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THE INTEGRAL TRACE FORM OF CYCLIC
EXTENSIONS OF ODD PRIME DEGREE

EVERTON LUIZ DE OLIVEIRA, J. CARMELO INTERLANDO,

TRAJANO PIRES DA NÓBREGA NETO
AND JOSÉ OTHON DANTAS LOPES

ABSTRACT. Let L/Q be a cyclic extension of degree p,
where p is an odd unramified prime in L/Q. An explicit de-
scription of the integral trace form TrL/Q(x

2)|OL
, where OL

is the ring of algebraic integers of L, is given, and an appli-
cation to finding the minima of certain algebraic lattices is
presented.

1. Introduction. The integral trace form associated to a number
field F is the integral quadratic form given by TrF/Q(xx) | OF , where
OF is the ring of algebraic integers of F . The book by Conner and
Perlis [4] provides a thorough account on the subject. The papers by
Scharlau [14] and Epkenhans [6] contain relevant extensions of two
results by Conner and Perlis concerning, respectively, Witt equivalence
of nondegenerate forms of number fields and existence of a field having
a prescribed quadratic form. Both papers also give an account of sev-
eral relevant developments on the subject. Particularly noteworthy
is the extensive work of Bayer on the trace form in cyclotomic fields
in connection with knot theory, see [1, 2, 3], for example. More
recently, a description of the trace form in cyclotomic fields, amenable
to computations, was given in [8].

One of the important applications of the trace form is to the study
of lattices associated to number fields [5, pages 224–225]: Let F/Q be
a Galois extension, σ1, . . . , σn the automorphisms of F , and σF : OF
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→ Rn the canonical embedding ofOF in Rn. IfM is a free Z-submodule
of OF of rank n, then σF (M) is an n-dimensional lattice [13, page 56]
whose minimum is given by d2 = min{|σF (x)|2 | x ∈ M, x ̸= 0}, where

|σF (x)|2 =

{
TrF/Q(x

2) if F is totally real;

(1/2) TrF/Q(xx) if F is totally complex,

see [5, page 225]. The center density of σF (M) is equal to

(1.1) δ =
(d/2)n√

|Disc (F )|[OF : M]
,

where Disc (F ) denotes the discriminant of F regarded as an extension
of Q [13, page 57].

Motivated by the above application, in particular, the determination
of lattice minima, the objective of the present work is to find an explicit
description of the integral trace form of certain number fields L. For
simplicity, the focus will be on tamely ramified cyclic extensions L/Q of
odd prime degree which possess a normal integral basis. In Section 2,
after relevant properties of Abelian extensions are briefly reviewed,
the main result, namely, the trace form, is derived. In Section 3, the
calculation of the minimum of the form restricted to a submodule of
OL is presented along with applications. These include the construction
of three-, five- and seven-dimensional lattices whose packing densities
can be made arbitrarily close to optimum in those dimensions. Lastly,
Section 4 contains the conclusions.

2. Cyclic extensions of Q of degree p. Let L/Q be a cyclic
extension of odd prime degree p and conductor n where p is unramified
in L/Q, that is, L/Q is tamely ramified. The conductor of L is of
the form n = p1 · · · ps, where p1, . . . , ps are distinct odd primes with
pj ≡ 1 (mod p), j = 1, . . . , s and Disc (L) = np−1, see [4, page 186].
Let ζn ∈ C be a primitive nth root of unity and K = Q(ζn). If θ is
a generator of Gal (L/Q) and t = TrK/L(ζn), then L can be expressed

as L = Q(t), and {t, θ(t), . . . , θp−1(t)} is an integral basis for L, see
[11, page 166]. This statement is the Hilbert-Speiser theorem, namely,
if L is an absolute Abelian field, then L/Q has a normal integral basis
if and only if L/Q is tamely ramified [11, page 187]. This, in turn,
is a special case of Leopoldt’s theorem [9, 10]: If G = Gal(L/Q) and
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AL/Q = {α ∈ Q[G ] | αOL ⊂ OL} (associated order of L/Q), then
OL = AL/Q · w for a suitable w ∈ OL.

Throughout this paper, G denotes Gal(K/Q) and H the subgroup
of G that fixes L. Henceforth, the elements of G and H will be
represented as s-tuples in Z×

p1
×· · ·×Z×

ps
, where Z×

pj
is the multiplicative

group of integers modulo pj , j = 1, . . . , s.

Lemma 2.1. Let x = (x1, . . . , xs) ∈ H, 1 ≤ q < s, and let Π : H →
Z×
pj1

×· · ·×Z×
pjq

be the projection defined by Π(x) = (xj1 , . . . , xjq ), with

1 ≤ j1 < · · · < jq ≤ s. Then,

|Ker Π| =
∏r

ℓ=1(piℓ − 1)

p
,

where 1 ≤ i1 < · · · < ir ≤ s are the coordinates of x distinct from
j1, . . . , jq.

Proof. Let Z = Z×
pj1

× · · · × Z×
pjq

and Zc = Z×
pi1

× · · · × Z×
pir

. Then,

H ≤ Π(H)× Zc ≤ G.

The index of H in G equals p, that is, either Π(H) × Zc = H or
Π(H) × Zc = G. The first equality cannot occur since, otherwise, H
would have Zc as a factor, which contradicts the hypothesis that the
conductor of L equals n. Hence, Π is a surjecive homomorphism, that
is, H/KerΠ ∼= Z. Therefore,

|KerΠ| = ϕ(n)/p

(pj1 − 1) · · · (pjq − 1)
=

∏r
ℓ=1(piℓ − 1)

p
. �

Given z ∈ Π(H), we have

Π−1(z) = x0(KerΠ)

where z = Π(x0). Hence, |Π−1(z)| = |KerΠ|. Henceforth, let qj = pj
− 1 for j = 1, . . . , s, and

Ai1,...,ir =
(pi1 − 1) · · · (pir − 1)

p
=

qi1 · · · qir
p

with 1 ≤ i1 < · · · < ir ≤ s.
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Theorem 2.2. Let θ be a generator of Gal (L/Q) and t = TrK/L(ζn).
Then,

TrL/Q(t · θk(t))

{
n− ((n− 1)/p) if k = 0;

−(n− 1)/p if k = 1, . . . , p− 1.

Proof. Let h = ϕ(n)/p, so that TrL/Q(t · θk(t)) = (1/h) TrK/Q(t ·
θk(t)). We now seek to evaluate the latter expression. We have θ =
σr | L for some σr ∈ G defined by σr(ζn) = ζrn. Hence,

t · θk(t) =
∑

x,y∈H

ζx+yrk

n .

Let x = (x1, . . . , xs), y = (y1, . . . , ys) ∈ H and r = (r1, . . . , rs) ∈ Z×
p1

×
· · · × Z×

ps
. Then,

TrK/Q(t · θk(t)) =
∑

x,y∈H

TrK/Q(ζ
x+yrk

p1
· · · ζx+yrk

ps
)

=
∑

x,y∈H

TrQ(ζp1 )/Q(ζ
x1+y1r

k
1

p1 ) · · ·TrQ(ζps )/Q(ζ
xs+ysr

k
s

ps ),

where

TrQ(ζpj )/Q(ζ
xj+yjr

k
j

pj ) =

{
pj − 1 if xj + yjr

k
j = 0;

−1 if xj + yjr
k
j ̸= 0,

for j = 1, . . . , s. The proof will be split into two cases, namely, k = 0
and 1 ≤ k ≤ p− 1.

Case (i). k = 0. Let x = (x1, . . . , xs) ∈ H. The extension L/Q
is totally real. Then, the complex conjugation automorphism of K
belongs to H; hence, y = (−x1, . . . ,−xs) ∈ H. In addition, y is the
only element of H such that xj + yj = 0 for j = 1, . . . , s. Hence,

TrQ(ζp1 )/Q(ζ
x1+y1
p1

) · · ·TrQ(ζps )/Q(ζ
xs+ys
ps

) = (p1 − 1) · · · (ps − 1) = ϕ(n),

and h = |H| summation terms in (2.1) are equal to ϕ(n). Thus, the
sum of these terms is equal to T0 = hϕ(n).
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By Lemma 2.1, for each 1 ≤ u ≤ s, there exist

Si1,...,iu = Ai1,...,iu −
∑

1≤ℓ1<···<ℓu−1≤u

Aiℓ1 ,...,iℓu−1
+ · · ·

+ (−1)u−1
u∑

ℓ=1

Aiℓ + (−1)u

elements y = (y1, . . . , ys) ∈ H such that yj + xj = 0 for each
j ̸= i1, . . . , iu and xiℓ + yiℓ ̸= 0 for each ℓ = 1, . . . , u. In this case,

TrQ(ζp1 )/Q(ζ
x1+y1
p1

) · · ·TrQ(ζps )/Q(ζ
xs+ys
ps

) =
(−1)uϕ(n)

qi1qi2 · · · qiu
.

Hence, the sum of these terms equals

Tu = (−1)uh
∑

i1<···<iu

ϕ(n)

qi1 · · · qiu
Si1,...,iu ,

which is equal to

(−1)uh

[
1

p

((
s

s− u

)
ϕ(n)− · · ·

+ (−1)u−1

(
s− (u− 1)

s− u

) ∑
i1<···<iu−1

ϕ(n)

qi1 · · · qiu−1

)

+ (−1)u
∑

i1<···<iu

ϕ(n)

qi1 · · · qiu

]
.

Therefore,

TrK/Q(t
2) = T0 + T1 + · · ·+ Ts

= h

[(
1 +

∑s
j=1(−1)j

(
s

s−j

)
p

)
ϕ(n) + · · ·

+

(
1−

(
1
0

)
p

) ∑
i1<···<is−1

ϕ(n)

qi1 . . . qis−1

+ 1

]
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= h

[(
1− 1

p

)(
ϕ(n) +

s∑
i1=1

ϕ(n)

qi1
+ · · ·+

∑
i1<···<is−1

ϕ(n)

qi1 . . . qis−1

)
+ 1

]

= h

[
(p− 1)(n− 1)

p
+ 1

]
.

Case (ii). k ̸= 0. As before, let x = (x1, . . . , xs) ∈ H. We claim
that x + yrk ̸= 0 for all y ∈ H. Indeed, if y ∈ H is such that
x + yrk = 0, then x = −yrk ∈ rkH since −1 ∈ H. On the other
hand, G/H ∼= Gal (L/Q). Hence, G = H ∪ σrH ∪ · · · ∪ σrp−1H, that
is, Z×

n = H ∪ rH ∪ · · · ∪ rp−1H is a union of disjoint cosets, whence
x /∈ H, a contradiction. Therefore, the sum T0 of the summation terms

TrQ(ζp1 )/Q(ζ
x1+y1r

k
1

p1 ) · · ·TrQ(ζps )/Q(ζ
xs+ysr

k
s

ps ) in (2.1) corresponding to

the pairs x, y ∈ H such that xj + yjr
k
j = 0 for all 1 ≤ j ≤ s is zero,

that is, T0 = 0.

Since −xr−k = (−x1r
−k
1 , . . . ,−xsr

−k
s ) ∈ Z×

p1
× · · · × Z×

ps
, it follows

from Lemma 2.1 that, for 1 ≤ u ≤ s, there exist

Si1,...,iu = Ai1,...,iu −
∑

1≤ℓ1<···<ℓu−1≤u

Aiℓ1 ,...,iℓu−1
+ · · ·+(−1)u−1

u∑
ℓ=1

Aiℓ

elements y = (y1, . . . , ys) ∈ H such that yj = −xjr
−k
j for all j ̸=

i1, . . . , iu and xiℓ + yiℓr
−k
iℓ

̸= 0 for all ℓ = 1, . . . , u. In this case, each
summation term in (2.1) equals

(−1)uϕ(n)

qi1qi2 · · · qiu
,

and their sum is given by

Tu = (−1)u
h

p

((
s

s− u

)
ϕ(n)−

(
s− 1

s− u

) s∑
i1=1

ϕ(n)

qi1
+ · · ·

+ (−1)u−1

(
s− (u− 1)

s− u

) ∑
i1<···<iu−1

ϕ(n)

qi1 · · · qiu−1

)
.

Therefore,

TrK/Q(t · θk(t)) = T0 + T1 + · · ·+ Ts
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=
h

p

[(
s∑

j=1

(−1)j
(

s

s− j

))
ϕ(n)+ · · · −

(
1

0

) ∑
i1<···<is−1

ϕ(n)

qi1 · · · qis−1

]

= −h

(
n− 1

p

)
. �

With notation as in Theorem 2.2, we can now state the main result
of the paper:

Corollary 2.3. Let x =
∑p−1

i=0 aiθ
i(t) be any element of the ring of

integers OL. Then,

(2.1) TrL/Q(x
2) = n ·

( p−1∑
i=0

a2i

)
− n− 1

p

( p−1∑
i=0

ai

)2

.

Proof. From the hypothesis,

x2 =

p−1∑
i,j=0

aiajθ
i(t)θj(t).

Since
TrL/Q(θ

i(t)θj(t)) = TrL/Q(tθ
i−j(t)),

we have

TrL/Q(x
2) =

p−1∑
i,j=0

aiaj TrL/Q(tθ
i−j(t))

=

p−1∑
i=0

a2i TrL/Q(t
2) +

p−1∑
i,j=0
i ̸=j

aiaj TrL/Q(tθ
i−j(t))

=

(
n− n− 1

p

)( p−1∑
i=0

a2i

)
− 2

(
n− 1

p

)( p−1∑
i,j=0
i<j

aiaj

)

= n

( p−1∑
i=0

a2i

)
− n− 1

p

( p−1∑
i=0

ai

)2

. �

3. Minimum of the integral trace form in cyclic extensions
of prime degree. In this section, we derive a procedure for finding the
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minimum of the form in (2.1) under the restriction that x is a nonzero
element of the Z-module Mm, defined as:

(3.1) {a0t+ a1θ(t) + · · ·+ ap−1θ
p−1(t) ∈ OL |

a0 + a1 + · · ·+ ap−1 ≡ 0 (mod m)},

where m is a fixed, positive integer. This problem arises in the deter-
mination of minima of point-lattices that are images of Z-modules in
OL via the canonical embedding [13, pages 56, 57].

The case m = 1 is easily handled: for x ∈ OL, x ̸= 0,

TrL/Q(x
2) ≥ pNL/Q(x

2)1/p ≥ p,

where NL/Q(·) represents the norm. Since TrL/Q(1) = p, the minimum

of TrL/Q(x
2) for nonzero x ∈ OL equals p. Thus, the minimum of

TrL/Q(x
2) for x ∈ M1 and x ̸= 0, equals p.

The case m > 1 is handled next. For each pair (i, j) with i, j ∈
{0, . . . , p− 1} and i ̸= j, define

τij : Zp −→ Zp

(a0, . . . , ap−1) 7−→ (b0, . . . , bp−1),

where

bk =


ai − 1 if k = i;

aj + 1 if k = j;

ak otherwise.

If a = (a0, . . . , ap−1) and b = (b0, . . . , bp−1) are such that τij(a) = b,
then

p−1∑
i=0

ai =

p−1∑
i=0

bi.

On the other hand, if the latter equality holds, then a composition of
suitable τij exists which maps a to b.

For brevity’s sake, for any a = (a0, . . . , ap−1) ∈ Zp, the sum
∑p−1

i=0 a2i
will be denoted by ||a||2.

Lemma 3.1. With notation as above, let a = (a0, . . . , ap−1) and
b = (b0, . . . , bp−1) be two elements of Zp such that τij(a) = b. Then,
||a||2 > ||b||2 if and only if ai − aj > 1.
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Proof. We have

||a||2 > ||b||2 ⇔ a2i + a2j > (ai − 1)2 + (aj + 1)2 ⇔ ai − aj > 1. �

In preparation for the next results, for any a = (a0, . . . , ap−1) ∈ Zp,
we define the orbit of a as the set

O(a) =

{
(b0, . . . , bp−1) ∈ Zp

∣∣∣∣ p−1∑
i=0

bi =

p−1∑
i=0

ai

}
.

Similarly, for any x = a0t+ a1θ(t) + · · ·+ ap−1θ
p−1(t) ∈ OL, we define

the orbit of x as the set

O(x) =

{
b0t+ b1θ(t) + · · ·+ bp−1θ

p−1(t) ∈ OL

∣∣∣∣ p−1∑
i=0

bi =

p−1∑
i=0

ai

}
.

Lemma 3.2. Let S be a nonnegative integer, a = (a0, . . . , ap−1) ∈ Zp

with a0 + · · · + ap−1 = S, and q and r the quotient and remainder,
respectively, of the division of S by p. Then,

min
b∈O(a)

||b||2 = pq2 + 2rq + r,

and it is attained exactly at all b ∈ Zp having r entries equal to q + 1
and p− r entries equal to q.

Proof. By Lemma 3.1, any two entries of a p-tuple b ∈ O(a) with
||b||2 minimum may not differ by more than 1. Therefore, one such
tuple must be a permutation of (q + 1, . . . , q + 1, q, . . . , q), where the
number of entries = q + 1 must be ≤ p− 1. Hence, S = pq + r, which
determines q and r uniquely. �

Theorem 3.3. For x = a0t + a1θ(t) + · · · + ap−1θ
p−1(t) ∈ OL, let

S = S(x) = a0 + · · · + ap−1, and let q and r be the quotient and
remainder, respectively, of the division of S by p. If S ≥ 0, then

(3.2) M(S) := min
y∈O(x)

TrL/Q(y
2) = pq2 + 2rq + nr +

1− n

p
r2.

Proof. The statement is an immediate consequence of Corollary 2.3
and Lemma 3.2. �
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Corollary 3.4. With notation as above,

(i) if S = 0, then miny∈O(x),y ̸=0 TrL/Q(y
2) = 2n;

(ii) if S > 0 and p | S, then minj∈N∗M(jS) = S2/p.

In conclusion, if p | S, then M(S) = min{2n, S2/p}.

Proof. For (i), by Corollary 2.3, note that, for x in the orbit of zero
but x ̸= 0, the minimum of TrL/Q(x

2) equals 2n, and it is attained

at x = a0t + a1θ(t) + · · · + ap−1θ
p−1(t) with (a0, a1, . . . , ap−2) =

(1,−1, 0, . . . , 0), or a permutation of it. For (ii), we have S = pq,
so q = S/p and r = 0, and the result follows from Theorem 3.3. �

Corollary 3.5. With notation as above, if p - S, then

min{M(jS) | j ∈ N∗} = min{M(S),M(2S), . . . ,M(pS)}.

Proof. The assertion follows from the fact that {jS | 1 ≤ j ≤ p}
is a complete set of residues modulo p and the observation that the
expression on the right-hand side of (3.2) is a strictly increasing function
of q. �

Corollaries 3.4 and 3.5 yield the following theorem, which is the main
result of this section.

Theorem 3.6. Let m be a positive integer and

(3.3) M∗ = min
x∈Mm
x̸=0

TrL/Q(x
2).

Then,

M∗ =

{
min{2n,m2/p} if p | m;

min{2n,M(m), . . . ,M(pm)} otherwise.

Remark 3.7. The proofs of Lemma 3.2 and Corollary 3.4 provide
a procedure for determining the elements that achieve M∗ in (3.3).
More specifically, if M∗ = 2n, then the minimum is attained at x =
a0t+a1θ(t)+· · ·+ap−1θ

p−1(t) with (a0, a1, . . . , ap−2) = (1,−1, 0, . . . , 0),
or a permutation of it; if p | m and M∗ = m2/p, then the minimum is
attained at x = a0t+a1θ(t)+· · ·+ap−1θ

p−1(t) with (a0, a1, . . . , ap−1) =
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(m/p, . . . ,m/p); otherwise, the minimum is attained at x = a0t +
a1θ(t) + · · ·+ ap−1θ

p−1(t) with

(a0, a1, . . . , ap−1) = (q∗ + 1, . . . , q∗ + 1︸ ︷︷ ︸
r∗ copies

, q∗, . . . , q∗)

or a permutation of it, and M(pq∗ + r∗) = min{M(m), . . . ,M(pm)}.
The procedure will be illustrated next.

Example 3.8. This example illustrates the use of Theorem 3.6 in
finding M∗ in (3.3) when p = 3, n = 1123 and m = 67. Since p - m,

M∗ = min{2n,M(m),M(2m),M(3m)}
= min{2246, 2245, 6734, 13467}
= 2245.

We have q∗ = 22 and r∗ = 1 (67 = 3 · 22 + 1), and the minimum
is attained at all x ∈ OL of the form a0t + a1θ(t) + a2θ

2(t), where
t = TrK/L(ζn), θ = ⟨Gal (L/Q)⟩ and (a0, a1, a2) = (23, 22, 22), or a
permutation of it.

Now, consider the lattice Λ := σL(Mm). Its rank equals 3, and its
center density is given by

δ =
ρ3√

|Disc (L)| · [OL : Mm]
=

(
√
M∗/2)3

n ·m
= 0.17672.

Among all lattices of rank 3, that with the highest center density is
the face-centered cubic lattice. Its center density equals 1/(4

√
2) =

0.17678.

Example 3.9. This example illustrates the use of Theorem 3.6 in
finding M∗ in (3.3) when p = 5, n = 92111 and m = 607. Since p - m,

M∗ = min{2n,M(m),M(2m),M(3m),M(4m),M(5m)}
= min{184222, 736897, 184223, 1289570, 295245, 1842245}
= 184222.

The minimum is attained at all x ∈ OL of the form a0t + a1θ(t) +
a2θ

2(t)+a3θ
3(t)+a4θ

4(t), where t = TrK/L(ζn), θ = ⟨Gal (L/Q)⟩, and
(a0, a1, a2, a3, a4) = (1,−1, 0, 0, 0), or a permutation of it.
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Now, consider the lattice Λ := σL(Mm). Its rank equals 5, and its
center density is given by

δ =
ρ5√

|Disc (L)| · [OL : Mm]
=

(
√
M∗/2)5

n2 ·m
= 0.08838.

Among all lattices of rank 5, that with the highest center density is D5.
Its center density equals 1/(8

√
2) = 0.08839.

Example 3.10. This example illustrates the use of Theorem 3.6 in
finding M∗ in (3.3) when p = 7, n = 600601 and m = 1096. Since
p - m,

M∗ = min{2n,M(m),M(2m),M(3m),

M(4m),M(5m),M(6m),M(7m)}
= min{1201202, 1201210, 3603638, 7207284,

1201204, 2402422, 4804858, 8408512}
= 1201202.

The minimum is attained at all x ∈ OL of the form a0t + a1θ(t) +
a2θ

2(t) + a3θ
3(t) + a4θ

4(t), where t = TrK/L(ζn), θ = ⟨Gal (L/Q)⟩ and
(a0, a1, a2, a3, a4, a5, a6) = (1,−1, 0, 0, 0, 0, 0), or a permutation of it.

Now, consider the lattice Λ := σL(Mm). Its rank equals 7, and its
center density is given by

δ =
ρ7√

|Disc (L)| · [OL : Mm]
=

(
√
M∗/2)7

n3 ·m
= 0.0624996.

Among all lattices of rank 7, that with the highest center density is Λ7.
Its center density equals 1/16 = 0.0625.

4. Conclusion. The integral trace form TrL/Q(x
2), x ∈ OL, where

L/Q is a cyclic extension of odd prime degree p with p unramified in
L/Q, was presented in an explicit manner, amenable to computations.
In particular, the presentation allowed us to find the minimum of the
form under the restriction that x was a non-zero element of a certain
sub-module of OL. An application of this result was the construction
of p-dimensional lattices via the Minkowski homomophism from OL

to Rp.
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Future directions for the present work include:

(i) determining other p-dimensional lattices for values of p larger
than those considered here, and

(ii) extending it to address wildly ramified extensions L/Q, where a
normal integral basis does not exist.

Finally, lattices obtained from suitable fractional ideals in absolute
Abelian extensions might be interesting: related to this are the works of
Erez [7], Pickett [12] and Vinatier [15, 16] concerning the ambiguous
ideal which is the square root of the different inverse.

Acknowledgments. The authors sincerely thank the editor for
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