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A HIERARCHY FOR CLOSED
n-CELL COMPLEMENTS

ROBERT J. DAVERMAN AND SHIJIE GU

ABSTRACT. Let C and D be a pair of crumpled n-cubes
and h a homeomorphism of BdC to BdD for which there
exists a map fh : C → D such that fh | BdC = h and

f−1
h (BdD) = BdC. In our view, the presence of such a

triple (C,D, h) suggests that C is “at least as wild as” D.
The collection Wn of all such triples is the subject of this
paper. If (C,D, h) ∈ Wn, but there is no homeomorphism
such that D is at least as wild as C, we say that C
is “strictly wilder than” D. The latter concept imposes a
partial order on the collection of crumpled n-cubes. Here, we
study features of these wildness comparisons, and we present
certain attributes of crumpled cubes that are preserved by
the maps arising when (C,D, h) ∈ Wn. This effort may
be viewed as an initial way of classifying the wildness of
crumpled cubes.

1. Introduction. The existence of wildly embedded spheres in the
n-sphere Sn has been recognized since the 1920s, with the publication
of the famous Alexander horned sphere [1] and a related 2-sphere wildly
embedded in S3 presented by Antoine [2]. Later, in the 20th century,
there was an extensive study of conditions under which an (n − 1)-
sphere in Sn is locally flat, and hence, standardly embedded. Little has
been done, however, to classify or organize the rich variety of wildly
embedded objects. This paper strives to initiate that organizational
effort.

To that end, we consider triples (C,D, h) consisting of a pair of crum-
pled n-cubes C and D and a homeomorphism h from the boundary of
the first to the boundary of the second, and we name the subcollection
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Wn consisting of all such triples (C,D, h) for which there exists a map
fh : C → D extending h such that f−1

h (BdD) = BdC. We call fh a
map associated with the triple. Given (C,D, h) ∈ Wn, we think of C
as being at least as wild as D. Of course, this wildness measure Wn

heavily depends upon the homeomorphism h; thus, we regard C as be-
ing at least as wild as D, provided there is some homeomorphism h for
which (C,D, h) ∈ Wn.

Several results established here offer justification for this measure
as a rating of wildness. For instance, when (C,D, h) ∈ Wn, fh must
induce an epimorphism

π1(IntC) −→ π1(IntD).

Any homotopy taming set for C must be sent to a homotopy taming
set for D; as a consequence, the wild set of D, that is, the set of points
at which BdD fails to be locally collared in D, must lie in the image
under h of the wild set of C.

Given C, we describe a standard flattening away from a closed
subset X of BdC that produces a new crumpled n-cube CX and a
homeomorphism

hX : BdC −→ BdCX

such that (C,CX , hX) ∈ Wn and BdCX is locally flat in CX at all points
of hX(BdC−X) = hX(BdC)−X. Moreover, when X is the closure of
an open subset of the wild set for C, then hX(X) = X equals the wild
set for CX . The standard flattening technique furnishes an efficient
method for presenting unusual examples.

We also introduce a notion of “strictly wilder than,” stating that a
crumpled n-cube C is strictly wilder than another crumpled cube D if
there exists a homeomorphism h such that (C,D, h) ∈ Wn but there is
no homeomorphism

H : BdD −→ BdC

such that (D,C,H) ∈ Wn. We study this partial order briefly in
Section 5. If the crumpled n-cube C contains a spot at which its
boundary is locally flat, or if BdC has a finitely generated fundamental
group, we show that C cannot be a maximal element in this partial
order. We suspect that there are no maximal elements whatsoever but
have been unable to confirm the suspicion. The preservation of “at least
as wild as” under different operations, such as suspension and spin, is
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discussed in Section 4. In Section 6, the sewing space of crumpled cubes
is shown to have some nice properties whenever the “at least as wild
as” condition prevails.

Maps such as fh have been used by Wang [23] and others to impose
a partial order on knots in S3.

2. Definitions and notation. The symbol ClA is used to denote
the closure of A; the boundary and interior of A are denoted as BdA
and IntA; the symbol 1 is the identity map.

Definition 2.1. A crumpled n-cube C is a space homeomorphic to
the union of an (n − 1)-sphere Σ in Sn and one of its complementary
domains. The sphere Σ is the boundary of C, written BdC, and C−Σ
is the interior of C, written IntC.

Definition 2.2. A closed n-cell-complement is a crumpled n-cube C
embedded in Sn so that Sn − IntC is an n-cell.

Every crumpled n-cube admits such an embedding [7, 10, 18, 20].
This concept arises since, when dealing with the possible wildness in
Sn of a compact subset of BdC, it is useful to treat C as a closed n-
cell complement in order to preclude any wildness complications arising
from the other crumpled cube Sn − IntC.

Definition 2.3. A subset T of the boundary of a crumpled cube C is
a homotopy taming set for C if every map

m : I2 −→ C

can be approximated by a map

m′ : I2 −→ C

such that m′(I2) ⊂ T ∪ IntC.

Every crumpled n-cube has a one-dimensional homotopy taming
set [6]. All crumpled 3-cubes have zero-dimensional homotopy taming
sets; it is unknown whether the same is true for crumpled n-cubes when
n > 3.

Crumpled cubes with particularly nice homotopy taming sets are
referred to as follows:
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Definition 2.4. A crumpled n-cube C is Type 1 if there exists a zero-
dimensional homotopy taming set T in BdC such that T is a countable
union of Cantor sets that are tame relative to BdC.

Definition 2.5. The inflation of a crumpled n-cube C is

Infl (C, d) = {⟨c, t⟩ ∈ C × R1 | c ∈ C and |t| ≤ d(c)},

where d : C → [0, 1] is a map such that d−1(0) = BdC [9, page 270].
Neither the homeomorphism type nor the embedding type of Infl (C, d)
depends upon the choice of map d, so ordinarily we suppress reference
to d.

Definition 2.6. Let C be a crumpled n-cube. A point p ∈ BdC is a
piercing point of C if there exists an embedding ξ of C in the n-sphere
Sn such that ξ(BdC) can be pierced with a tame arc at ξ(p).

All boundary points of crumpled n-cubes are piercing points when
n > 3. McMillan [22] has shown that boundary points p of crumpled
3-cubes C are piercing points of C if and only if C−p is locally, simply
connected at p.

Definition 2.7. A proper map

f :M −→ M̃

between connected, orientable n-manifolds has degree 1 if f induces an
isomorphism of (cohomology groups with compact supports)

Hn
c (M̃) −→ Hn

c (M).

3. Some basic properties for the collection Wn. The funda-
mental aim here is the attempt to measure or compare the wildness of
two given crumpled n-cubes using Wn. The obvious, but basic, features
worth noting are:

(1) (C,C,1) ∈ Wn,
(2) (C,C ′, h) and (C ′, C ′′, h′) in Wn implies that (C,C ′′, h′h) is in

Wn.
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Loosely speaking, we think of C as being wilder than D if there
exists a (C,D, h) ∈ Wn. This comparison, however, raises the following
question: for (C,D, h) in Wn, does there ever exist a (D,C,H) ∈ Wn?
The basic fact that (C,C,1) ∈ Wn supplies an affirmative answer
indicates that this “wilder than” language is misleading. Accordingly,
we phrase the concept more conservatively as follows.

Definition 3.1. C is at least as wild as D if and only if there exists a
homeomorphism h such that (C,D, h) ∈ Wn.

Theorem 3.2. For every crumpled n-cube C and every homeomor-
phism h from BdC to BdBn, (C,Bn, h) ∈ Wn.

Proof. Since Bn is an absolute retract, the homeomorphism h ex-
tends to a map

fh : C −→ Bn.

Think of Bn as the unit ball. Restrict the metric on C so that C has
diameter ≤ 1. Treat fh(x) as a vector from the origin through the
image point fh(x). Modify fh by sending any x in C to the vector

(1− dist(x,BdC)) · fh(x),

i.e., the scalar product. Now,

f−1
h (BdBn) = BdC. �

Theorem 3.3. Suppose C and D are crumpled n-cubes such that
BdC and BdD have closed neighborhoods UC and UD in C and D,
respectively, that are homeomorphic via

H : UC −→ UD,

and suppose that π1(IntD) = 1. Then,

(C,D,H | BdC) ∈ Wn.

Proof. Here, IntD is homologically and homotopically trivial, im-
plying that H extends to a map

fH : C −→ D with fH(C − UC) ⊂ IntD.

Clearly, fH ensures that (C,D,H | BdC) ∈ Wn. �
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Next, we outline an example showing the existence of (C,C, h) ∈ Wn

where no associated map fh : C → C can be a homeomorphism. It is
meant to suggest that a reflexivity aspect of the “at least as wild as”
relation occasionally holds for complicated reasons. In the next section,
we will present an example showing that the relation actually fails to
be asymmetric, and hence, does not determine a partial order on the
collection of crumpled n-cubes.

Example 3.4. A triple (C,C, h) ∈ W3 is such that every associated
map

fh : C −→ C

induces a homomorphism

π1(IntC) −→ π1(IntC)

with nontrivial kernel. Consider the closed 3-cell complement C boun-
ded by Alexander’s horned sphere. Wipe out the wildness in one of the
two primary horns, but leave the other horn unchanged. The result is a
new, crumpled 3-cube D, simpler than the original in that some of the
wildness has been eliminated, nevertheless (by inspection) embedded
exactly like the original. We continue to differentiate the two using
different names, despite the fact that C and D are equivalent. There
is a homeomorphism h from BdC to BdD, sending one of the primary
horns of C onto the wild horn of D (the entire wild part of D) and
sending the other primary horn of C into the flattened part of D.
It takes little effort to show that h extends to the appropriate kind
of map from C to D; however, that is quite similar to showing that
(C,Bn, h) ∈ Wn. Let

J ⊂ BdC

be a simple closed curve separating the two horns of C, and note that
any associated map fh must send loops in IntC near J to homotopically
nonessential loops in IntD.

Lemma 3.5. Suppose that (C,D, h) ∈ Wn,

fh : C −→ D

is a map associated with h, W is a connected open subset of D such that
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W ∩BdD is connected and Y is the component of f−1
h (W ) containing

f−1
h (W ∩ BdD) = h−1(W ∩ BdD).

Then, fh induces an epimorphism

π1(Y ∩ IntC) −→ π1(W ∩ IntD).

Proof. Treat C and D as closed n-cell complements. Extend fh to
a proper map

Fh : Sn −→ Sn,

which restricts to a homeomorphism between Sn−IntC and Sn−IntD.
Since it is a homeomorphism over some open subset, Fh must have
geometric degree 1. Then, by [15],

fh | Y ∩ IntC = Fh | Y ∩ IntC : Y ∩ IntC −→W ∩ IntD

also has degree 1, which implies that it induces an epimorphism of
fundamental groups. �

Corollary 3.6. If (C,D, h) ∈ Wn, and

fh : C −→ D

is an associated map extending h with

fh(IntC) ⊂ IntD,

then fh induces an epimorphism of π1(IntC) to π1(IntD).

Proof. Apply Lemma 3.5 with W = D and Y = C. �

Corollary 3.7. If (C,D, h) ∈ Wn and IntC is an open n-cell, then
IntD is an open n-cell.

Proof. According to [21], IntD is an open n-cell if (and only if) IntD
is simply connected at ∞; in other words, given one neighborhood U of
BdD in D, a smaller neighborhood V must be produced there of BdD
such that each loop in V ∩ IntD is null-homotopic in U ∩ IntD. Pull
back to C. First, find a connected neighborhood V ′ of BdC in C such
that not only is V ′ ⊂ f−1

h (U) but also all loops in V ′ ∩ IntC are null-

homotopic in f−1
h (U)∩IntC. Next, locate a connected neighborhood V
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of BdD in D with f−1
h (V ) ⊂ V ′. From Lemma 3.5, every loop γ in

V ∩ IntD is homotopic to the image of a loop γ′ in

f−1
h (V ) ∩ IntC ⊂ V ′ ∩ IntC,

and γ′ in turn is null-homotopic in

f−1
h (U) ∩ IntC.

Finally, apply fh to see that γ itself is null-homotopic in U ∩ IntD. �

Theorem 3.8. If (C,D, h) ∈ Wn and T is a homotopy taming set
for C, then h(T ) is a homotopy taming set for D.

Proof. Consider any map ϕ : I2 → D and ϵ > 0. From Lemma 3.5,
for any x ∈ BdD, there exist a small connected neighborhood Nx of
x ∈ D and a small connected neighborhood Mx of h−1(x) in f−1

h (Nx)
such that fh induces an epimorphism of

π1(Mx ∩ IntC) −→ π1(Nx ∩ IntD).

Perform this such that every loop in an Mx contracts in a subset of C,
whose image under fh is an (ϵ/2)-subset of D. Note that, if L is a loop
in Mx ∩ IntC, then its image under fh contracts in an (ϵ/2)-subset of
h(T )∪ IntD. Produce a (Lebesgue number) δ ∈ (0, ϵ/2) such that any
δ-subset of D within δ of BdD lies in some Nx.

We define a new map

ϕ′ : I2 −→ D

such that ϕ′ is ϵ-close to ϕ and

ϕ′(I2) ⊂ h(T ) ∪ IntD.

First, impose a triangulation T of I2 with a mesh so fine that the
diameter of each ϕ(∆), where ∆ denotes a 2-simplex of T , is less than δ.
Next, approximate ϕ by a map (still called ϕ) such that the image of
the 1-skeleton of T avoids BdD; this may be accomplished without
affecting any of the size controls achieved to this point. Then, note
that, for those 2-simplices ∆ ∈ T such that ϕ(∆) meets BdD, ϕ(∂∆)
is homotopic in some Nx to the image under fh of a loop L ⊂Mx, and
fh | L bounds a singular disk in an (ϵ/2)-subset of h(T ) ∪ IntD. Of
course, ϕ′ and ϕ agree on those ∆ ∈ T such that ϕ(∆)∩BdD = ∅. �
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The following corollaries apply when (C,D, h) ∈ Wn.

Corollary 3.9. If C is Type 1, so is D.

Corollary 3.10. If C has the disjoint disks property, so does D.

Corollary 3.11. If C has a zero-dimensional homotopy taming set, so
does D.

Remark 3.12. If T is any homotopy taming set for the crumpled
cube C, then the wild set of C is contained in the closure of T .
Essentially, by definition of the homotopy taming set, IntC is locally
simply connected at all points of BdC−T , which ensures local flatness
there [3], [12, subsection 7.6], [16].

Corollary 3.13. Suppose that WC and WD are the wild sets in BdC
and BdD, respectively. Then, WD ⊂ h(WC).

Proof. Take any homotopy taming set T for C. Note that singular
disks in C may be adjusted, fixing points that are sent to WC while
moving the image off of BdC −WC , i.e., T ∩WC is another homotopy
taming set for C. Then, since h(T ∩WC) is a homotopy taming set
for D, we have

WD ⊂ Cl h(T ∩WC) ⊂ Cl h(T ) ∩ h(WC) ⊂ h(WC). �

Remark 3.14. Even when C and D are locally flat modulo wild sets
WC and WD that are tame in space, and there is a homeomorphism

h : BdC −→ BdD,

with h(WC) = WD, we cannot infer that C is at least as wild as D.
In order to see why not, we consider a pair of different crumpled 3-
cubes, each of which is locally flat modulo two points. The first might
have simply connected interior and the second might be non-simply
connected. For higher-dimensional cases, spins or suspensions can be
applied to obtain different crumpled n-cubes, each locally flat modulo
an (n− 3)-cell or a pair of (n− 3)-spheres that are tame in Sn.
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Corollary 3.15. If (C,D, h) and (D,C, h−1) both belong to Wn, then h
sends the wild set of C onto the wild set of D.

Theorem 3.16. Suppose that C and D are closed n-cell complements,
(C,D, h) ∈ Wn, X is a compact subset of BdC with dim X < n − 2
and X is 1-LCC embedded in Sn. Then, h(X) is 1-LCC embedded in
Sn.

Proof. Extend
fh : C −→ D

to a map
Fh : Sn −→ Sn,

with
Fh | Sn − C : Sn − C −→ Sn −D

a homeomorphism.

Let V be a neighborhood of h(x) ∈ h(X). Find a smaller connected
neighborhood W of h(x) with W ∩ BdD connected such that every
loop in F−1

h (W ) contracts in F−1
h (V ). Let Y denote the component of

F−1
h (W ) containing x. Note that, due to the dimension restriction, X

does not separate Y . From the same argument as that for Lemma 3.5,
Fh induces an epimorphism

π1(Y −X) −→ π1(W − h(X)).

Consider any loop α in W − h(X). It is the image of a loop α′ from
Y −X. By design, α′ is null-homotopic in F−1

h (V ); even better, since X

is 1-LCC embedded, α′ is null-homotopic in F−1
h (V )−X. Application

of Fh demonstrates that α is null-homotopic in V − h(X). �

Corollary 3.17. If C and D are closed n-cell complements, (C,D, h) ∈
Wn and BdC is locally flat modulo a Cantor set tamely embedded in Sn,
n ≥ 5, then BdD is locally flat modulo a Cantor set tamely embedded
in Sn.

Corollary 3.18. Let C and D be closed n-cell complements. If
(C,D, h) ∈ Wn and BdC is locally flat modulo a codimension 3 subset
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WC of BdC that is embedded in space as a tame polyhedron, then D
is also locally flat modulo a tame subset.

Corollary 3.19. No closed n-cell complement that is locally flat mod-
ulo a tame subset of codimension 3 or greater can be at least as wild as
that which is locally flat modulo a wild set.

Theorem 3.20. If (C,D, h) ∈ W3 and p is a piercing point of C, then
h(p) is a piercing point of D.

Proof. By [22], a point x in the boundary of a crumpled cube C is
a piercing point if and only if C has a homotopy taming set T such
that x /∈ T . Consequently, the existence of such a T with p /∈ T implies
that h(p) /∈ h(T ), which in turn, implies that h(p) is a piercing point
of D. �

Definition 3.21. The boundary Σ of a crumpled n-cube C can be
carefully almost approximated from IntC provided that, for each ϵ > 0,
there exists a locally flat embedding θ of Σ in Sn within ϵ of the
inclusion

Σ −→ Sn

such that each component of θ(Σ)−IntC has diameter < ϵ and Σ∩θ(Σ)
is covered by the interiors of a finite collection of pairwise disjoint
(n− 1)-cells in Σ, each of diameter < ϵ.

Theorem 3.22. Suppose that C and D are crumpled n-cubes, BdC
can be carefully almost approximated from IntC, and (C,D, h) ∈ Wn.
Suppose also that

m : B2 −→ BdD

is a map and δ is a positive number. Then, there exists a map

m′ : B2 −→ D

such that
ρ(m′,m) < δ,m′ | ∂B2 = m | ∂B2

and
m′(B2) ∩ BdD ⊂ Nδ(m(∂B2)).
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Proof. From [8, Lemma 5.2], the same conclusion holds for the map

h−1m : B2 −→ BdC.

The properties in C readily transfer to D via fh. �

4. Preservation of wildness comparisons under certain oper-
ations. In this section, we shall show the “at least as wild as” property
is preserved under suspension, rounded product and spin operations,
but is not preserved under the inflation operation.

Theorem 4.1. If (C,D, h) ∈ Wn, then so is (Σ(C),Σ(D),Σ(h)),
where Σ denotes the suspension operator.

Proof. The proof is elementary: suspend an associated map fh. �

The next example shows that the inflation operator does not preserve
the “at least as wild as” property.

Example 4.2. If C is at least as wild as D and Infl (C) is a crumpled
cube (equivalently for n > 4, C has the disjoint disks property), then
Infl (C) may not be at least as wild as Infl (D). Suppose that D is
a crumpled cube, the boundary of which is everywhere wild, and its
inflation is also a crumpled cube. Then, the only crumpled cube C
is D itself for which Infl (C) is at least as wild as Infl (D). If

H : Bd Infl (C) −→ Bd Infl (D)

is a homeomorphism, H must send the wild set of Infl (C) to cover the
wild set of Infl (D), that is,

H(BdC × {0}) ⊃ BdD × {0}.

Since no proper subset of an (n− 1)-sphere can cover another (n− 1)-
sphere, it follows that

H(BdC × {0}) = BdD × {0}.

As a result, H must send either of the obvious copies of C in the
boundary of the first inflation onto a copy of D in the second.

Definition 4.3. Given a crumpled n-cube C, we define its rounded
product by I, denoted Round(C × I), as the crumpled (n+ 1)-cube in
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Rn+1 bounded by λ(Bd (C × I)), where λ is an embedding that agrees
with inclusion on (BdC)×[1/3, 2/3], is locally flat elsewhere, and where
the image of λ misses IntC× [1/3, 2/3]. Equivalently, Round(C× I) is
obtained by attaching (n+1)-cells B+ and B− to C × [1/3, 2/3] along
C×{2/3} and C×{1/3}, respectively, with the requirement that both
BdB+ − (IntC × {2/3}) and BdB− − (IntC × {1/3}) be n-cells.

Theorem 4.4. If (C,D, h) ∈ Wn, then

(Round(C × I),Round(D × I),Round(h× 1)) ∈ Wn+1,

where Round(h × 1) denotes any homeomorphisms between the boun-
daries that extend

h× 1 : BdC ×
[
1

3
,
2

3

]
−→ BdD ×

[
1

3
,
2

3

]
.

Proof. Since (C,D, h) ∈ Wn, we have a typical associated map

fh : C −→ D

extending h. Define

F : Round(C × I) −→ Round(D × I)

as

fh × 1 : C ×
[
1

3
,
2

3

]
−→ D ×

[
1

3
,
2

3

]
;

extend to the (n + 1)-cells B+ and β+ attached along C × {2/3} and
D×{2/3}, respectively, so that no point of IntB+ is sent to a boundary
point of β+, and do the same for the (n+ 1)-cells attached at the 1/3-
levels. �

Here, we introduce a method for spinning a crumpled n-cube C that
sometimes produces a crumpled (n + k)-cube. It is closely related to
the method of spinning a decomposition described in [9, Section 28],
and we will use the results from that section. The procedure depends
upon the choice of an (n − 1)-cell β in BdC. For simplicity, we
tolerate using only those cells β that are standardly embedded in
BdC. For k > 0, the k-spin of C relative to β is the decomposition
space Spk(C, β) = C × Sk/Gβ , where Gβ is the decomposition whose
nondegenerate elements are {c × Sk | c ∈ β}. This is a generalized
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(n + k)-manifold with a boundary, and its boundary is the image of
(BdC− Intβ)×Sk, the k-spin of the (n−1)-cell BdC− Intβ, which is

an (n+k−1)-sphere. As a result, Spk(C, β) is a crumpled (n+k)-cube
if and only if it embeds in Sn+k.

Given crumpled n-cubes C and D plus a homeomorphism h of BdC
to BdD, a naturally defined homeomorphism Spk(h) is derived between
the boundaries of certain k-spins. Specifically, let

qC : (BdC − Intβ)× Sk −→ BdSpk(C, β)

and
qD : (BdD − Inth(β))× Sk −→ BdSpk(D,h(β))

denote the decomposition maps, appropriately restricted. Define

Spk(h) : Bd Spk(C, β) −→ BdSpk(D,h(β))

as qD(h× 1)(qC)
−1, where

h× 1 : (BdC − Intβ)× Sk −→ (BdD − Inth(β))× Sk.

There is another effective method of studying Spk(C, β). Attach
an exterior collar λ(BdC × [0, 1]) to C, with λ(c, 0) = c for all
c ∈ BdC. The union of C and the collar is an n-cell Bn. Let G be
the decomposition of Bn consisting of points and the arcs λ(c× [0, 1]),
c ∈ β. (Admissibility is satisfied.) The k-spin of Bn is topologically

Sn+k, and G gives rise to a cell-like decomposition Spk(G). The

decomposition space Spk(Bn)/Spk(G) contains Spk(C, β). Hence, if

Spk(Bn)/Spk(G) is the (n+ k)-sphere, then Spk(C, β), bounded by an
(n+ k− 1)-sphere, must be a crumpled (n+ k)-cube. According to [9,

Theorem 28.9], when n+k ≥ 5, Spk(Bn)/Spk(G) is topologically Sn+k

if and only if every pair of maps

µ1, µ2 : I2 −→ Bn/G

can be arbitrarily closely approximated by the maps

µ′
1, µ

′
2 : I2 −→ Bn/G

such that

(∗) µ′
1(I

2) ∩ µ′
2(I

2) ∩ πG(∂Bn) = ∅,



A HIERARCHY FOR CLOSED n-CELL COMPLEMENTS 2147

where πG denotes the decomposition map

πG : Bn −→ Bn/G.

In this case, (∗) can be replaced with

(∗∗) µ′
1(I

2) ∩ µ′
2(I

2) ∩ πG(β) = ∅,

since all nondegenerate elements of G meet β, meaning that both
singular disks µ′

1(I
2) and µ′

2(I
2) can be adjusted to avoid πG(∂B

n) −
πG(β).

In summary, Spk(C, β) is a crumpled (n + k)-cube if and only if it
satisfies the disjoint disks property at β, a property defined by condition
(∗∗). Of course, the usual disjoint disk property is sufficient to ensure
that (∗∗) holds.

Lemma 4.5. Suppose that (C,D, h) ∈ Wn and that β is an (n − 1)-

cell standardly embedded in BdC such that Spk(C, β) is a crumpled

(n+ k)-cube. Then, Spk(D,h(β)) is also a crumpled (n+ k)-cube.

Proof. Since Spk(C, β) is a crumpled cube, C contains homotopy
taming sets T1 and T2 such that T1 ∩ T2 ∩ β = ∅. Then, h(T1) and
h(T2) are homotopy taming sets for D and

h(T1) ∩ h(T2) ∩ h(β) = h(T1 ∩ T2 ∩ β) = ∅,

which ensures that Spk(D,h(β)) is a crumpled (n+ k)-cube. �

Theorem 4.6. Suppose (C,D, h) ∈ Wn and that β is an (n − 1)-

cell standardly embedded in BdC such that Spn+k(C, β) is a crumpled

(n+ k)-cube. Then, (Spk(C, β), Spk(D,h(β)), Spk(h)) ∈ Wn+k.

Proof. Let

pC : C × Sk −→ Spk(C, β)

and

pD : D × Sk −→ Spk(D,h(β))

denote the decomposition maps. Let

fh : C −→ D
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be a map associated with (C,D, h). Define

F : Spk(C, β) −→ Spk(D,h(β))

as pD(fh × 1)(pC)
−1, where

fh × 1 : C × Sk −→ D × Sk. �

5. Strict wildness considerations. As mentioned in Section 3,
the definition of “at least as wild as” does not provide a partial order
on the collection of crumpled n-cubes. In order to show that the
relation fails to be antisymmetric, we present a pair of crumpled n-
cubes with non-homeomorphic wild sets, therefore ensuring the two
are topologically distinct, each at least as wild as the other.

For greater clarity, we shall introduce a standard flattening technique
to construct such an example.

Definition 5.1. Given a crumpled n-cube C and a compact set
X ⊂ BdC, the crumpled n-cube CX is a standard flattening relative
to X if there exists a homeomorphism hX of BdC to BdCX such that

(C,CX , hX) ∈ Wn, hX | X = 1 | X, BdCX −X

is locally collared in CX , C ⊂ CX , and CX admits a strong deformation
retraction

r : CX −→ C

such that rhX = 1 | BdC and all nontrivial point preimages under r
are sent to BdC −X.

5.1. In this subsection, we show the existence of standard flattening
for every crumpled cube C and closed subset X of BdC. Treat C as a
closed n-cell complement. Name an embedding λ of BdC × I, giving a
collar BdC in that n-cell Sn − IntC with λ(s, 0) = s for all s ∈ BdC.
Find a continuous function

µ : BdC −→ [0, 1]

such that X = µ−1(0). Define CX as

C ∪ {λ(s× [0, µ(s)]) where s ∈ BdC}.
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The retraction
r : CX −→ C

deforms each λ(s× [0, µ(s)]) to λ(s× 0); it should be obvious why r is
a strong deformation retraction. For later convenience, further restrict
µ such that

diamλ(s′ × [0, µ(s′)]) < dist(s′, X)

for all s′ ∈ BdC −X.

Next, apply the proof of the homotopy extension theorem to the pair
(C−X,BdC−X) and ANR CX −X. Consider the inclusion of C−X
in the target CX − X and the homotopy of BdC − X, starting with
the inclusion and ending with the homeomorphism

hX : BdC −X −→ BdCX −X,

sending s = λ(s, 0) to λ(s, µ(s)). The track of this homotopy at s has
diameter < dist(s,X). There is a neighborhood N of

((C −X)× {0}) ∪ ((BdC −X)× I)

over which the partial homotopy extends into CX − X. Call this
extension ψ. Each s ∈ BdC − X has a neighborhood Os such that
Os × I ⊂ N , and diamψ(s × I) has diameter < dist(s,X). Let O be
the union of all of the Os. Find a Urysohn function

u : CX −→ [0, 1],

with u(BdC −X) = {1} and u(C −O) = {0}. Then, define

Ψ : (C −X)× I −→ CX −X as Ψ(s, t) = ψ(s, t · u(s)).

The claim is that Ψ extends via projection to X on X × I to provide
a map

C × I −→ CX .

This function Ψ is continuous at X: for points y within ϵ of X,
either Ψ(y × I) = y or diamΨ(y × I) < dist(y,X) < ϵ such that
dist(Ψ(y, t), x) < 2ϵ, assuring continuity.

Thus, the function hX extends via the identity on X to a homeo-
morphism

hX : BdC −→ BdCX .
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Note that rhX = 1 | BdC. The desired map

f : C −→ CX

is approximately f(c) = Ψ(c, 1), where c ∈ C. This type of map extends
the homeomorphism hX between the boundaries. The only problem is
that f may send some point of IntC to a point of BdCX − X. This
may be fixed similarly to improvement of the map C → Bn to ensure
that no point of IntC is sent to BdBn. Note that, with any standard
flattening CX of C, X may be regarded as a subset of BdCX .

Remark 5.2. A standard flattening (C,CX , hX) can easily result in
a relatively uninteresting example in which CX turns out to be an
n-cell. That happens whenever C has a homotopy taming set T that
misses X. Consequently, when C is the sort of crumpled cube for which
any countable dense subset J of BdC is a homotopy taming set, then
dimX ≤ n− 2 implies CX is an n-cell. However, if X is the closure of
some open subset of C’s wild set, then CX is truly wild at each point
of X.

Lemma 5.3. Suppose that C is a crumpled n-cube, {X,Y } a pair of
compact sets with Y ⊂ X ⊂ BdC, (C,CX , hX) and (C,CY , hY ) are
standard flattenings of C with respect to X and Y , respectively, and
(CX , (CX)Y , (hX)Y ) is the standard flattening of CX with respect to Y .
Then, it follows that (CX)Y = CY and (hX)Y hX = hY .

Proof. The map
µ : BdC −→ [0, 1]

producing the standard flattening CX should be chosen so that µ(BdC)
⊂ [0, 1). Then, there exists a collar λX(BdCX × [0, 1]) on BdCX in
CX such that

λX(hX(s)× [0, 1]) ⊂ λ(s× [µ(s), 1]),

whenever s ∈ BdC. The conclusion follows. �

Theorem 5.4. Let C and D be crumpled n-cubes with wild sets WC

and WD, respectively, and let

h : BdC −→ BdD
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be a homeomorphism such that WD ⊂ h(WC). Set X = h−1(WD).
Then, (C,D, h) ∈ Wn if and only if (CX , D, hh

−1
X ) ∈ Wn.

Proof. The reverse implication follows from Definition 5.1, Lemma 5.3
and the transitivity property for appropriate pairs of triples belonging
to Wn.

Turning to the forward implication, we consider (C,D, h) ∈ Wn and
name a map

fh : C −→ D

associated with h. There is a retraction

r : CX −→ C ⊂ CX

which restricts to h−1 on BdCX and otherwise satisfies r(CX − C) ⊂
BdC −X. Then,

fhr : CX −→ D

restricts to hh−1
X on BdCX . The only problem with

fhr : CX −→ D

is that it sends some points of IntCX − IntC to BdD. However, the
images of those troublesome points miss WD; therefore, modifications
of a now familiar sort can be used to push those images off of BdD, as
required. �

Example 5.5. Here, we show a pair of crumpled n-cubes with non-
homeomorphic wild sets such that each is at least as wild as the other.

In Rn−1, identify a countable collection of round (n− 2)-spheres, no
two of which intersect, plus a point to which these spheres converge.
Let Z be the union, and let Z∗ be Z with one of the spheres removed.
It may still be shown that there exists a homeomorphism h of Rn−1 to
itself such that h(Z) = Z∗.

Next, label the (n− 1)-balls bounded by the spheres in Z as

B1, B2, B3, . . . , Bi, . . . ,

with the understanding that B1 misses Z∗, and that homeomorphism h
of Rn−1 to itself sends Bi to Bi+1. Extend h to a homeomorphism H
of Rn−1× [0,∞) to itself that takes each p× [0,∞) to h(p)× [0,∞) and
carries Bi × [0, 1/i] onto Bi+1 × [0, 1/(i+ 1)].
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Find a crumpled cube C whose boundary is locally flat modulo a
simple closed curve J standardly embedded in BdC. Replace each n-
cell Bi× [0, 1/i] with a copy of C ⊂ Bi× [0, 1/i], i.e., embedding a copy
of C in Bi × [0, 1/i] so that the image of C contains all of this n-cell’s
boundary not in Rn−1 × {0}. For later reference, denote(

BdBi ×
[
0,

1

i

])
∪
(
Bi ×

{
1

i

})
as βi. Make sure the image of J misses βi. Once this replacement has
been completed for the first B1× [0, 1], it should be done in such a way
that is compatible with H in the remainder, that is, perform it so that
the homeomorphism H restricted to βi extends to a homeomorphism
from the copy of C inBi×[0, 1/i] to the copy of C inBi+1×[0, 1/(i+ 1)].

Let K be the subset of Rn−1 × [0,∞) obtained by deleting the cells
Bi×[0, 1/i] from Z and replacing with the copies of C, and letK∗ be the
space obtained when B1 × I is left as it is. Replace all of the others.
H extends to give a homeomorphism of K onto K∗. The one point
compactifications of K and K∗ are crumpled cubes, and H extends to
give a homeomorphism H∗ of those crumpled cubes. We use K and
K∗ as the names for these crumpled cubes, the compactifications.

Let W denote all of the wild set of K except the interior of an
open subarc A of the copy of J in the first replacement C. Thus, W
consists of a point, an arc and a sequence of simple closed curves whose
diameters go to 0. The standard flattening gives (K,KW , hW ) ∈ Wn.
Let W ′ denote all of the wild set of K that misses B1 × I. Looking
at J in another way, in that first replacement, W ′ is the portion of the
wild set of KW except for the component that is an arc. We have a
standard flattening of KW relative to W ′, which means that

(KW , (KW )W ′ , hW ′) ∈ Wn.

Here, K∗ can be regarded as a standard flattening of K relative to
all of the wild set outside of that copy of J in the first replacement
crumpled cube. Standard flattenings with respect to the same subset
are homeomorphic. Thus, (KW )W ′ , which is flattening first relative
to W and then relative to W ′ ⊂ W , is the same as flattening relative
to W ′. As a result, (KW )W ′ is homeomorphic to K∗, and we know
that K∗ is homeomorphic to K. This verifies that K is at least as wild
as KW , and KW is at least as wild as (KW )W ′ ∼= K.
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Definition 5.6. C is strictly wilder than D if and only there exists a
homeomorphism h such that (C,D, h) ∈ Wn, but there is no homeo-
morphism H such that (D,C,H) ∈ Wn.

Definition 5.6 imposes a strict partial order on the collection of all
crumpled n-cubes, up to homeomorphism.

Theorem 5.7. Suppose that D is a closed n-cell complement whose
wild set W is a proper subset of BdD. Then, there exists a closed n-
cell complement C strictly wilder than D such that BdC is wild at each
of its points.

Proof. Triangulate BdD −W , and list the (n− 1)-simplices

∆1,∆2, . . . ,∆k, . . .

of this triangulation. (If W is topologically a polyhedron tamely em-
bedded in BdD, this can be a finite list and the ∆i can be allowed to
touchW in their boundaries; otherwise, however, require the diameters
of the ∆k → 0 as k → ∞.)

Since BdD is locally flat at all points of Int∆i, ∆i can be thickened
to an n-cell Bi in D such that ∆i is a standardly embedded subset of
BdBi and Bi ∩Bj ⊂ ∆i ∩∆j for all i ̸= j.

Let K be a crumpled n-cube whose boundary is locally flat modulo
an (n − 1)-cell A standardly embedded in BdK. Also require that
BdA be tame in space, i.e., some homotopy taming set for K misses
BdA. (In order to obtain such a K, modify Bing’s construction of [4]
to generate a crumpled 3-cube which is wild at the points of a 2-cell
with tame boundary, and suspend as often as needed.) Then, addition
to K of a tapered (exterior) collar on IntA produces an n-cell Bn

containing A with Cl (Bn − K) − BdA equal to that tapered collar.
Equate each Bi with a copy of Bn so as to identify a copy Ki of
K in each Bi; do this such that Ki ∩ Cl (D − Bi) corresponds to
Cl (BdK−A). It follows that (D−∪iBi)∪Ki is a crumpled n-cube C;
in other words, C results from D by deleting all of the tapered collars
and taking the closure of what remains. It should be immediately
obvious that BdC is everywhere wild and that BdC contains W .

Build an exterior collar on C by first appending the tapered collars
in Bi on the variousKi. The union equalsD. When it is combined with
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an exterior collar on BdD, we have a collar on C. A standard flattening
CW of C then equals D; thus, we have (C,D = CW , hW ) ∈ Wn.

Since BdC is everywhere wild and BdD is not, C is strictly wilder
than D. �

Theorem 5.8. For any crumpled n-cube D, n > 3, there exists another
crumpled n-cube C and homeomorphism h with (C,D, h) ∈ Wn such
that every associated map

fh : C −→ D

extending h restricts to an epimorphism

(fh)# : π1(IntC) −→ π1(IntD)

having non-trivial kernel.

Proof. Given any crumpled cubeD we can find a Cantor setX which
misses some homotopy taming set forD, i.e., X is tame in space whenD
is embedded in Sn as a closed n-cell complement. We claim that there
exists a (C,D, h) ∈ Wn such that, for every homotopy taming set T
for C, T ∩ h−1(X) is nonempty. In other words, h−1(X) fails to be
tame in space. The key is to produce an (n− 1)-sphere S in X ∪ IntD
that is locally flat modulo X and which contains X as a standard
Cantor set in S. From [19], S is standardly embedded in Sn; thus, it
bounds two n-cells, B and B′, with B ⊂ D. Remove B from D and
replace it with a crumpled cube K locally flat modulo a Cantor set Z
wild in space but tame in BdK. Specifically, attach K to D − IntB
via a homeomorphism

θ : BdB −→ BdK

such that θ(X) = Z. Let C be the result of the replacement. Keep in
mind that K can be put into Sn as a closed n-cell complement, such
that Sn = B′ ∪K ⊃ C; in short, C is a crumpled cube.

Note that S −X is simply connected. Hence,

π1(IntC) ∼= π1(IntC −K) ∗ π1(IntK).

Consider any loop
γ : ∂I2 −→ IntC
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with an image in IntK and any map

fh : C −→ D

associated with the obvious homeomorphism between BdC and BdD.
Then, fhγ extends to a map

Γ : I2 −→ D;

since T is a homotopy taming set for D, Γ can be approximated by a
map Γ′ agreeing with Γ on Bd I2, with

Γ′(I2) ⊂ T ∪ IntD.

Set U = D−fh(K), and let V denote the component of U−BdD whose
closure contains BdD−X. Find a disk with holes P in I2 with ∂I2 ⊂ P ,
Γ(P ) ⊂ IntD and ∂P − ∂I2 ⊂ V . This means that the subgroup of
π1(IntD) carried by fhγ(∂I

2) is in the normal closure of π1(V ) and
elements α1, . . . , αm determined by the components of ∂P − ∂I2. Let
V ′ denote the component of f−1

h (V ) whose closure contains BdC −Z.
From Lemma 3.5, the restriction of fh induces an epimorphism

π1(V
′) −→ π1(V );

thus, π1(V
′) contains elements α′

i sent by fh to αi (i = 1, . . . ,m).
Observe that

V ′ ⊂ IntC −K.

If fh is also restricted to give an isomorphism

π1(IntC) −→ π1(IntD),

the subgroup of π1(IntC) carried by γ(∂I2) would be in the normal
closure of the αi, and hence, on the normal closure of π1(IntC − K)
with respect to π1(IntC), an impossibility. �

Given one crumpled cube D, Theorem 5.7 presents a method for
constructing another crumpled cube C at least as wild as D; in most
circumstances C will be strictly wilder than D by virtue of having a
larger wild set, topologically distinct from that of D. Theorem 5.8
accomplishes a similar purpose without changing the topological type
of the wild set but instead increasing the wildness of the boundary
sphere. Decomposition theory affords a more general technique for
creating additional examples.
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Example 5.9. Here, a decomposition theory technique is presented
for producing a crumpled cube at least as wild as a given crumpled
cube D and having a topologically equivalent wild set. Given D,
locate an n-cell B in D with B ∩BdD = X, and consider any cell-like
decomposition G of Sn whose nondegenerate elements are subsets of B,
each of which meets BdB in a single point of X. Let NG denote the
union of those nondegenerate elements. In order to be truly effective,
assume that there exists at least one loop γ in IntB − NG which is
homotopically essential in Sn −NG. Let

πG : Sn −→ Sn/G

denote the decomposition map. Since

πG(NG) ⊂ πG(BdB)

and
πG | BdB

is one-to-one, Sn/G is finite-dimensional. Often, G will be shrinkable
and Sn/G will be homeomorphic to Sn; this can be ensured by
imposing additional restrictions on G. If shrinkability fails, all of
the relevant data and examples in higher dimensions can be obtained.
When G is shrinkable, set C = πG(D). It is a crumpled cube since
πG | BdC is one-to-one; moreover, the function (πG)

−1 restricts to a
homeomorphism of BdC onto BdD. In order to see that (C,D, h) ∈
Wn, note that (πG)

−1 | πG(C − IntB) extends to a map

fh : C −→ D

such that
fh(πG(IntB)) ⊂ IntB,

just as in the proof of Theorem 3.2. The special loop γ has an image
under πG that cannot be shrunk in IntC; however, fhπG(γ) ⊂ IntB
must be contractible in IntD.

Theorem 5.8 suggests that there is no maximal element in the
“strictly wilder than” partial ordering. We have not established that
fact. However, we do have the following corollaries.
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Corollary 5.10. Let C denote a crumpled n-cube such that π1(IntC)
is finitely generated. Then, C is not a maximal element in the “strictly
wilder than” partial ordering.

Proof. By Theorem 5.8, there exist a crumpled n-cube C̃ and a

homeomorphism h such that (C̃, C, h) ∈ Wn and π1(Int C̃) is a non-
trivial free product G ∗ π1(IntC). Hence, by Grushko’s theorem, the

number of generators of π1(Int C̃) must be greater than the rank of

π1(IntC); thus, C̃ must be strictly wilder than C. �

Corollary 5.11. Let C denote a crumpled n-cube such that π1(IntC)
is a simple group. Then, C is not a maximal element in the “strictly
wilder than” partial ordering.

Proof. Again, the construction of Theorem 5.8 provides a crumpled

n-cube C̃ at least as wild as C, the fundamental group of which is a non-

trivial free product. Here, C cannot be at least as wild as C̃; there can

be no epimorphism of π1(IntC) to the non-simple group π1(Int C̃). �

Corollary 5.12. If C is a crumpled n-cube such that π1(IntC) is a
torsion group, then C is not a maximal element in the “strictly wilder
than” partial ordering.

The reader may confirm the existence of infinite families totally
ordered under the “strictly wilder than” relation.

The n-cell Bn is the unique minimal element in the partial ordering
on the collection of all closed-n-cell complements.

Theorem 5.13. Every non-trivial crumpled n-cube is strictly wilder
than the n-cell Bn.

Proof. That any crumpled n-cube C is at least as wild as n-cell B
was established in Theorem 3.2. It suffices to show that (Bn, C,H) is
never in Wn, no matter which homeomorphism

H : BdBn −→ BdC

is under consideration. The empty set is a homotopy taming set for Bn.
If (Bn, C,H) ∈ Wn, then, by Theorem 3.8, ∅ is also a homotopy taming
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set for C, in other words, IntC is 1-ULC. That can only occur when C
is an n-cell. �

The results shown below are direct applications of Corollary 3.19
and Theorem 3.20.

Theorem 5.14. If a closed n-cell complement C is locally flat modulo
a wild set, a closed n-cell complement D is locally flat modulo a tame
set and C is at least as wild as D, then C is strictly wilder than D.

Theorem 5.15. If a crumpled 3-cube C is at least as wild as another
crumpled 3-cube D and C has more non-piercing points than D, then C
is strictly wilder than D.

We conclude this section with an open question.

Question 5.16. Are there any maximal elements in the partial order
constructed by “strictly wilder than?”

6. Sewings of crumpled cubes. The triple (C,D, h) ∈ Wn auto-
matically gives rise to a sewing of the two crumpled cubes by identify-
ing each point x of BdC with the point h(x) on BdD. The associated
sewing space is denoted C ∪h D. It may be viewed as a decomposi-
tion space arising from a cell-like decomposition of Sn into points and
the fiber arcs of an n-dimensional annulus. This section focuses on
the interplay between (C,D, h) being in Wn and the sewings h which
yield Sn.

Theorem 6.1. Suppose (C,D, h) ∈ W3, that C
∗ is another crumpled

3-cube and
θ : BdC −→ BdC∗

is a homeomorphism such that C ∪θ C
∗ = S3. Then, D∪θh−1 C∗ = S3.

Proof. By Eaton’s characterization of the sewings of crumpled 3-
cubes that yield S3 [13], C and C∗ have homotopy taming sets T and
T ∗, respectively, such that θ(T ) ∩ T ∗ = ∅. Then, h(T ) is a homotopy
taming set for D, and clearly, θh−1(h(T )) ∩ T ∗ = ∅. Hence, again
by [13], D ∪θh−1 C∗ = S3. �
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The same argument fails in higher-dimensional settings since the ho-
motopy taming set mismatch feature is a sufficient, but not a necessary,
condition for a sewing of crumpled cubes to yield Sn.

We will use the following controlled homotopy extension theorem.

Theorem 6.2. For each ϵ > 0, there exists a δ > 0 such that, given
any map

f : X −→ Z

of a normal space to Z and any map

FA : A −→ Z

defined on a closed subset A of X which is δ-close to f | A, then FA

admits a continuous extension

F : X −→ Z

which is ϵ-close to f .

Proof. Choose a δ > 0 for which any two δ-close maps are ϵ-
homotopic and then reuse the motion control aspect of the proof that
standard flattenings exist. �

Theorem 6.3. Suppose (C,D, h) ∈ Wn, n > 4, that C∗ is another
crumpled n-cube and

θ : BdC −→ BdC∗

is a homeomorphism such that C∪θC
∗ = Sn. Then, D∪θh−1 C∗ = Sn.

Proof. Since
Σ = D ∪θh−1 C∗

is the cell-like image of Sn, by Edwards’ cell-like approximation theo-
rem [14], or [9], it suffices to prove that this sewing space satisfies the
disjoint disks property. In order to begin the process, consider maps

ψ1, ψ2 : I2 −→ Σ.

We will produce approximating maps with disjoint images in six steps;
the only non-routine step, where the hypothesis that C ∪θ C

∗ = Sn

comes into play, is the final one.
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Step 1. Approximation to make the preimages Z1, Z2 of BdD =
BdC∗ one-dimensional. Generically, for e ∈ {1, 2}, Ze = ψ−1

e (BdD)
“ought to be” one-dimensional. If not, pushing certain points one
at a time into Σ − BdD, subject to convergence controls, we can
readily modify ψe slightly so that the new map (still called ψe) sends
a countable, dense subset of I2 to Σ − BdD, which ensures one-
dimensionality.

Step 2. Approximation to make images of Z1, Z2 disjoint, 1-LCC
subsets of D and C∗. Let T and T ∗ denote σ-compact, homotopy
taming sets for D and C∗, respectively. According to [6], T and T ∗

can be taken to have dimension at most 1. Set Xe = ψ−1
e (D) and

Ye = ψ−1
e (C∗), and note that Ze = Xe ∩ Ye. Approximate each ψe | Ze

by an embedding
λe : Ze −→ BdD

such that λ1 and λ2 have disjoint images in BdD − (T ∪ hθ−1(T ∗)).
Require λe to be so close to ψe | Ze that, by the controlled homotopy
extension theorem, λe extends to a map

ψ′
e : I

2 −→ Σ

close to ψe. This must be done in two separate operations, one
extending λe to an approximation of

ψe | Xe : Xe −→ D,

and the other extending λe to an approximation of

ψe | Ye : Ye −→ C∗.

It should be clear that λe(Ze) = ψ′
e(Ze) is a 1-LCC subset of each

crumpled cube; for instance, since T is a homotopy taming set for D,
any map I2 → D can be approximated by a map

I2 −→ T ∪ IntD,

the image of which avoids λe(Ze). It may be worth observing that,
unfortunately, Ze is not the complete preimage of BdD = BdC∗

under ψ′
e.

Step 3. Approximation to make the image of each Ze disjoint from
the other singular disk. This step uses properties of homotopy taming
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sets. The maps

ψ′
e | Xe : Xe −→ D and ψ′

e | Ye : Ye −→ C∗

can be approximated, fixing ψ′
e | Ze by maps

ψ∗
e : Xe ∪ Ye −→ Σ

such that

ψ∗
e(Xe − Ze) ⊂ T ∪ IntD and ψ∗

e(Ye − Ze) ⊂ T ∗ ∪ IntC∗.

It follows that

ψ∗
1(Z1) ∩ ψ∗

2(I
2) = ∅ = ψ∗

1(I
2) ∩ ψ∗

2(Z2).

Although this is all we shall discuss explicitly here on this effect, in
successive steps, we impose controls for maintaining this disjointness
feature.

Step 4. Approximation to make preimages of BdD in I2 − Ze zero-
dimensional. This is a standard operation. Working in D and C∗

separately, we use the fact that the boundary is 0-LCC in the crumpled
cube to approximate ψ∗

e | Xe − Ze and ψ∗
e | Ye − Ze by maps

Ψ∗
1,Ψ

∗
2 : I2 −→ Σ

which put the 1-skeleta of systems of finer and finer triangulations of
the respective domains into the interiors of the relevant crumpled cubes.

Step 5. Covering the preimage of BdD in I2−Ze by a null sequence
of pairwise disjoint disks. Set Pe = (ψ∗

e)
−1(BdD)−Ze, and express it as

a countable union of compact, zero-dimensional sets K1,K2, . . . . Cover
K1 by a finite collection ξ1e , . . . , ξ

k
e of small disks (discussed further in

the next step) in I2 − Ze, whose boundaries miss Pe. Then, cover the
part of K2 not covered by the ξje by a finite collection of much smaller
disks. The latter should be pairwise disjoint and disjoint from the first
collection. Continue in the same manner.

Step 6. Approximation to make the intersection of singular disks
disjoint. The heart of the matter is to make the intersections of those
disks disjoint from BdD = BdC∗. Let

fh : C −→ D
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be a map associated with (C,D, h) being in Wn. Extend fh to a map

Fh : C ∪θ C
∗ −→ Σ = D ∪θh−1 C∗

via the identity on C∗.

The idea is to cover the preimages of BdD by null sequences of
pairwise disjoint disks ξje in I2 −Ze, as in Step 5, to approximately lift
(with respect to Fh) the restriction of Ψ∗

e on those disks to maps into

C ∪θ C
∗ = Sn,

to adjust the lifted maps on these disks to pairwise disjoint embeddings
in Sn and to apply Fh.

Lifting singular disks mapped into C∗ is no problem since Fh restricts
to a homeomorphism over C∗. In this paragraph, we describe how to
approximately lift certain singular disks mapped into D. Given ϵ > 0,
choose δ > 0 such that subsets A of C ∪θ C

∗ having diameter < δ are
mapped via Fh to sets of diameter < ϵ/2. Next, identify δ′ > 0 for
which loops in

C ⊂ C ∪θ C
∗

of diameter < δ′ bound singular disks in C of diameter < δ. Build an
open cover U1, . . . , Uk of BdD in D by connected open subsets of D
that meet BdD in connected sets and for which each (Fh | C)−1(Ui)
has diameter < δ′. Then, find a compact neighborhood Q of BdD in
D covered by the Ui, and let η ∈ (0, ϵ/4) be a Lebesgue number for
this cover of Q. By Lemma 3.5 and this choice of η, each η-small loop
γ in IntD∩Q is homotopic in the intersection of IntD with one of the
Ui to the image of a loop γ′ in IntC, and γ′ bounds a singular disk
ξ′ in C whose image under Fh has diameter < ϵ/2. We construct null
sequences

ξje ⊂ I2 − Ze, j = 1, 2, . . . ,

of pairwise disjoint disks, each of diameter < η, whose interiors cover
the zero-dimensional set Pe. We split each ξje into an annulus Aj

e and
disk Ej

e , the union of which equals ξje and intersection of which equals
∂Ej

e ⊂ ∂Aj
e. From the construction just described, we see that each

Ψ∗
e | I2 − ∪jInt ξ

j
e

extends over the various ξje to Fhν
j
e on Ej

e and as a short homotopy in
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Σ− BdD on Aj
e, where

νje : Ej
e −→ C ∪θ C

∗.

Controls on sizes of ξje , A
j
e, E

j
e and shortness of the homotopy on Aj

e

must be increasingly stringent as j → ∞. Denote the new maps as Ψ′
1

and Ψ′
2.

It is a simple matter to perform a general position adjustment in

Sn = C ∪θ C
∗

to make the images of the various Ej
e under ν1 and ν2 pairwise disjoint,

where ν1 and ν2 denote the obvious union of maps, that is, approximate
these νe by ν′e, fixing ∪j∂E

j
e so that

ν′1(∪jE
j
1) ∩ ν′2(∪jE

j
2) = ∅.

Then, the maps
Ψe : I

2 −→ Σ

are defined as Fhν
′
e on ∪jE

j
e and as Ψ′

e elsewhere satisfies Ψ1(I
2) ∩

Ψ2(I
2) ⊂ IntD, since Fh is one-to-one over C∗. A final general po-

sition adjustment affecting only points sent into IntD eliminates all
intersections for the images of Ψ1,Ψ2. �

Corollary 6.4. If (C1, D1, h1), (C2, D2, h2) ∈ Wn and

θ : BdC1 −→ BdC2

is a sewing such that C1 ∪θ C2 = Sn, then

D1 ∪h2θh
−1
1
D2 = Sn.

Theorem 6.5. If (C,D, h) ∈ Wn and C ∪h D = Sn, n ≥ 5, then D
contains disjoint homotopy taming sets T and T ′.

Proof. For the proof, we regard D as embedded in Sn via its position
as a summand in the sewing space C ∪h D = Sn. The hypothesis that
(C,D, h) ∈ Wn means that there is a retraction

r : Sn −→ D
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such that r−1(BdD) = BdD; simply apply the map

fh : C −→ D

associated with h to the other summand C of the sewing space.

It suffices to show that any two maps

µ1, µ2 : I2 −→ D

can be approximated by maps with disjoint images. Such maps,
regarded as maps into Sn, can be approximated by maps

µ′
1, µ

′
2 : I2 −→ Sn

with disjoint images. If these approximations protrude only slightly
into IntC, rµ′

1 and rµ′
2 will be close to µ1 and µ2, respectively. Their

images intersect only at points of IntD; thus, a final adjustment
over IntD eliminates all intersections, similarly as in the proof of
Theorem 6.3. �

Corollary 6.6. If (C,D, h) ∈ Wn and C ∪1 C = Sn, n ≥ 5, then

D ∪1 D = Sn.

Corollary 6.7. Suppose that (C,D, h) and (D,C, h−1) ∈ Wn. Then,
C ∪h D = Sn if and only if h satisfies the mismatch property.

Proof. It is well known [5, 11] that

C ∪h D = Sn,

if h satisfies the mismatch property. The reverse implication follows
from an argument similar to that given here for Theorem 6.5, due to
the existence of retractions of Sn = C ∪h D to both C and D that are
one-to-one over the boundaries. �

Corollary 6.8. Suppose that G is a usc decomposition of Sn such that,
for any p ∈ π(NG) and open set U containing p, there is an open set V
such that

p ∈ V ⊂ U

and BdV is an (n− 1)-sphere which misses π(HG); suppose that

(V,Cl (Sn − V ),1)
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and
(Cl (Sn − V ), V,1)

are in Wn. Then, G is shrinkable and Sn/G is homeomorphic to Sn.

Proof. Apply [17, main theorem] and Corollary 6.7. �
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