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ON FACTORABLE RINGS

ANDREW J. HETZEL AND ASHLEY M. LAWSON

ABSTRACT. In this short note, we introduce the notions
of “factorable ring” and “fully factorable ring” for commu-
tative rings based upon the notion of “factorable domain”
advanced by Anderson, Kim and Park [1]. Using a novel
sufficient condition for an ideal to be a product of nonfac-
torable ideals, we classify the Artinian rings that are (fully)
factorable. We also explore the intersection of the class of
factorable rings with the class of Noetherian rings. An ana-
logue for multiplication rings of a characterization result due
to Butts [3] concerning when such a unique factorization
occurs is provided.

1. Introduction. Throughout this note, all rings are commutative
with 1 ̸= 0. In an effort to bridge the gap between the definitions
of “prime ideal” in the contexts of classical algebraic number theory
and commutative ring theory, respectively, in 1964, Butts advanced
the concept of a “nonfactorable ideal” [3]. Specifically, a nonfactorable
ideal I of a commutative ring R is a nonzero, proper ideal of R such
that, whenever I = JK for some ideals J and K of R, it must be the
case that either J = R orK = R, see also [4]. Butts then demonstrated
that R is a Dedekind domain if and only if R is a domain for which every
nonzero, proper ideal of R can be factored uniquely (up to the order
of the factors) as a product of nonfactorable ideals of R [3, Theorem].
Capitalizing upon the value of this notion, in 2002, Anderson, Kim
and Park introduced and explored factorable domains, that is, domains
with the property that every nonzero, proper ideal of the domain is
a product of nonfactorable ideals of the domain, cf., [1, Definition
3]). In particular, they expanded Butts’s characterization to include
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factorable Prüfer domains, as well [1, Theorem 5], and extended their
explorations to the context of star operations on a domain.

Here, we wish to go beyond the context of integral domains to
investigate the phenomenon of factorization of ideals as a product of
nonfactorable ideals in arbitrary commutative rings. To this end, we
develop some very useful results in Proposition 2.2 and the related
Theorem 2.7. Utilizing these results, we establish that all SPIRs
are factorable (Corollary 2.4) and create a characterization of which
Artinian rings are (fully) factorable (Theorem 2.11). As a corollary
to the former, we easily have a natural analogue for multiplication
rings of the aforementioned result of Butts (Corollary 2.5). We further
establish that every local Noetherian ring is factorable (Theorem 2.13).
We conclude with examples to show the lack of a general relationship
between the length of a (reduced) primary decomposition and the
length of a nonfactorable ideal decomposition for Noetherian domains.

For the sake of the requisite background, we provide the following
definitions. A multiplication ring R is a ring satisfying the property
that, for any pair of ideals I ⊆ J of R, there exists an ideal K of R
for which I = JK. In fact, a domain is a multiplication ring if and
only if it is a Dedekind domain. A ZPI-ring is a ring such that every
nonzero, proper ideal of the ring is uniquely expressible (up to order)
as a product of prime ideals of the ring. It is easy to see that every
ZPI-ring is a multiplication ring. By eliminating the requirement of
uniqueness and enlarging the relevant set of ideals to include the zero
ideal, we have the associated notion of a general ZPI-ring. A special
principal ideal ring (SPIR) is a local principal ideal ring with nilpotent
maximal ideal. Note that SPIRs can be characterized as those local
rings for which every ideal of the ring is a power of the unique maximal
ideal of the ring (sometimes referred to as “special primary rings,” or
SPRs, in the literature).

Any unexplained terminology is standard, as in [2, 5, 6].

2. Results. We begin with the analogous definition of “factorable
domain” for commutative rings, finding a slight variation is afforded in
this more general context.

Definition 2.1. Let R be a ring. We say that R is factorable if
every nonzero, proper ideal of R can be expressed as a product of
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nonfactorable ideals of R. We say that R is fully factorable if R
is factorable and the zero ideal can be expressed as a product of
nonfactorable ideals of R.

Before exploring various types of (fully) factorable rings, it is critical
to provide some sufficient conditions for an ideal to be a product
of nonfactorable ideals. Along these lines, Proposition 2.2 not only
provides for a wealth of nonfactorable ideals but will be used to
establish our central result in this endeavor, Theorem 2.7.

Proposition 2.2. Let R be a ring, M a maximal ideal of R and I an
ideal of R such that M2 ( I ⊆ M . Then I is nonfactorable.

Proof. Suppose M2 ( I ⊆ M , and put I = JK with J and K
proper ideals of R. Note that J ⊆ M or K ⊆ M . Without loss of
generality, suppose that J ⊆ M . Let N be a maximal ideal of R such
that K ⊆ N . Thus, I ⊆ JK ⊆ MN . Observe that M2 ( I ⊆ MN
implies M = N . However, this means that I ⊆ M2, a contradiction.
The result follows. �

Corollary 2.3. Every maximal ideal M of a ring R such that M2 ̸= M
is nonfactorable.

We are now able to provide through Corollaries 2.4 and 2.5 one of the
promised goals of this paper, the natural analogue for multiplication
rings of Butts’s characterization result regarding domains that exhibit a
uniqueness of ideal factorability in terms of nonfactorable ideals. Note
that, in Corollary 2.4, a nontrivial SPIR refers to an SPIR that is not
a field.

Corollary 2.4. Let R be an SPIR, respectively, a nontrivial SPIR.
Then R is factorable, respectively, fully factorable. Moreover, every
nonzero, proper ideal of R is uniquely a product of nonfactorable ideals
of R.

Proof. Let R be an SPIR and M the maximal ideal of R. Since
fields are vacuously factorable, we may assume that R is not a field.
Suppose that I is a proper ideal of R. Then, I = Mn for some n ∈ N.
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Since M2 ̸= M in R, Corollary 2.3 guarantees that I is a product
of nonfactorable ideals, whence R is fully factorable. The “moreover”
statement follows from the fact that M is clearly the only nonfactorable
ideal of R and, if M i ̸= 0, then M i = M j implies i = j. �

Corollary 2.5. Let R be a multiplication ring. Then R is a ZPI-ring
if and only if every nonzero, proper ideal of R is uniquely (up to the
order of the factors) a product of nonfactorable ideals of R.

Proof. Observe that ZPI-rings are characterized as either Dedekind
domains or SPIRs [5, Corollary 39.3]. As such, the forward direction
readily follows from Corollary 2.4 and the fact that the nonfactorable
ideals in a Dedekind domain, that is not a field, are precisely the
maximal ideals.

Conversely, suppose that R is a multiplication ring such that every
nonzero, proper ideal of R is uniquely (up to the order of the factors)
a product of nonfactorable ideals of R. Let I be a nonfactorable ideal
of R, and let M be a maximal ideal of R containing I. Then, there
exists an ideal J of R for which I = JM . However, this would mean
that J = R, and so I = M . Therefore, every nonfactorable ideal
of R must be maximal, whence the hypothesis guarantees that R is a
ZPI-ring. �

In light of Corollary 2.5, it is curious to note that a general ZPI-
ring need not even be factorable, the simplest example being the direct
product Z2 × Z2; however, Corollary 2.10 will give a characterization
of which general ZPI-rings are factorable. In addition, Example 2.6
reveals that Corollary 2.5 is best possible, in the sense that the “mul-
tiplication ring” assumption may not be dispensed with.

Example 2.6. There exists a ring R for which every nonzero, proper
ideal of R is uniquely (up to the order of the factors) a product of non-
factorable ideals of R, but R is not a ZPI-ring. Moreover, it may be
arranged that R is quasilocal and zero-dimensional. Let k be a field and
{Xi}i∈I a collection of (commuting, algebraically independent) indeter-
minates over k, where |I| > 1. Put R = k[{Xi}i∈I ]/M

2, where M =
({Xi}i∈I). Then every nonzero, proper ideal of R is a nonfactorable
ideal of R, see Proposition 2.2, and, moreover, is (trivially) uniquely a
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product of nonfactorable ideals of R. However, since |I| > 1, the ring
R is clearly not a ZPI-ring.

We now provide a valuable new tool for demonstrating that certain
ideals are products of nonfactorable ideals.

Theorem 2.7. Let R be a ring and I a proper ideal of R such that
Mn ( I for some natural number n ≥ 2 and maximal ideal M of R.
Then, I is a product of nonfactorable ideals of R.

Proof. We proceed by induction on n. The case of n = 2 is settled by
Proposition 2.2. Now, assume that a proper ideal J can be expressed
as a product of nonfactorable ideals of R whenever Mn−1 ( J for
some natural number n and some maximal ideal M . Let I be a proper
ideal of R and M a maximal ideal of R such that Mn ( I. If I
is a nonfactorable ideal, the result follows. Now suppose that I is
factorable. Then I = JK for some proper ideals J and K of R.
Note that, necessarily, Mn ( J ⊆ M and Mn ( K ⊆ M . Thus,
I = (J + Mn−1)(K + Mn−1), where Mn−1 ( J + Mn−1 ⊆ M and
Mn−1 ( K+Mn−1 ⊆ M . By the induction hypothesis, J+Mn−1 and
K +Mn−1 can be written as a product of nonfactorable ideals. Hence,
I can be written as a product of nonfactorable ideals. �

Corollary 2.8. Let R be a quasilocal ring with nonzero nilpotent
maximal ideal. Then R is fully factorable.

In order to make full use of Theorem 2.7 in this note, we also
require an understanding of when a finite direct product is factorable.
Proposition 2.9 does just that.

Proposition 2.9. Let R1, R2, . . . , Rn be rings with n ≥ 2. Put
R = R1 ×R2 × · · · ×Rn. Then the following are equivalent :

(i) R is fully factorable;
(ii) R is factorable;
(iii) each Ri is fully factorable.

Proof.

(i) ⇒ (ii). Trivial.
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(ii) ⇒ (iii). Suppose that R is factorable. Let I be a proper ideal of
Ri. Then

A = R1 ×R2 × · · · ×Ri−1 × I ×Ri+1 × · · · ×Rn

is a nonzero, proper ideal of R. Since R is factorable, A is a product
of nonfactorable ideals J1, J2, . . . , Jm of R. Then, for each k =
1, 2, . . . ,m, it is necessarily the case that

Jk = R1 ×R2 × · · · ×Ri−1 ×Hk ×Ri+1 × · · · ×Rn

for some ideal Hk of Ri. Moreover, I = H1H2 · · · Hm and each Hk is
nonfactorable in Ri since each Jk is nonfactorable in R. Thus, Ri is
fully factorable.

(iii) ⇒ (i). Suppose that each Ri is fully factorable. Let I1 × I2 ×
· · ·×In be a proper ideal of R. By supposition, each It that is a proper
ideal of Rt is a product of nonfactorable ideals of Rt. Thus, for each
such It, there exist nonfactorable ideals J1, J2, . . . , Jm of Rt such that
It = J1J2 · · · Jm. As such, I1 × I2 × · · · × In is a product of ideals of R
of the form

R1 ×R2 × · · · ×Ri−1 × J ×Ri+1 × · · · ×Rn,

where J is a nonfactorable ideal of Ri . However, each

R1 ×R2 × · · · ×Ri−1 × J ×Ri+1 × · · · ×Rn

is nonfactorable since each J is nonfactorable. Therefore, R is fully
factorable. �

Corollary 2.10. Let R be a general ZPI-ring. Then R is factorable if
and only if either

(i) R is a Dedekind domain, or
(ii) R is (isomorphic to) a finite direct product of nontrivial SPIRs.

Moreover, R is fully factorable if and only if condition (ii) holds.

Proof. By [5, Theorem 39.2], R is a general ZPI-ring if and only
if R is (isomorphic to) a finite direct product of Dedekind domains
and SPIRs. However, amongst Dedekind domains and SPIRs, only
nontrivial SPIRs are fully factorable, cf., Corollary 2.4. The result
then follows from Proposition 2.9. �
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We now give the promised characterization of when an Artinian ring
is (fully) factorable.

Theorem 2.11. Let R be an Artinian ring with maximal ideals M1,
M2, . . . ,Mn. Then, R is fully factorable if and only if Mα1

1 Mα2
2 · · ·

Mαn
n = 0 implies αi > 1 for each i. Moreover, this condition on the

maximal ideals of R characterizes the nontrivial Artinian rings that are
factorable.

Proof. If R is local (n = 1), then Corollary 2.8 provides for the
desired characterization (in fact, for nontrivial, local Artinian rings,
the corresponding condition on the maximal ideal is automatic). Thus,
we may assume that n ≥ 2. By the Chinese remainder theorem, it is
the case that

R ∼= R/Mα1
1 ×R/Mα2

2 × · · · ×R/Mαn
n ,

where Mα1
1 Mα2

2 · · · Mαn
n = 0. If R is (fully) factorable, then Proposi-

tion 2.9 asserts that each R/Mαi
i is fully factorable, and thus, necessar-

ily, each αi > 1. Conversely, suppose that each αi > 1. It then follows
from Theorem 2.7 that each R/Mαi

i is fully factorable. Another appli-
cation of Proposition 2.9 yields that R itself is (fully) factorable. �

In light of Theorem 2.11, it is then natural to ask about the more
general question of which Noetherian rings are factorable. While
clearly not all Noetherian rings are factorable, for example, Z2 × Z2,
Theorem 2.13 provides for some large classes of Noetherian rings
which are (although it should be noted that Anderson, Kim, and
Park already observed that every Noetherian domain is factorable [1,
page 4116]). Before presenting Theorem 2.13, we pause to argue in
Proposition 2.12 that, for finitely generated ideals in general, testing
their nonfactorability can be accomplished even if one restricts to the
class of finitely generated ideals.

Proposition 2.12. Let I be a finitely generated ideal of the ring R.
Then I is nonfactorable if and only if, whenever J and K are finitely
generated ideals of R for which I = JK, then J = R or K = R.

Proof. The “only if” direction is trivial. Conversely, suppose that I
is a finitely generated ideal of the ring R and, whenever I = JK, where
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J and K are finitely generated ideals of R, it must be the case that
J = R or K = R. Put I = AB, where A and B are ideals of R. Since I
is finitely generated, I = (i1, . . . , in) for some i1, i2, . . . , in ∈ I. Thus,
there must exist a function α:{1, 2, . . . , n} → N, elements as,r ∈ A,
1 ≤ s ≤ n, 1 ≤ r ≤ α(s), and elements bs,r ∈ B, 1 ≤ s ≤ n,
1 ≤ r ≤ α(s), such that

is =

α(s)∑
r=1

as,rbs,r for each s = 1, 2, . . . , n.

Therefore, I = ({as,r})({bs,r}). By assumption, either ({as,r}) = R
or ({bs,r}) = R. As such, either A = R or B = R. Hence, I is
nonfactorable. �

Theorem 2.13. Any local Noetherian ring or Noetherian domain is
factorable.

Proof. Let R either be a local Noetherian ring or Noetherian domain.
Let I be a nonzero, proper ideal of R. Suppose that I cannot be
expressed as a product of nonfactorable ideals. In particular, I itself
cannot be nonfactorable. Thus, there exist proper ideals J1 and K1

of R such that I = J1K1. Now, at least one of J1 or K1 cannot
be expressed as a product of nonfactorable ideals. Without loss of
generality, suppose it is J1. Then there exist proper ideals J2 and
K2 of R such that J1 = J2K2. Repeating this process, a chain
I ⊆ J1 ⊆ J2 ⊆ · · · of ideals of R can be created. In order to see
that each containment is proper suppose that there exists an i such
that Ji = Ji+1. Since Ji = Ji+1Ki+1, it is the case that Ji = JiKi+1.
If R is a local Noetherian ring, Nakayama’s lemma implies that Ji = 0,
a contradiction. If R is a Noetherian domain, Ki+1 = R, also a
contradiction. However, R cannot have a properly ascending chain
of ideals. Hence, I is a product of nonfactorable ideals, and the result
is proved. �

With Theorem 2.13 in view, it bears mentioning that quasilocal
domains, in general, are not factorable; in particular, any quasilocal
domain of the form D + XL[[X]], where D is a quasilocal subring of
the field L such that D itself is not a field, is not factorable by [1,
Corollary 8].
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We conclude this paper by comparing the factorization of an ideal in
terms of nonfactorable ideals with the classical (reduced) decomposition
of the ideal in terms of primary ideals in the context of a Noetherian
domain. Specifically, Example 2.14 reveals that there is no relationship,
in general, between the number of ideals required for the former type
of factorization (dubbed “nonfactorable length” here) and the number
of ideals required for the latter type of factorization (dubbed “primary
length” here).

Example 2.14. Noetherian domains R and S exist such that, for any
natural number n, there exists a primary ideal ofR with a nonfactorable
length of n, and there exists a nonfactorable ideal of S with a primary
length of n.

Let R be a nontrivial DVR with maximal ideal M . Then, the ideal
Mn is a primary ideal of R (as every proper ideal of R is primary);
however, Mn has a nonfactorable length of n as R is a Dedekind
domain. Hence, R has uniqueness of such factorizations.

Put
S = k[X1, X2, . . . , Xn+1],

where k is a field and X1, X2, . . . , Xn+1 are (commuting, algebraically
independent) indeterminates over k. Put

Pi = (Xi, Xn+1)

for i = 1, 2, . . . , n, and

I =
n∩

i=1

Pi.

Since {Pi}ni=1 is a set of pairwise incomparable prime ideals of S,
it follows that I has a primary length of n. We claim that I is
nonfactorable. To this end, suppose that I = JK, where J and K
are ideals of S. Note that if J ⊆ I, then I = IK, whence K = S, as
desired. Similarly, if K ⊆ I, then J = S, as desired.

Assume then that J * I and K * I. Reorder the Pis, if necessary,
so that

J ⊆ Pi for i = 1, 2, . . . ,m < n
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and

J * Pi for i = m+ 1,m+ 2, . . . , n.

Then, K ⊆ Pi for i = m+ 1,m+ 2, . . . , n. As such,

I ⊆ (P1 ∩ P2 ∩ · · · ∩ Pm)(Pm+1 ∩ Pm+2 ∩ · · · ∩ Pn) ⊆ I,

and thus,

I = (P1 ∩ P2 ∩ · · · ∩ Pm)(Pm+1 ∩ Pm+2 ∩ · · · ∩ Pn).

However, this is a contradiction since Xn+1 ∈ I, and

Xn+1 ̸∈ (P1 ∩ P2 ∩ · · · ∩ Pm)(Pm+1 ∩ Pm+2 ∩ · · · ∩ Pn).

The claim is thus proved. �
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