β0 = sup(N ∩ κ+ω+1), and consider the Skolem closure
Hull(N ∪ β0,M). Somewhat informally (in that we must formalize
the enumeration of formulas as per Gödel coding), let {φn : n ∈ ω}



INFINITE LENGTH GAMES 475

be an enumeration of all formulas in the language L, and let ℓn be
the minimal integer such that the free variables of φn are among
{v0, . . . , vℓn}. Then, for each tuple ⟨ξ1, . . . , ξℓn⟩ of elements of λ+ω+1,
we define fn(ξ1, . . . , ξℓn) to be the minimal ξ0 ∈ λ+ω+1 such that
M |= φn(ξ0, . . . , ξℓn). If there is no such ξ0, in other words, if

M |= ¬∃x φn(x, ξ1, . . . , ξℓn),

then set fn(ξ1, . . . , ξℓn) to be 0. Now, Hull(N ∪ β0,M) is just the
minimal superset X of N ∪ β0 that satisfies that fn[X

{1,...,ℓn}] ⊂ X
for all n. Since this is simply a large algebra, we can generate all
of the terms t of the algebraic operations {fn : n ∈ ω}. It is easily
seen that, for each ζ ∈ X, there is a term t(v1, . . . , vm) such that
ζ = t(δ1, . . . , δm) for some sequence ⟨δ1, . . . , δm⟩ with each δi ∈ N ∪β0.
Assume that ζ ∈ κ+ω+1. By re-indexing the variables in the term we
can assume that there is an n ≤ m so that δi < β0 for 1 ≤ i ≤ n and
κ+ω+1 ≤ δi for n < i ≤ m. Let a⃗ denote the tuple ⟨δn+1, . . . , δm⟩.
Choose η ∈ N ∩ κ+ω+1 large enough so that {δ1, . . . , δn} is contained
in η. Since set-membership in M is coded by R0 rather than ∈, we
argue a little less naturally. Consider the set

s0(η, a⃗) = {t(γ1, . . . , γn, a⃗) : {γ1, . . . , γn} ∈ [η]≤n}.

Clearly, s0(η, a⃗) is a member of H(λ+ω+1). Now, define s1(η, a⃗) to
be {xα : α ∈ s0(η, a⃗)}, and choose the unique ζ1 ∈ λ+ω+1 such that
xζ1 = s1(η, a⃗). We claim that ζ1 ∈ N . Note that αR0ζ1 holds if and
only if α ∈ s0(η, a⃗), and therefore,

M |= (∀α)[αR0ζ1 if and only if (∃ γ1 ∈ η)

· · · (∃ γn ∈ η)(α = t(γ1, . . . , γn, a⃗))].

By elementarity, then, we have that ζ1 ∈ N , and by similar reasoning,
the supremum ζ0 of ζ1 ∩ κ+ω+1 is also in N . This, of course, means
that ζ < β0. �

The elementarity of N is used to deduce properties of the families
{Ȧξ : ξ ∈ N} and {ḟξ : ξ ∈ N}. In particular, the collection we are
most interested in is the family

{hξ : ξ ∈ Λ ∩N}.
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Now, we need a result from Shelah’s pcf theory, proven in [4, 24.9].
Since ℵ1 = c < κ+ω+1, there is a function ⟨ϱn : n ∈ ω⟩ in Πnλ

+ω such
that the sequence {hξ : ξ ∈ N} is unbounded mod finite in Πnϱn For
each n, ϱn ≤ sup(N ∩ λ+n+2). Since P0 has cardinality κ+ω, and so,
less than |N | = κ+ω+1, a standard argument (analogous to the fact
that adding a Cohen real does not add a dominating real) shows that
the sequence {hξ : ξ ∈ Λ ∩N} remains unbounded mod finite in Πnϱn
(and in Πn(ϱn ∩N)).

Next, pass to the extension by G ∩ P0, and let H be the function
valG(Ḣ). Recall that fζξ(hξ(n)) = H(n) for all n ∈ ω and ξ ∈ Λ. Now,
pass to the full extension V [G], and again, since P1 was forced to be
countably closed, the family {hξ : ξ ∈ Λ ∩ N} remains unbounded in
Πn(ϱn ∩ N) (no new elements were added). Let A be the countable
set N ∩ λ+ω, and, for each ξ ∈ Λ ∩ N , there is an nξ such that
fξ(hξ(m)) = fA(hξ(m)) for all m > nξ. There is a single n so
that Λn = {ξ ∈ Λ ∩ N : nξ = n} has cardinality ω1, and thus,
{hξ : ξ ∈ Λn ∩ N} is also unbounded in Πn(ρn ∩ N). This certainly
implies that there is an m > n such that

{hξ(m) : ξ ∈ Λn ∩N}

is infinite. This completes the proof since fA(hξ(m)) = H(m) for all
ξ ∈ Λn ∩N . �

4. Applications to infinite length games. We introduce three
variations of Scheeper’s game which was defined in the introduction.

Game 4.1. Let Sch∪,⊆(κ) denote the Scheepers’ countable-finite union

game which proceeds analogously to Sch∪,((κ), except that C ’s restric-
tion in round n+ 1 is weakened to

Cn+1 ⊇ Cn.

Game 4.2. Let Sch1,⊆(κ) denote the Scheepers’ countable-finite ini-

tial game which proceeds analogously to Sch∪,⊆(κ), except that F ’s
winning condition is weakened to∪

n<ω

Fn ⊇ C0.
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Game 4.3. Let Sch∩(κ) denote the Scheepers’ countable-finite inter-

section game which proceeds analogously to Sch1,⊆(κ), except that C
may choose any Cn ∈ [κ]≤ω each round, and F ’s winning condition is
weakened to ∪

n<ω

Fn ⊇
∩
n<ω

Cn.

In [1], Clontz extended Scheepers’ application of almost-compatible
injections to these game variants as well as Men(κ†). However, when
considering Markov strategies, finite-to-one functions suffice.

Theorem 4.4. Figure 1.

..

A(κ)

.F ↑
2-tact

Sch∪,((κ) .

A′(κ)

.

F ↑
2-mark

Men
(
κ†)

.

⇐⇒

.

F ↑
2-mark

Sch∩(κ)

.F ↑
2-mark

Sch1,⊆(κ) .⇐⇒. F ↑
2-mark

Sch∪,⊆(κ).

F ↑
2-mark

Sch∪,((κ)

Figure 1. Diagram of Scheeper/Menger game implications with A(κ) and
A′(κ).

Proof.
A(κ) =⇒ F ↑

2-tact
Sch∪,((κ)

was shown in [11], see Theorem 4.5 below. Most of the other results
in the figure were proven in [1], with the exception that A′(κ) was not
considered at the time. The following proof that

A′(κ) =⇒ F ↑
2-mark

Sch∩(κ)
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is a trivial modification of the proof presented in [1] assuming A(κ);
however, since that paper is under review at the time of this writing,
we provide it here.

Let fA for A ∈ [κ]≤ω witness A′(κ). A 2-mark σ for Sch∩(κ) is
defined as follows:

σ(⟨A⟩, 0) = {α ∈ A : fA(α) = 0}
σ(⟨A,B⟩, n+ 1) = {α ∈ A ∩B : fB(α) ≤ n+ 1 or fA(α) ̸= fB(α)}.

For any attack ⟨A0, A1, . . .⟩ by C and

α ∈
∩
n<ω

An,

either fAn(α) is constant for all n, or fAn(α) ̸= fAn+1(α) for some n;
either way, α is covered. �

We include the following proof from [11] to point out the rea-
son A′(κ) seems insufficient for providing F a winning 2-tactic in

Sch∪,((κ), despite that it witnesses a winning 2-mark.

Theorem 4.5 ([11]).

A(κ) =⇒ F ↑
2-tact

Sch∪,((κ).

Proof. Let {fA : A ∈ [κ]≤ℵ0} witness A(κ), and define gA : A → ω
by

gA(α) = fA(α)− |{β ∈ A : fA(β) < fA(α)}|.

We claim that
{α ∈ A : gA(α) ≤ gB(α)}

must be finite since it is bounded above by

max{M,fA(α), fB(α) : fA(α) ̸= fB(α)},

where M = fB(α) for some α ∈ B \ A. In order to see this, let
fA(α) = fB(α) = N > M , and assume that fA(β) ̸= fB(β) implies
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fA(β), fB(β) < N . Then,

gA(α) = N − |{β ∈ A : fA(β) < N}|
> N − |{β ∈ B : fB(β) < N}|
= gB(α)

with the strictness of the inequality witnessed by fB(α) = M < N for
some α ∈ B \A. As a result,

σ(⟨A,B⟩) = {α ∈ A : gA(α) ≤ gB(α)}

is a legal 2-tactic for F . Let C = ⟨C0, C1, . . . ⟩ be a strictly increasing
sequence of countable sets and α ∈ Cn. Noting that fA is an injection
(not merely finite-to-one), 0 ≤ gCn+m(α) for all m < ω, and it follows
that gCn+m(α) ≤ gCn+m+1(α) for some m < ω. Therefore,

α ∈ σ(⟨Cn+m, Cn+m+1⟩). �

While the above proof cannot be trivially modified to utilize the
finite-to-one functions witnessed by A′(κ) in constructing a winning

2-tactical strategy for Sch∪,((κ), whether A′(κ) is sufficient for

F ↑
2-tact

Sch∪,((κ)

after all does remain open:

Question 4.6. Can the previous theorem be improved by replacing
A(κ) with A′(κ)?

We would like to demonstrate that A′(κ) is unnecessary for con-
structing winning 2-Markov strategies in Sch∩(κ).

Theorem 4.7. Let α be the limit of increasing ordinals βn for n < ω.
If

F ↑
2-mark

Sch∩(ℵβn)

for all n < ω, then
F ↑

2-mark
Sch∩(ℵα).
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Proof. Let σn be a winning 2-mark for F in Sch∩(ℵβn). Define the
2-mark σ for F in Sch∩(ℵα) as follows:

σ(⟨C⟩, 0) = σ0(⟨C ∩ ℵβ0⟩, 0)

σ(⟨C,D⟩, n+ 1) = σn+1(⟨D ∩ ℵβn+1⟩, 0)

∪
∪

m≤n

σm(⟨C ∩ ℵβm , D ∩ ℵβm⟩, n−m+ 1).

Let ⟨C0, C1, . . . ⟩ be an attack by C in Sch∩(ℵα) and

α ∈
∩
n<ω

Cn.

Choose N < ω with α < ℵβN+1 . Consider the attack

⟨CN+1 ∩ ℵβN+1
, CN+2 ∩ ℵβN+1

, . . .⟩

by C in Sch∩(ℵβN+1). Since σN+1 is a winning 2-mark and

α ∈
∩
n<ω

CN+n+1 ∩ ℵβN+1 ,

either α ∈ σN+1(⟨CN+1 ∩ ℵβN+1
⟩, 0), and thus,

α ∈ σ(⟨CN , CN+1⟩, N + 1),

or
α ∈ σN+1(⟨CN+M+1 ∩ ℵβN+1 , CN+M+2 ∩ ℵβN+1⟩,M + 1)

for some M < ω. Therefore,

α ∈ σ(⟨CN+M+1, CN+M+2⟩, N +M + 2).

Thus, σ is a winning 2-mark. �

Theorem 4.8. Let α be the limit of increasing ordinals βn for n < ω.
If

F ↑
2-mark

Sch1,⊆(ℵβn)

for all n < ω, then
F ↑

2-mark
Sch1,⊆(ℵα).
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Proof. The proof proceeds nearly identically to the previous proof:
substitute α ∈ C0 in place of

α ∈
∩
n<ω

Cn,

and proceed. �

Corollary 4.9. It is consistent that A′(ℵω) fails, but since A′(ℵk)
holds in ZFC for all k < ω, both

F ↑
2-mark

Sch∩(ℵω)

and
F ↑

2-mark
Sch1,⊆(ℵω)

hold in ZFC.

We conclude by returning our attention to Question 1.6, which asks
whether there exists a space for which the second player F in the game
Men(X) has a winning strategy without a winning 2-mark.

Question 4.10. Does

F ↑
2-mark

Sch∩(κ)

hold for all cardinals κ in ZFC?

If not, the model producing κ > ℵω, where

F ̸↑
2-mark

Sch∩(κ)

yields a positive answer to Question 1.6: X = κ†. On the other hand,
under V = L Corollary 3.1 shows that A′(κ), and therefore,

F ↑
2-mark

Men(κ†)

for every cardinal κ; thus, a more exotic example than X = κ† would
be required to answer Question 1.6 in ZFC.

Solving the following, weaker, question would not answer Question
1.6 in itself; however, a solution would be nonetheless interesting.
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Question 4.11. Does

F ↑
2-mark

Sch∪,⊆(κ)

hold for all cardinals κ in ZFC?

Whether the previous two questions are even distinct remains open.

Question 4.12. Can a winning 2-Markov strategy in Sch∪,⊆(κ) be used
to construct a winning 2-Markov strategy in Sch∩(κ)?
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