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QUASICONFORMAL EXTENDABILITY
OF INTEGRAL TRANSFORMS OF

NOSHIRO-WARSCHAWSKI FUNCTIONS

IKKEI HOTTA AND LI-MEI WANG

ABSTRACT. Since the nonlinear integral transforms

Jα[f ](z) =

∫ z

0
(f ′(u))αdu

and

Iα[f ](z) =

∫ z

0
(f(u)/u)αdu

with a complex number α were introduced, a great number
of studies have been dedicated to deriving sufficient con-
ditions for univalence on the unit disk. However, little is
known about the conditions where Jα[f ] or Iα[f ] produce
a holomorphic univalent function in the unit disk which ex-
tends to a quasiconformal map on the complex plane. In
this paper, we discuss quasiconformal extendability of the in-
tegral transforms Jα[f ] and Iα[f ] for holomorphic functions
which satisfy the Noshiro-Warschawski criterion. Various ap-
proaches using pre-Schwarzian derivatives, differential subor-
dination and Loewner theory are applied to this problem.

1. Introduction.

1.1. Integral transforms. Let A be the family of analytic functions
defined in D := {z ∈ C : |z| < 1}, with f(0) = 0 and f ′(0) = 1. Let
LU and ZF be the subclasses of A defined by

LU := {f ∈ A : f ′(z) ̸= 0 for all z ∈ D}
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and

ZF := {f ∈ A : f(z)/z ̸= 0 for all z ∈ D}.

In 1915, Alexander [1] first observed the integral transform defined
by

J [f ](z) =

∫ z

0

f(u)

u
du

on the class ZF maps the class of starlike functions onto the class of
convex functions. Thus, one might expect that J [f ] always produces
a univalent function for all f ∈ S, where S is the subclass of A
consisting of univalent functions on D. However, in 1963, Krzyż and
Lewandowski [23] gave the counterexample

f(z) =

(
z

1− iz

)1−i

,

which is π/4-spirallike but transformed into a non-univalent function.
In 1972, Kim and Merkes [20] extended this type of transform by
introducing a complex parameter α ∈ C:

Jα[f ](z) :=

∫ z

0

(
f(u)

u

)α

du

for f ∈ ZF , where the branch is chosen so that (f(z)/z)α = 1 for
z = 0. In their investigation, it was shown that Jα[S] ⊂ S when
|α| ≤ 1/4, while Jα[S] ̸⊂ S if |α| > 1/2. Consider Jα[K](z) and
Royster’s example [31], whereK(z) := z/(1−z)2 is the Koebe function.

Another object of investigation in the study of integral transforms
is Iα[f ], defined by

(1.1) Iα[f ](z) :=

∫ z

0

(f ′(u))αdu

on LU , where the branch of (f ′)α = exp(α log f ′) is chosen so that
(f ′)α(0) = 1. Then, Jα[f ] is represented by Jα[f ] = Iα[J [f ]]. In 1975,
Pfaltzgraff [30] proved that Iα[S] ⊂ S if |α| ≤ 1/4. Additionally,
Royster’s example again shows that there exists a function f ∈ S such
that Iα[f ] ̸∈ S if |α| > 1/3 or α ̸= 1.

Currently, no better estimates of the range of |α| have been obtained
in the problems of univalence of Iα[f ] and Jα[f ]. The reader may refer
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to [10] for basic terminology in the theory of univalent functions and
[13, Chapter 15] for basic information about integral transforms on S.

1.2. The Noshiro-Warschawski criterion. It is known that, for
a function f ∈ A, the condition that f ′(D) lies in the right half-
plane ensures univalence of f on D. This is referred to as the
Noshiro-Warschawski criterion due independently to Noshiro [29] and
Warschawski [34]. We shall provide the original form of the theorem
next, see also [3, Theorem 8].

Theorem 1.1 (The Noshiro-Warschawski criterion). A non constant
function f that is analytic in a convex domain D is univalent in D if

(1.2) Re {e−icf ′(z)} ≥ 0

for all z ∈ D, where c is a fixed real number.

As special cases, Alexander [1] showed the case when D is the unit
disk and f ′(D) is contained in a half-plane bounded by a straight line
through the origin, and Wolff [35] showed when D is the right half-
plane. On the other hand, Tims [15] and Herzog and Piranian [33]
showed that convexity of D is essential in the theorem, that is, equa-
tion (1.2) implies univalence of f on D if and only if D is convex.

In what follows, we will treat the family of functions f ∈ A satisfying
the hypothesis of the theorem in which D is the unit disk D and c = 0.
It is denoted by R, i.e.,

R := {f ∈ A : Re f ′(z) > 0 for all z ∈ D}.

Then, Theorem 1.1 states thatR ⊂ S. Compared with the other typical
subclasses of S, a geometric characterization of R is unknown. Several
geometric properties of f(D) by means of Loewner chains are observed
in [17]. Roughly speaking, f(D) is the complement of the union of
the rays {f(eiθ) + teiθ : t ∈ [0,∞)}, where f(eiθ) is understood as the
impression of the prime end at eiθ ∈ ∂D.

A more general problem has been posed for finding a domain R ⊂ C
such that, for a given simply-connected domain D ⊂ C, the condition

f ′(D) ⊂ R
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implies univalence of f on D. It is studied as a first-order criterion and
can be expressed more generally as

log f ′(D) ⊂ R∗,

which means that f ′(z) = exp g(z) where g(D) ∈ R∗. It is particularly
concerned with the special case in which R∗ = αI, where α ∈ C
and I is an infinite strip parallel to the real axis with width π, i.e.,
I := {z : a − π/2 < Im z < a + π/2}, a ∈ R. Theorem 1.1 gives a
criterion of the case when α = 1 and a = c. For further information
about first-order univalence criteria, see e.g., [11, 12] as well as the
more recent work [2].

1.3. Direction of this paper. Until now, a great number of studies
were dedicated to deriving sufficient conditions for the univalence of
Jα[f ] and Iα[f ] on D. However, little seems to be known about
the conditions where Jα[f ] or Iα[f ] produces a univalent function
in D which extends to a quasiconformal map on C, except that a
straightforward application of the λ-lemma i(λ, z) := Jλ/4[f ](z) forms
a holomorphic motion on (λ, z) ∈ D× D.

In this paper, we discuss quasiconformal extendability of the integral
transforms Jα[f ] and Iα[f ] for holomorphic functions which satisfy
the Noshiro-Warschawski criterion. Various approaches using pre-
Schwarzian and Schwarzian derivatives, differential subordinations and
Loewner theory are applied to this problem.

In the last section, our study contributes to constructing explicit
quasiconformal extensions which are formed by inverse counterparts of
Loewner chains introduced by Betker [8].

2. Preliminaries.

2.1. Schwarzian and pre-Schwarzian derivatives. As important
quantities for investigating properties of functions f in LU , we intro-
duce Tf and Sf defined by

Tf :=
f ′′

f ′
, Sf :=

(
f ′′

f ′

)′

− 1

2

(
f ′′

f ′

)2

.

Quantities Tf and Sf are called the pre-Schwarzian derivative and
Schwarzian derivative, respectively. These are considered to be ele-
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ments of the Banach space of functions f ∈ LU , for which the norms

||Tf || := sup
z∈D

(1− |z|2)|Tf |,

||Sf || := sup
z∈D

(1− |z|2)2|Sf |,

are finite. Further, in connection with the theory of univalent functions,
the following estimates are known. Here, a homeomorphism f on a
domain G is said to be k-quasiconformal, 0 ≤ k < 1, if ∂z̄f and ∂zf ,
the partial derivatives of f in z and z̄ in the distributional sense, are
locally integrable on G and satisfy |∂z̄f | ≤ k|∂zf | almost everywhere
in G. If, for a given f ∈ S, there exists a k-quasiconformal F of C
such that its restriction on D is equivalent to f , then f is said to have
a k-quasiconformal extension to C.

Theorem 2.1. Let f ∈ LU .

(i) If ||Tf || ≤ 1, then f is univalent in D;
(ii) if ||Tf || ≤ k < 1, then f has a quasiconformal extension to C;
(iii) if f ∈ S, then ||Tf || ≤ 6;
(iv) if ||Sf || ≤ 2, then f is univalent in D;
(v) if f ∈ S, then ||Sf || ≤ 6.

Becker proved (i) and (ii) [4, 5]. The sharpness of constant 1 in
(i) is due to Becker and Pommerenke [7]. Assertion (iii) is an easy
consequence of the well-known inequality |(1−|z|2)f ′′(z)/f ′(z)−2z̄| ≤
4 for f ∈ S. Assertion (iv) was first shown by Kraus [22] and
subsequently rediscovered by Nehari [28]. Hille [16] showed that
constant 2 is the best possible with the function

f(z) =

(
1 + z

1− z

)iε

, ε > 0,

for it is not univalent for all ε > 0, but ||Sf || = 2(1+ ε2) can approach
2. Nehari [28] also verified assertion (v) and the sharpness follows from
||SK || = 6 for the Koebe function K.

2.2. Subordination properties. For analytic functions f and g, it
is said that f is weakly subordinate to g if there exists an analytic
function ω which maps D into D such that f(z) = (g ◦ ω)(z). Further,
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if w can be taken so as to fulfill ω(0) = 0, then f is said to be subordinate
to g, whose relation is denoted by f(z) ≺ g(z). Below, we will state
two subordination properties which will play central roles in Section 3.
The first is a result on differential subordinations due to Hallenbeck
and Ruscheweyh.

Theorem 2.2 (Hallenbeck and Ruscheweyh [14]). Let p be an analytic
function in D with p(0) = 1. Let q be convex univalent in D with
q(0) = 1, and suppose that p(z) ≺ q(z). Then, for all γ ̸= 0 with
Re γ > 0, we have

γz−γ

∫ z

0

uγ−1p(u) du ≺ γz−γ

∫ z

0

uγ−1q(u) du.

For example, if f satisfies Re f ′(z)(z/f(z))1−γ > 0, then

f ′(z)

(
z

f(z)

)1−γ

≺ 1 + z

1− z
,

and Theorem 2.2 gives(
f(z)

z

)γ

≺ 1 +
2γ

zγ

∫ z

0

uγ

1− u
du.

In particular, setting γ = 1, we have

(2.1)
f(z)

z
≺ −z − 2 log(1− z)

z

for all f ∈ R. This gives the best dominant for R because, if

ϕ(z) := −z − 2 log(1− z),

then

ϕ′(z) =
1 + z

1− z
,

and therefore, ϕ ∈ R.

The second is a fundamental subordination principle in geometric
function theory. The original idea is due to Littlewood.

Theorem 2.3 (Kim and Sugawa [21, page 195]). Let g be locally
univalent in D. For an analytic function f in D, if f ′ is weakly
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subordinate to g′, then we have ||Tf || ≤ ||Tg||. In particular, f is
uniformly locally univalent on D.

Theorem 2.3 has a wide range of applications so that we might hope
also to obtain the inequality ||Sf || ≤ ||Sg|| for functions f and g such
that f ′ is weakly subordinate to g′. However, it is shown that the
inequality does not always hold under this assumption. Here, we note
that the Schwarz-Pick lemma shows that all analytic self-mappings ω
of the unit disk satisfy

(2.2)
|ω′(z)|

1− |ω(z)|2
≤ 1

1− |z|2

for all z ∈ D.

Proposition 2.4. Let g be locally univalent in D. For an analytic
function f in D, if f ′ is weakly subordinate to g′, then we have

(2.3) ||Sf || ≤ ||Sg||+ ||Tω|| · ||Tg||,

where ω is an analytic function which appears in the definition of
subordination. In particular, f is uniformly locally univalent on D.

Proof. By assumption, we have Tf = Tg ◦ ω · ω′, and hence, equa-
tion (2.2) implies that

(1− |z|2)2
∣∣∣∣(f ′′f ′

)′

− 1

2

(
f ′′

f ′

)2∣∣∣∣
= (1− |z|2)2

∣∣∣∣(g′′g′
)′

ω′2 +
g′′

g′
· ω′′ − 1

2

(
g′′

g′
· ω′

)2∣∣∣∣
≤ (1− |ω|2)2

|ω′|2

∣∣∣∣(g′′g′
)′

ω′2 − 1

2

(
g′′

g′
· ω′

)2∣∣∣∣
+ (1− |z|2)1− |ω|2

|ω′|

∣∣∣∣g′′g′ · ω′′
∣∣∣∣

≤ ||Sg||+ ||Tω|| · ||Tg||. �

The term ||Tω|| · ||Tg|| in equation (2.3) is eliminated in only a few
cases. So, ||Tg|| = 0 if and only if g is an affine transform, and then ||Sg||
also vanishes. Therefore, ||Sf || = 0, which implies that f is a Möbius
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transformation. ||Tω|| = 0 if and only if ω is an affine transform, which
is equivalent to the case f(z) = ag(z) + b, where a, b ∈ C are complex
constants.

3. Pre-Schwarzian derivatives and differential subordina-
tions for Jα[f ].

3.1. Evaluation of ||TJα[f ]|| on R. First, we give a sharp estimation
of the norm of TJα[f ] for a function f ∈ R and make use of Theorem 2.1
to obtain the range of |α| which ensures univalence and quasiconformal
extensibility of Jα[f ].

Theorem 3.1. Let f ∈ R. Then, we have the sharp estimate

||TJα[f ]|| ≤ |α| · h(r0),

where h(r0) ≈ 1.055681. Here, h is the function defined by

(3.1) h(r) :=
−(1 + r)2

r + 2 log(1− r)
− 1− r2

r
,

and r0 ≈ 0.329423 is the unique root of the equation

(3.2) 2(r2+1)(r−1)[log(1−r)]2−2r(r−1)2 log(1−r)+r3(r+3)=0

in r ∈ (0, 1).

Proof. Using logarithmic differentiation, we have

||TJα[f ]|| = |α| ||TJ[f ]||.

Then, it suffices to estimate ||TJ[f ]||. Suppose that f ∈ R. By
equation (2.1) and Theorem 2.3, we have

||TJ[f ]|| ≤ sup
z∈D

(1− |z|2)
∣∣∣∣ϕ′(z)ϕ(z)

− 1

z

∣∣∣∣
for all f ∈ R, where ϕ(z) = −z−2 log(1−z) as defined in subsection 2.2.
Then, computation shows that

sup
z∈D

(1− |z|2)
∣∣∣∣ϕ′(z)ϕ(z)

− 1

z

∣∣∣∣ = sup
z∈D

(1− |z|2)
∣∣∣∣ 2(z + (1− z) log(1− z))

(1− z)z(z + 2 log(1− z))

∣∣∣∣
= sup

z∈D

1− |z|2

|z|

∣∣∣∣1 + 1 + z

1− z
· z

z + 2 log(1− z)

∣∣∣∣.
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Let

g(z) := 1 +
1 + z

1− z
· z

z + 2 log(1− z)
.

It is obvious that g is symmetric with respect to the real axis. Next,
we show that all the coefficients of g are negative. g is written as:

g(z) = 1 +
1 + z

1− z
· z

z + 2 log(1− z)

= 1− 1 + z

1− z
· 1

1 + 2
∑∞

n=1 z
n/(n+ 1)

= 1− 1 + z

1− z + 2
∑∞

n=1 z
n+1/(n+ 2)− 2

∑∞
n=1 z

n+1/(n+ 1)

= 1− 1 + z

1− 2
∑∞

n=1 z
n+1/[(n+ 1)(n+ 2)]

.

Thus, g has negative coefficients. This fact implies that

sup
z∈D

|g(z)| = − sup
r∈(0,1)

g(r).

Therefore,

||TJ[f ]|| ≤ sup
z∈D

1− |z|2

|z|

∣∣∣∣1 + 1 + z

1− z
· z

z + 2 log(1− z)

∣∣∣∣ = sup
r∈(0,1)

h(r).

Simple calculation shows that h′(r) has only one critical point r0 in
r ∈ (0, 1) which is the root of equation (3.2). By numerical experiments,
we obtain that r0 ≈ 0.329423 and h(r0) ≈ 1.055681. �

Applying Theorem 2.1 to the above estimate, we can deduce the
range of |α| of which Jα[f ] is univalent in D and has a quasiconformal
extension to C.

Corollary 3.2. Let f ∈ R and k ∈ [0, 1). Then,

(i) if |α| ≤ 1/h(r0) ≈ 0.947255, then Jα[f ] ∈ S.
(ii) If |α| < k/h(r0), then Jα[f ] can be extended to a k-quasiconformal

mapping of C.

3.2. Univalence of Jα[f ] when α ∈ R. In the previous subsection,
we dealt with Jα[f ] in the case where α is a complex number. However,
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some geometric properties of Jα[f ] on typical subclasses of S under the
restriction of α ∈ R have already been investigated. Next, is a list of
some fundamental results. Here, we denote by K,S∗ and C the well-
known classes of convex, starlike and close-to-convex functions in A,
respectively.

Theorem 3.3 (Merkes and Wright [27]). Let α ∈ R. Then, the next
assumptions are true:

(i) Let f ∈ K. If α ∈ [−1, 3], then Jα[f ] ∈ C; otherwise, there exists
a function g ∈ K such that Jα[g] /∈ S.

(ii) Let f ∈ S∗. If α ∈ [−1/2, 3/2], then Jα[f ] ∈ C; otherwise, there
exists a function g ∈ S∗ such that Jα[g] /∈ S.

(iii) Let f ∈ C. If α ∈ [−1/2, 1], then Jα[f ] ∈ C; otherwise, there exists
a function g ∈ C such that Jα[g] /∈ C.

(iv) Let f ∈ K. If α ∈ [−1/2, 3/2] then Iα[f ] ∈ C; otherwise, there
exists a function g ∈ K such that Jα[g] /∈ S.

(v) Let f ∈ C. If α ∈ [−1/3, 1] then Iα[f ] ∈ C; otherwise, there exists
a function g ∈ C such that Jα[g] /∈ S.

Next, the following is easily proved.

Theorem 3.4. Let α ∈ R and f ∈ R. If α ∈ [−α0, α0], then Jα[f ] ∈
R; otherwise, there exists a function g ∈ R such that Jα[g] /∈ R. Here,
α0 ≈ 1.723078 is defined by α0 := π/2q(eiθ0), where

q(z) :=
−z − 2 log(1− z)

z
,

and θ0 is the unique root of the equation:

ς ′(θ)− ς(θ)2 − 1 = 0,

in θ ∈ (0, π/2), where ς is defined by

(3.3) ς(θ) :=
sin θ + θ − π

cos θ + 2 log

(
2 sin

θ

2

) .
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Proof. Suppose that f ∈ R. Again, we will use relation (2.1),
namely,

J [f ]′(z) ≺ q(z) ≺ 1 + z

1− z

for all f ∈ R. Here, q is a convex function, see [25, Theorem 2]. Since
f ≺ g implies that fα ≺ gα for any α ∈ R and (J [f ]′)α = Jα[f ]

′, our
problem reduces to finding the largest α0 ∈ R such that

Re [q(z)α0 ] > 0 for all z ∈ D.

This is equivalent to finding the smallest β0 ∈ R such that the sector
domain

∆β0 :=

{
w : | argw| < π

β0
2

}
contains q(D). Then, α0 = 1/β0. Note that z ∈ ∆β0 , and 1/z ∈ ∆β0 .

We obtain

arg q(eiθ) = arg

[
− eiθ − 2 log

(
2 sin

θ

2

)
− i(θ − π)

]
− θ

= arctan ς(θ)− θ,

by using

1− eiθ = −2i sin
θ

2
eiθ/2.

Since
∂ arg q(eiθ)

∂θ
=

ς ′(θ)

1 + ς(θ)2
− 1,

β0 is one of the zeros of ς ′(θ)− ς(θ)2−1. With the aid of Mathematica,
the maximum of arg q(eiθ) is attained at θ0 ≈ 1.141377. Then,

β0 =
2q(θ0)

π
≈ 0.580356,

and we conclude that α0 = 1/β0 ≈ 1.723078. �

Remark 3.5. The Alexander transformation J [f ] preserves R.

Theorem 3.4 will be refined to a quasiconformal extension criterion
by using the Loewner chains in Section 5.
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4. Results for Iα[f ] on R. We shall derive some further properties
of Iα[f ] on R. In particular, Theorem 4.2 will be used in the next
section.

Theorem 4.1. Let α ∈ R and f ∈ R. If α ∈ [−1, 1], then Iα[f ] ∈ R.

Proof. Since Iα[f ]
′ = (f ′)α, it is clear that Iα[f ] ∈ R when α ∈

[−1, 1]. �

Theorem 4.2. Let α ∈ C. If |α| > 1, then there exists a function
g ∈ R such that Iα[g] /∈ S.

Proof. A counterexample is given by the function

ϕ(z) = −z − 2 log(1− z),

which belongs to R. In fact, it follows from calculations that

||SIα[ϕ]|| = 2|α|(|α|+ 2).

Then, Theorem 2.1(v) shows that Iα[ϕ] is not univalent if |α| > 1. �

Theorem 4.3. Let α ∈ C and f ∈ R. If |α| ≤ 1/2, then Iα[f ] ∈ S.

Proof. Let f ∈ R. Then,

f ′(z) ≺ 1 + z

1− z
,

and hence, by Theorem 2.3 we obtain the sharp bound ||Tf || ≤ 2 for an
f ∈ R, see also [26, Lemma 1]. Since ||TIα[f ]|| = |α| · ||Tf ||, it follows
from Theorem 2.1 (i) that Iα[f ] ∈ S if |α| ≤ 1/2. �

5. Quasiconformal extension of Jα[f ] with Loewner chains.
In this section, we will use the theory of Loewner chains and its
applications to derive quasiconformal extension conditions for Jα[f ]
and Iα[f ] under the class R.

5.1. Loewner chains and inverse Loewner chains. Before start-
ing our argument, we describe the theory of Loewner chains and results
of quasiconformal extensions due to Becker and Betker with some no-
tation and terminology we will use.
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Let

ft(z) =

∞∑
n=1

an(t)z
n, a1(t) ̸= 0,

be a function defined on D × [0,∞), where a1(t) is a complex-valued,
locally absolutely continuous function on [0,∞). Then, ft is called a
Loewner chain if ft satisfies the following conditions:

(i) ft is univalent in D for each t ≥ 0,
(ii) |a1(t)| increases strictly as t increases, and limt→∞ |a1(t)| −→ ∞,
(iii) fs(D) ⊂ ft(D) for 0 ≤ s < t <∞.

It should be noted that strict monotonicity of |a1(t)| implies that
fs(D) ̸= ft(D) for all 0 ≤ s < t <∞.

The key properties of Loewner chains are that ft is absolutely
continuous on t ≥ 0 for each z ∈ D, which implies that ∂tft (∂t := ∂/∂t)
exists almost everywhere on [0,∞) and satisfies the partial differential
equation

(5.1) ∂tft(z) = z∂zft(z)p(z, t), z ∈ D, almost everywhere t ≥ 0,

where p(z, t) is analytic for all z ∈ D, for each t ≥ 0, measurable for
all t ≥ 0 for each z ∈ D and satisfies Re p(z, t) > 0 for all z ∈ D and
t ≥ 0. We call the function p a Herglotz function. Further, Becker
[4, 6] showed that, if p satisfies∣∣∣∣1− p(z, t)

1 + p(z, t)

∣∣∣∣ ≤ k, z ∈ D, almost everywhere t ≥ 0;

then, f0 has a k-quasiconformal extension to C. This enables us to
derive various kinds of sufficient conditions under which a function
f ∈ S has a quasiconformal extension, see e.g., [18, 19].

Betker introduced the following notion of inverse counterparts of
Loewner chains. Let

ωt(z) =
∞∑

n=1

bn(t)z
n, b1(t) ̸= 0,

be a function defined on D × [0,∞), where b1(t) is a complex-valued,
locally absolutely continuous function on [0,∞). Then, ωt is said to be
an inverse Loewner chain if
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(i) ωt is univalent in D for each t ≥ 0;
(ii) |b1(t)| decreases strictly as t increases; and limt→∞ |b1(t)| → 0;
(iii) ωs(D) ⊃ ωt(D) for 0 ≤ s < t <∞;
(iv) ω0(z) = z and ωs(0) = ωt(0) for 0 ≤ s ≤ t <∞.

The next partial differential equation is also satisfied by ω:

(5.2) ∂tωt(z) = −z∂zωt(z)q(z, t), z ∈ D, almost everywhere t ≥ 0,

where q is a Herglotz function. Conversely, we can construct an inverse
Loewner chain by means of equation (5.2) according to the next lemma.

Lemma 5.1 (Betker [8]). Let q(z, t) be a Herglotz function. Suppose
that q(0, t) is locally integrable in [0,∞) with∫ ∞

0

Re q(0, t) dt = ∞.

Then, there exists an inverse Loewner chain wt satisfying equation (5.2).

Applying the notion of an inverse Loewner chain, we obtain a
generalization of Becker’s result.

Theorem 5.2 (Betker [8]). Let k ∈ (0, 1]. Let ft be a Loewner chain
satisfying equation (5.1) with∣∣∣∣p(z, t)− q(z, t)

p(z, t) + q(z, t)

∣∣∣∣ ≤ k < 1, z ∈ D, almost everywhere t ≥ 0,

where q(z, t) is a Herglotz function. Let ωt be the inverse Loewner
chain which is generated by q with equation (5.2). Then, ft and ωt

are continuous and injective on D for each t ≥ 0, and f0 has a k-

quasiconformal extension Φ : Ĉ → Ĉ, which is defined by

(5.3) Φ

(
1

ωt(eiθ)

)
= ft(e

iθ), θ ∈ [0, 2π), t ≥ 0.

Case q(z, t) = 1 reflects Becker’s theorem. In this case, ωt(z) = e−tz.
Further, if ω is obtained from the choice q = p, then we have the next
corollary.
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Corollary 5.3 (Betker [8]). Let γ ∈ (0, 1]. Suppose that ft is a
Loewner chain for which p in equation (5.1) satisfies the condition

| arg p(z, t)| ≤ γπ

2
, z ∈ D, almost everywhere t ≥ 0.

Then, ft admits a continuous extension to D for each t ≥ 0 and the
map defined by equation (5.3) is a sin(γπ/2)-quasiconformal extension
of f0 to C.

In contrast to Becker’s quasiconformal extension theorem mentioned
above, the theorem due to Betker does not explicitly give a quasicon-
formal extension in all cases. In general, this is due to the fact that it
is difficult to express an inverse Loewner chain ωt which has the same
Herglotz function as a Loewner chain ft given in an explicit form.

Specifically, let ft be a given Loewner chain, and let p(z, t) be a
Herglotz function associated with ft by equation (5.1). Fix an arbitrary
T > 0, and define a Herglotz function q(z, t) by

(5.4) q(z, t) :=

{
p(z, T − t), t ∈ [0, T ],

1, t ∈ (T,∞).

It is known that there exists a Loewner chain ht with the equation
∂tht(z) = z∂zht(z)q(z, t). One can see that gt(z), defined by

(5.5) gt(z) :=

{
(h−1

T ◦ ht)(z), t ∈ [0, T ]

eT−t, t ∈ (T,∞),

is also a Loewner chain whose Herglotz function is q. Such gt is uniquely
determined by the condition gT (z) = z. Therefore, gt is the unique
solution of the differential equation

∂tgt(z) = z∂zgt(z)p(z, T − t)

for all z ∈ D and t ∈ [0, T ]. Hence, ωt := gT−t is defined on z ∈ D,
t ∈ [0, T ], and satisfies

∂tωt(z) = −z∂zωt(z)p(z, t).

It is also easily seen that ω0(z) = z, ωt(0) = 0, ωs(D) ⊃ ωt(D), and
b1(t) is monotonically decreasing with |b1| → 0 as t → ∞. Since T is
arbitrary, we obtain our desired inverse Loewner chain.
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The above argument indicates that, in order to obtain the concrete
expression of ωt, we need to write ht and h−1

t by a given ft, and this
is not always possible. Loewner chains for spirallike functions are one
of the few known cases in which this method works well. Here, f ∈ A
is said to be λ-spirallike, λ ∈ (−π/2, π/2), if f satisfies

Re

{
e−iλ zf

′(z)

f(z)

}
> 0

for all z ∈ D. We know that ft(z) = ee
iλtf(z) describes an expanding

flow for λ-spirallike domains. In this case, the corresponding inverse
Loewner chain ωt can be written explicitly:

ωt(z) := f−1(e−eiλtf(z)).

Let α ∈ (−π/2, π/2) be given. Suppose that∣∣∣∣ arg zf ′(z)f(z)
− λ

∣∣∣∣ < πα

2
.

Then, by Corollary 5.3, f has a continuous extension to D, and the
function Φ : C → C,

(5.6)


Φ(z) = f(z), z ∈ D,

Φ

(
1

f−1(e−eiλtf(eiθ))

)
= ee

iλtf(eiθ), θ ∈ [0, 2π), t ≥ 0,

defines a sin(πα/2)-quasiconformal extension of f . If

z = 1/f−1(e−eiλtf(eiθ)),

then we have

(5.7) f

(
1

z

)
= e−eiλtf(eiθ),

and hence, equation (5.6) is expressed by

(5.8) Φ(z) =

f(z), z ∈ D,
(f(eiθ))2

f(1/z̄)
, z ∈ C\D,

where f(eiθ) is uniquely determined by the equation

argλ f(1/z) = argλ f(e
iθ),
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which is deduced by equation (5.7), where argλ represents the λ-
argument, for details, see [24]. Function (5.8) is the same as that
given in [32].

5.2. Results. Several conditions are known under which f ∈ R has a
quasiconformal extension to the complex plane. One remarkable result
is due to Chuaqui and Gevirtz [9], who gave necessary and sufficient
conditions under which f(D) can be a quasidisk by introducing the no-
tion of property M. Comparing the two, our results provide quantitative
estimates for the dilatations of quasiconformal extensions.

A Loewner chain for class R is simply given by

ft(z) := f(z) + tz.

In fact, a straightforward calculation shows that

1

p(z, t)
=

∂tft(z)

z∂zft(z)
= f ′(z) + t.

If we assume that | arg f ′(z)| ≤ γπ/2 for a fixed constant γ ∈ [0, 1),
then it follows from Corollary 5.3 that f has a sin(γπ/2)-quasiconformal
extension to C. Consequently, we obtain the following.

Theorem 5.4. Let f ∈ A and γ ∈ [0, 1). If | arg f ′(z)| ≤ γπ/2 for
all z ∈ D, then f belongs to R and has a sin(γπ/2)-quasiconformal
extension to C.

As was shown above, it does not seem possible to obtain an explicit
quasiconformal extension by equation (5.3) in this case because there is
no feasible means of finding a Loewner chain ht whose Herglotz function
is given by equation (5.4) with q(z, t) = f ′(z)+t and its inverse function
h−1
t (z) to define gt by equation (5.5).

Theorem 5.5. Let f ∈ R. Let β0 ≈ 0.580356 and α0 = 1/β0 ≈
1.723078 be constants which are given in subsection 3.2, and let α ∈
(−α0, α0) be fixed. Then, Jα[f ] has a sin(|α|β0π/2)-quasiconformal
extension to C.
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Proof. In subsection 3.2, we have shown that, if f ∈ R, then
{f(z)/z : z ∈ D} lies in the sector domain

∆β0 =

{
w : | argw| < π

β0
2

}
.

This implies that(
f(z)

z

)α

= Jα[f ]
′(z) ∈ ∆αβ0 for all z ∈ D,

and therefore,

| arg Jα[f ]′(z)| ≤
|α|β0π

2
.

Hence, Theorem 5.4 yields our assertion. �

Theorem 5.6. Let f ∈ R. Then, for a fixed α ∈ (−1, 1), Iα[f ] has
a sin(|α|π/2)-quasiconformal extension to C. However, if α lies on
(−∞,−1] ∪ [1,∞), then there exists a function g ∈ R such that Iα[g]
does not have any quasiconformal extension.

Proof. Let f ∈ R. Since | arg Iα[f ]′| < |α|π/2, applying Theo-
rem 5.4, we conclude that f has a sin(|α|π/2)-quasiconformal extension
to C.

As for the second statement of the theorem, by Theorem 4.2 it
suffices to consider the case where either α = 1 or α = −1. If α = 1,
then our statement easily follows because

I1[ϕ] = ϕ(z) = −z − 2 log(1− z) ∈ R

maps D onto a domain which is not a quasicircle. It can be shown
similarly in the case when α = −1 with the counterexample

ψ(z) = −z + 2 log(1 + z).

�
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