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FIXED POINTS OF AUGMENTED
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BREEANNE BAKER SWART, KRISTEN A. BECK,

SUSAN CROOK, CHRISTINA EUBANKS-TURNER,
HELEN G. GRUNDMAN, MAY MEI AND LAURIE ZACK

ABSTRACT. An augmented generalized happy function
S[c,b] maps a positive integer to the sum of the squares of
its base b digits plus c. In this paper, we study various pro-
perties of the fixed points of S[c,b]; count the number of fixed
points of S[c,b] for b ≥ 2 and 0 < c < 3b − 3; and prove
that, for each b ≥ 2, there exist arbitrarily many consecutive
values of c for which S[c,b] has no fixed point.

1. Introduction. The concept of a happy number, defined in [5]
and popularized by Guy [3], was generalized in [2] by allowing for
varying bases and exponents in the defining function. In [1], this was
further generalized, altering the defining function with the addition of a
constant. Specifically, for the integers c ≥ 0 and b ≥ 2, the augmented
generalized happy function S[c,b] : Z+ → Z+ is defined by

(1.1) S[c,b]

( n∑
i=0

aib
i

)
= c+

n∑
i=0

a2i ,

where 0 ≤ ai ≤ b−1 and an ̸= 0. Thus, for a positive integer a denoted
an · · · a1a0 in base b,

S[c,b](an · · · a1a0) = c+ a2n + · · ·+ a21 + a20.

A positive integer a is a happy number if, for some k ∈ Z+,
Sk
[0,10](a) = 1. Although the sole fixed point of S[0,10] is 1, as shown

in [2], for b ̸= 10, S[0,b] may have additional fixed points. Similarly, as
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shown in [1], when c > 0 (and b ≥ 2), S[c,b] may have multiple fixed
points.

In this work, we study the fixed points of the functions S[c,b]. First,
in Section 2, we prove some preliminary results providing properties of
the fixed points and consecutive fixed points of an arbitrary, but fixed,
S[c,b]. Then, in Section 3, we discuss the exact number of fixed points
of S[c,b], in terms of c and b. Finally, in Section 4, we let c ≥ 0 vary
and prove that, for each b ≥ 2, there are arbitrarily long sequences of
consecutive values of c for which S[c,b] has no fixed point.

2. Fixed point characteristics. Here, we discuss a variety of
results concerning relationships between the fixed points of a single
S[c,b], where c ≥ 0 and b ≥ 2 are arbitrary integers. The first theorem
concerns consecutive fixed points of S[c,b].

Theorem 2.1. Fix c ≥ 0 and b ≥ 2.

1. If a ∈ Z+ is a multiple of b, then a is a fixed point of S[c,b] if and
only if a+ 1 is a fixed point of S[c,b].

2. Every consecutive pair of fixed points of S[c,b] has a multiple of b
as its first member.

3. There is no consecutive triplet of fixed points of S[c,b].

Proof. We begin with the proof of Part 1. Since a is a multiple of b,
we have S[c,b](a+ 1) = S[c,b](a) + 12 = S[c,b](a) + 1. Thus, S[c,b](a) = a
if and only if S[c,b](a+ 1) = a+ 1.

For Part 2, assume that a and a + 1 are both fixed points of S[c,b]

and, using standard notation for base b, let

a =
n∑

i=0

aib
i.

First, assume that a0 ̸= b− 1. Then

a = S[c,b](a) = c+
n∑

i=1

a2i + a20,



AUGMENTED GENERALIZED HAPPY FUNCTIONS 49

and thus,

a+ 1 = S[c,b](a+ 1) = c+
n∑

i=1

a2i + (a0 + 1)2 = a+ 2a0 + 1.

Thus, 2a0 = 0, implying that a0 = 0. Therefore, a is a multiple of b,
as desired.

Next assume, for a contradiction, that a0 = b− 1. If every digit of a
is equal to b− 1, then a+1 = bn+1, and thus, a+1 = S(a+1) = c+1.
However, then c = a = S(a) = c + (n + 1)(b − 1)2, a contradiction.
Thus, we can let j ∈ Z+ be minimal such that aj ̸= b− 1. Then,

(2.1) a = S[c,b](a) = c+
n∑

i=j

a2i + j(b− 1)2,

and since

a+ 1 =
n∑

i=j+1

biai + (aj + 1)bj ,

we have

(2.2) a+ 1 = S[c,b](a+ 1) = c+

n∑
i=j+1

a2i + (aj + 1)2.

Combining equations (2.1) and (2.2) yields

a2j + j(b− 1)2 + 1 = (aj + 1)2.

Thus, j(b − 1)2 = 2aj . Since aj < b − 1, j(b − 1) < 2, and thus,
j = b− 1 = 1. However, then 2aj = 1, which is a contradiction.

Finally, Part 3 is immediate from Part 2. �

Lemma 2.2 provides another pairing of fixed points of S[c,b].

Lemma 2.2. Fix c ≥ 0, b ≥ 2, and a ∈ Z+, where

a =
n∑

i=0

aib
i,
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in standard base b notation with a1 ̸= 0. Let

ã =

n∑
i=2

aib
i + (b− a1)b+ a0.

Then, a is a fixed point of S[c,b] if and only if ã is a fixed point of S[c,b].

Proof. Assume that a and ã are as above, and that a is a fixed point
of S[c,b]. Then,

S[c,b](ã) = S[c,b]

( n∑
i=2

aib
i + (b− a1)b+ a0

)

= c+

n∑
i=2

a2i + (b− a1)
2 + a20

= c+
n∑

i=0

a2i + b2 − 2a1b

= S[c,b](a) + b2 − 2a1b

= a+ b2 − 2a1b

=

n∑
i=0

aib
i + (b− 2a1)b

=

n∑
i=2

aib
i + (b− a1)b+ a0 = ã.

Therefore, ã is also a fixed point of S[c,b]. The converse is immediate
by symmetry. �

Finally, we consider the parity of c that is required for S[c,b] to have
a fixed point.

Lemma 2.3. Fix c ≥ 0 and b ≥ 2, and let

a =
n∑

i=0

aib
i

be a fixed point of S[c,b], in the usual base b notation.
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1. If b is odd, then c is even.
2. If b is even, then

c ≡
n∑

i=1

ai (mod 2).

Proof. For b odd, by [1, Lemma 2.3], S[c,b](a) ≡ c + a (mod 2),
which implies that c is even. For b even, since a is a fixed point of
S[c,b],

a0 ≡ a = S[c,b](a) = c+
n∑

i=0

a2i ≡ c+
n∑

i=0

ai (mod 2).

Subtracting a0 from both sides of the congruence yields the result. �

3. Counting the number of fixed points. In this section, we
consider the number of fixed points of the function S[c,b] for fixed c ≥ 0
and b ≥ 2. In Corollary 3.5, we provide a formula for the number
of fixed points of S[c,b] for all values of b and a range of values of c,
depending on b.

We begin by determining the number of fixed points of S[c,b] of the
form ubn, where 0 < u < b and n ≥ 0. To fix notation, for c ≥ 0, b ≥ 2,
and n ≥ 0, let

F (n)
[c,b] = {a = ubn | 0 < u < b and S[c,b](a) = a}.

In the following three lemmas, we provide conditions under which

F (n)
[c,b] assumes specified values.

Lemma 3.1. Fix b ≥ 2. For c > 0, F (0)
[c,b] is empty, while F (0)

[0,b] = {1}.

Proof. Let 0 < a < b. Then, a = S[c,b](a) implies that c =

a − a2 ≤ 0. Hence, if c = 0, we have a = 1, and, if c > 0, we
have a contradiction. �
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Lemma 3.2. Fix c ≥ 0 and b ≥ 2. The cardinality of F (1)
[c,b] is

∣∣∣F (1)
[c,b]

∣∣∣ =

2 if α2 − αb+ c = 0 for some integer 1 ≤ α < b/2,

1 if b2 = 4c, and

0 otherwise.

Proof. From the definition of F (1)
[c,b], given a = ub with 0 < u < b, we

have a ∈ F (1)
[c,b] if and only if S[c,b](a) = a or, equivalently, c+ u2 = ub.

Thus, |F (1)
[c,b]| ̸= 0 if and only if there exists some integer u, 0 < u < b,

such that

(3.1) u2 − ub+ c = 0.

Since this is a quadratic equation, there are at most two such values
of u, and at most one if b2 = 4c.

By Lemma 2.2, a = ub is a fixed point of S[c,b] if and only if ã =

(b − u)b is a fixed point of S[c,b]. Hence, a = ub ∈ F (1)
[c,b] if and only if

(b − u)b ∈ F (1)
[c,b]. Thus, |F (1)

[c,b]| = 2 if and only if there are two integer

solutions to equation (3.1) with 0 < u < b, in which case one of the
solutions will satisfy 1 ≤ u < b/2. The lemma follows. �

Lemma 3.3. For c ≥ 0, b ≥ 2, and n ≥ 2, the cardinality of F (n)
[c,b] is∣∣∣F (n)

[c,b]

∣∣∣ = {
1 if b2n − 4c > (bn − 2b)2 is a perfect square, and

0 otherwise.

Proof. Fix n ≥ 2, and suppose that a = ubn is a fixed point of S[c,b]

for some 0 < u < b. Then, ubn = a = S[c,b](a) = c+ u2, which implies
that

(3.2) u =
bn ±

√
b2n − 4c

2
.

Since u ∈ Z+, b2n − 4c is a perfect square, and since u < b and
n ≥ 2, b2n − 4c is nonzero. Conversely, if b2n − 4c is a nonzero
perfect square, then (bn +

√
b2n − 4c)/2 > b and thus is not a candidate

for u, while, letting u = (bn −
√
b2n − 4c)/2, it is easily verified that

a = ubn ∈ F (n)
[c,b]. �
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The following theorem and its proof were inspired by the work of
Hargreaves and Siksek [4] on the number of fixed points of (unaug-
mented) generalized happy functions. As is standard, we let r2(n)
denote the number of representations of n ∈ Z+ as the sum of two
squares, that is,

(3.3) r2(n) = |{(x, y) ∈ Z2 | x2 + y2 = n}|.

Theorem 3.4. For c > 0 and b ≥ 2, the number of two-digit fixed
points of S[c,b] is given by(1/2)r2(b

2 − 4c+ 1) +
∣∣∣F (1)

[c,b]

∣∣∣ if b is odd, and

(1/4)r2(b
2 − 4c+ 1) +

∣∣∣F (1)
[c,b]

∣∣∣ if b is even.

Proof. Note that a = ub+ v is a fixed point of S[c,b], with 0 < u < b

and 0 ≤ v < b if and only if ub+v = S[c,b](ub+v) = c+u2+v2. Define

U = {(u, v) ∈ Z2 | 0 < u, v < b and ub+ v = c+ u2 + v2}.

By the correspondence (u, v) ↔ ub + v, |U | is equal to the number of
two-digit fixed points of S[c,b] that are not multiples of b. Hence, the

number of two-digit fixed points of S[c,b] is equal to |U |+ |F (1)
[c,b]|.

Set

X = {(x, y) ∈ Z2 | y ≥ 1 odd, and x2 + y2 = b2 − 4c+ 1}.

In order to see that |U | = |X|, consider the functions ϕ : U → X and
ψ : X → U , defined by

ϕ(u, v) = (2u− b, 2v − 1)

and

ψ(x, y) =

(
x+ b

2
,
y + 1

2

)
.

Making a straightforward calculation and noting that 2v − 1 > 0 and
odd proves that the image of ϕ is contained in X. Let (x, y) ∈ X. To
see that ψ(x, y) ∈ U , first note that y is odd and x ≡ b (mod 2), and
thus, ψ(x, y) ∈ Z2. Next, since

x2 < x2 + y2 = b2 − 4c+ 1 < b2,
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we have −b < x < b, implying that 0 < x + b < 2b, and thus
0 < (x + b)/2 < b, as desired. Similarly, 1 ≤ y < b; thus, 1 ≤
(y + 1)/2 < b. Finally, a direct calculation verifies that the necessary
equation is satisfied.

Since, as is easily checked, ϕ and ψ are inverses, it follows that
|U | = |X|.

Now, note that X is a subset of

Z = {(x, y) ∈ Z2 | x2 + y2 = b2 − 4c+ 1},

and recall that, by equation (3.3), |Z| = r2(b
2 − 4c+ 1).

If b is odd and (x, y) ∈ Z, then b2 − 4c+1 ≡ 2 (mod 4), and thus, y
must be odd. Therefore, φodd : Z → X defined by (x, y) 7→ (x, |y|) is
a two-to-one surjective function. Hence, |X| = |Z|/2 = (1/2)r2(b

2 − 4c
+ 1).

If b is even and (x, y) ∈ Z, then b2 − 4c+1 is odd, and thus, exactly
one of x and y is odd. Thus, φeven : Z → X defined by

(x, y) 7−→

{
(x, |y|) if y is odd,

(y, |x|) if x is odd,

is a four-to-one surjective function. Hence, |X| = |Z|/4 = (1/4)r2(b
2 −

4c+ 1).

Recalling that the number of two-digit fixed points of S[c,b] is |U |+
|F (1)

[c,b]| = |X|+ |F (1)
[c,b]|, the result follows. �

Corollary 3.5. For b ≥ 2 and 0 < c < 3b − 3, the number of fixed
points of S[c,b] is exactly(1/2)r2(b

2 − 4c+ 1) +
∣∣∣F (1)

[c,b]

∣∣∣ if b is odd, and

(1/4)r2(b
2 − 4c+ 1) +

∣∣∣F (1)
[c,b]

∣∣∣ if b is even.

Proof. From [1, Lemma 2.2], since c < 3b − 3, for each a > b2,
S(a) < a and, therefore, a is not a fixed point. Hence, each fixed point
of S[c,b] has at most two digits. The corollary now follows directly from
Lemma 3.1 and Theorem 3.4. �
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4. Fixed point deserts. In this section, we fix the base b ≥ 2 and
consider consecutive values of c for which S[c,b] has no fixed points.
Note that, for a fixed b, if

a =

n∑
i=0

aib
i

is a fixed point of S[c,b], with 0 ≤ ai < b for each i, then, solving for c,
we have

(4.1) c =
n∑

i=0

ai(b
i − ai).

Definition 4.1. For b ≥ 2 and k ∈ Z+, a k-desert base b is a set of k
consecutive non-negative integers c for each of which S[c,b] has no fixed
points. A desert base b is a k-desert base b for some k ≥ 1.

For example, for 28 ≤ c ≤ 35, S[c,10] has no fixed points and,
therefore, there is an 8-desert base 10 starting at c = 28.

We begin by determining bounds on the values of c such that S[c,b]

has a fixed point of a given number of digits. For b ≥ 2 and n ≥ 2,
define

mb,n = bn − b2 + 3b− 3,

and

Mb,n = bn+1 − b2 − (n− 1)(b− 1)2 + (b− ⌊b/2⌋)⌊b/2⌋.

Theorem 4.2. Let b ≥ 2 and n ≥ 2. If S[c,b] has an n + 1-digit fixed
point, then mb,n ≤ c ≤Mb,n. Further, these bounds are sharp.

Proof. Let b ≥ 2 and n ≥ 2 be fixed. From equation (4.1), each
fixed point a of S[c,b] determines the value of c. Treating the ai
in equation (4.1) as independent variables taking on integer values
inclusively between 0 and b − 1, we find the minimal possible value
of c by minimizing each term. Observe that a0(b

0 − a0) is minimal
when a0 = b−1; for 0 < i < n, ai(b

i−ai) is minimal when ai = 0; and,
since an ̸= 0, an(b

n− an) is minimal when an = 1. Hence, the minimal
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value of c is determined by

a =
n∑

i=0

a′ib
i,

where

a′i =


1 for i = n,

0 for 1 ≤ i ≤ n− 1,

b− 1 for i = 0,

and thus, the minimal value of c is

c = (b− 1)(b0 − (b− 1)) + 1 · (bn − 1) = bn − b2 + 3b− 3 = mb,n.

Similarly, maximizing the terms of equation (4.1), we find that
a0(b

0 − a0) is maximal when a0 = 0; a1(b
1 − a1) is maximal when

a1 = ⌊b/2⌋; and, for 1 < i ≤ n, ai(b
i − ai) is maximal when ai = b− 1.

Hence, the maximal value of c is determined by

a =
n∑

i=0

a′′i b
i,

where

a′′i =


b− 1 for 2 ≤ i ≤ n,

⌊b/2⌋ for i = 1,

0 for i = 0,

and, therefore, the maximal value of c is

c = ⌊b/2⌋(b1 − ⌊b/2⌋) +
n∑

i=2

(bi − (b− 1))(b− 1)

= bn+1 − b2 − (n− 1)(b− 1)2 + (b− ⌊b/2⌋)⌊b/2⌋
=Mb,n. �

The next lemma is used to prove Theorem 4.4, which states that,
for each b ≥ 2, there exist arbitrarily long deserts base b.

Lemma 4.3. Let b ≥ 2 and n ≥ 2. Then, between the numbers Mb,n

and mb,n+1, there exists a k-desert base b, where

k = mb,n+1 −Mb,n − 1 > (n− 5/4)(b− 1)2.
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Proof. Let b ≥ 2 and n ≥ 2 be fixed. Note that

mb,n+1 −Mb,n − 1 = (bn+1 − b2 + 3b− 3)

− (bn+1−b2−(n−1)(b−1)2+(b−⌊b/2⌋)⌊b/2⌋)−1

≥ 3b− 3 + (n− 1)(b− 1)2 − b2/4− 1

= (n− 1)(b− 1)2 − b2/4 + b/2− 1/4 + 5b/2− 15/4

> (n− 1)(b− 1)2 − (b− 1)2/4

= (n− 5/4)(b− 1)2,

since b ≥ 2. Thus,

(4.2) mb,n+1 > Mb,n + 1.

Recall that Mb,n is an upper bound on values of c such that S[c,b] has
an (n + 1)-digit fixed point. Since Mb,x increases as x increases, Mb,n

is an upper bound on values of c such that S[c,b] has a fixed point
with less than or equal to (n + 1)-digits. Similarly, mb,n+1 is a lower
bound on values of c such that S[c,b] has a fixed point with greater than
or equal to (n + 2)-digits. Thus, by equation (4.2), there is no value
of c between Mb,n and mb,n+1 such that S[c,b] has a fixed point of any
size. Hence, there exists a k-desert between these two numbers, where
k = mb,n+1 −Mb,n − 1. �

Theorem 4.4. For each b ≥ 2 and k ∈ Z+, there exists a k-desert
base b.

Proof. Fix b ≥ 2 and k ∈ Z+. Since (n − 5/4)(b − 1)2 is an
increasing linear function of n, there exists some n ≥ 2 such that
(n − 5/4)(b − 1)2 ≥ k. It follows from Lemma 4.3 that there exists
a k-desert base b. �
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