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A SIGN-CHANGING SOLUTION FOR THE
SCHRÖDINGER-POISSON EQUATION IN R3

CLAUDIANOR O. ALVES, MARCO A.S. SOUTO

AND SÉRGIO H.M. SOARES

ABSTRACT. We find a sign-changing solution for a class
of Schrödinger-Poisson systems in R3 as an existence result
by minimization in a closed subset containing all the sign-
changing solutions of the equation. The proof is based
on variational methods in association with the deformation
lemma and Miranda’s theorem.

1. Introduction. The interaction of a charge particle with an
electromagnetic field can be described by a system of a nonlinear
Schrödinger equations coupled with a Poisson equation of the type

(NLSP)

{
−∆u+ V (x)u+ ϕu = |u|p−2u in Ω,

−∆ϕ = u2 in Ω,

where Ω ⊂ R3 is a domain, V : Ω → R and 2 < p < 2∗ = 6. Many
recent studies of (NLSP) have focused on existence and nonexistence of
solutions, multiplicity of solutions, ground states, radial and non-radial
solutions, semiclassical limit and concentrations of solutions (see, for
instance, [1, 2, 3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 22, 23,
24, 25, 26]).

In [7], Benci and Fortunato deal with the existence of eigensolutions
of a linear version of (NLSP), under a Dirichlet condition in a bounded
domain Ω in R3, and the potential V is constant. The system (NLSP)
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in a bounded domain has also been considered in the papers of Siciliano
[26], Ruiz and Siciliano [24] and Pisani and Siciliano [22].

For Ω = R3, D’Aprile and Mugnai proved [11] the existence of a
nontrivial radial solution of (NLSP) for 4 ≤ p < 6, and V is a positive
constant. In [12], using a Pohozaev-type identity, D’Aprile and Mugnai
proved that (NLSP) has no nontrivial solution when p ≤ 2 or p ≥ 6.
This result was completed in [23], where Ruiz showed that, if p ≤ 3,
then problem (NLSP) does not admit any nontrivial solution, and, if
3 < p < 6, then there exists a nontrivial radial solution of (NLSP).
In [4], Azzollini and Pomponio proved the existence of ground state
solutions of (NLSP) when 3 < p < 6 and V is a positive constant. The
case of the non-constant potential was also treated [4] for 4 < p < 6
and V possibly unbounded below.

All of these papers concern positive solutions to (NLSP). There
are few results about sign-changing solutions to (NLSP). The best
references are [1, 14, 17]. Ianni [14] employed a dynamical (not
variational) approach in order to show the existence of radial solutions
to (NLSP) for V constant and p ∈ [4, 6) with a prescribed number of
nodal domains. To obtain this result, she first studied the existence of
sign changing radial solutions for the corresponding (NLSP) in balls of
R3 with Dirichlet boundary conditions. Kim and Seok [17] obtained
results similar to [14] for p ∈ (4, 6) by using an extension of the
Nehari variational method [21, 27]. Alves and Souto [1] considered
the problem (NLSP) in a bounded domain Ω ⊂ R3 and V ≡ 0 and
proved the existence of least energy sign-changing solutions for (NLSP)
to change signs exactly once in Ω. The proof is based on variational
methods. More precisely, it was proved that the associated energy
functional assumes a minimum value on the nodal set, see definition in
Section 2.

Motivated by the results just described, we are interested in finding
sign-changing solutions for (NLSP) in R3, where potential V is not
necessarily a radially symmetric function. The result will be stated for
a class of more general problems:

(SP)

{
−∆u+ V (x)u+ ϕu = f(u) in R3,

−∆ϕ = u2 in R3,

where f belongs to C1(R,R) and satisfies:
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(f1)

lim
s→0

f(s)

s
= 0;

(f2)

lim
|s|→+∞

f(s)

|s|5
= 0;

(f3)

lim
|s|→+∞

F (s)

s4
= +∞, where F (s) =

∫ s

0
f(t) dt;

(f4)
f(s)

s3
is non-decreasing in |s| > 0.

Remark 1.1. We observe that (f2) is weaker than the usual subcritical
condition. Conditions (f1) and (f4) imply that

H(s) = sf(s)− 4F (s)

is a non-negative and non-decreasing function in |s|.

Here,
V : R3 −→ R

is locally Hölder continuous and satisfies the following assumptions:

(V1) there exists α > 0 such that V (x) ≥ α > 0, for all x ∈ R3;
(V2)

V∞ = sup{V (x) : x ∈ R3},

and
lim

|x|→+∞
V (x) = V∞;

(V3) there exist R0 > 0 and

ρ : (R0,∞) −→ (0,∞)

a non-increasing function such that

lim
r→∞

ρ(r)eδr = ∞
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for all δ > 0, and

V (x) ≤ V∞ − ρ(|x|), for all |x| ≥ R0.

As an example, given V∞ > 1 and 0 < θ < 1, let V (x) = V∞−e−|x|θ .

Our main result is the next theorem.

Theorem 1.2. Suppose that f satisfies (f1)–(f4) and V satisfies (V1)–
(V3). Then problem (SP) possesses a least energy sign-changing solu-
tion, which changes sign exactly once in R3.

Theorem 1.2 can be seen as a similar version for R3 of the result
due to [1]. However, the reader is invited to observe that, in Sections
3, 4 and 5, we did a careful study involving some levels which do not
appear in [1] because, in that paper, the problems were considered on
a bounded domain. Here, we need to overcome the lack compactness
involving the Sobolev imbedding in R3, which implies that energy
functionals do not verify the well known Palais-Smale condition or
Cerami condition.

As observed in [5, 6], the general procedure to find sign-changing
solutions of an equation with a nonlinear term stalls upon the fact that
the nodal set is not a submanifold of H1 because the map u 7→ u±

lacks differentiability; thus, it is not evident that a minimizer of the
associated energy functional on the nodal set is a solution of the
equation. Furthermore, there is a worsening in the case considered
here: since the associated energy functional has a nonlocal term, it
follows that, even if u is a sign-changing solution of the problem, the
functions u± do not both belong to the Nehari manifold, and so some
arguments used to prove the existence of nodal solutions for semilinear
local problems cannot be used in our arguments.

Our approach is based on some arguments presented in [1, 6] in
association with the deformation lemma and Miranda’s theorem. The
contributions of our work are twofold: on one hand, it applies the
construction of [1] in an unbounded domain like R3 and consequently
deals with the difficulties it brings; on the other hand, it faces the subtle
peculiarities of a nonlocal term.

We begin by establishing some estimates involving functions that
change sign. We find a sign-changing solution as an existence result
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by minimization in a closed subset containing all the sign-changing
solutions of the equation. At first, this may resemble the ideas found
in [5, 6]. However, we need to choose a suitable minimizing sequence
for the nodal level. This choice involves the corresponding equation
in bounded domains (balls) and the problem is then to prove that the
minimum of the energy on the corresponding closed subset containing
all the sign-changing solutions of the equation in bounded domains
is achieved by some function in the subset. In order to overcome
the possible lack of regularity of this subset, it is crucial to apply a
deformation lemma and detailed use of Miranda’s theorem [20].

2. The variational framework and technical lemmas. In this
section, we present the variational framework for dealing with problem
(SP). The key observation is that equation (SP) can be transformed
into a Schrödinger equation with a nonlocal term, see, for instance,
[4, 23, 26]. This permits the use of variational methods. Effectively,
by the Lax-Milgram theorem, given u ∈ H1(R3), there exists a unique

ϕ = ϕu ∈ D1,2(R3)

such that
−∆ϕ = u2.

Using standard arguments, we have that ϕu verifies the following
properties (for a proof, see [11, 23]):

Lemma 2.1. For any u ∈ H1(R3), we have:

(i) there exists C > 0 such that

||ϕu||D1,2 ≤ C||u||2H1

and∫
R3

|∇ϕu|2dx =

∫
R3

ϕuu
2dx ≤ C||u||4H1 for all u ∈ H1(R3),

where

||u||2H1 =

∫
R3

(|∇u|2 + u2) dx
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and

||w||2D1,2 =

∫
R3

|∇w|2dx;

(ii) ϕu ≥ 0 for all u ∈ H1(R3);
(iii) ϕtu = t2ϕu for all t > 0 and u ∈ H1(R3);
(iv) if a ∈ R3 and ua(x) = u(x− a), then

ϕua(x) = ϕu(x− a)

and ∫
R3

ϕuau
2
adx =

∫
R3

ϕuu
2dx;

(v) if un ⇀ u in H1(R3), then

ϕun ⇀ ϕu in H1(R3)

and

lim inf
n→+∞

∫
R3

ϕunu
2
ndx ≥

∫
R3

ϕuu
2dx.

Therefore, (u, ϕ) ∈ H1(R3) ×D1,2(R3) is a solution of (SP) if, and
only if, ϕ = ϕu and u ∈ H1(R3) is a weak solution of the nonlocal
problem

(P)

{
−∆u+ V (x)u+ ϕuu = f(u) in R3,

u ∈ H1(R3).

Combining (f1)–(f2) with Lemma 2.1, the functional

J : H1(R3) −→ R,

given by

J(u) =
1

2
||u||2 + 1

4

∫
R3

ϕuu
2dx−

∫
R3

F (u) dx,

where

||u||2 =

∫
R3

(|∇u|2 + V (x)u2) dx, F (s) =

∫ s

0

f(t) dt,
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belongs to C1(H1(R3),R), and

J ′(u)v =

∫
R3

(∇u∇v + V (x)uv) dx+

∫
R3

ϕuuv dx−
∫
R3

f(u)v dx,

for all u and v in H1(R3). Hence, critical points of J are the weak
solutions for nonlocal problem (P).

In what follows, we denote the Nehari manifold associated with J
by N , that is,

N = {u ∈ H1(R3) \ {0} : J ′(u)u = 0}.

A nontrivial critical point u of J is a ground state of (P) if

J(u) = c
.
= inf

N
J.

Since we are searching for sign-changing solutions, our goal is to prove
the existence of a critical point for J in the set

M = {u ∈ N : J ′(u)u+ = J ′(u)u− = 0 and u± ̸= 0},

where u+ = max{u(x), 0} and u−(x) = min{u(x), 0}. More precisely,
our goal is to prove that there is a critical point of J , w ∈ M, such
that

J(w) = c0
.
= inf

u∈M
J(u).

Since J has the nonlocal term∫
R3

ϕuu
2 dx,

if u is a sign-changing solution for (P), we have that

J ′(u+)u+ = −
∫
R3

ϕu−(u+)2 < 0

and

J ′(u−)u− = −
∫
R3

ϕu+(u−)2 < 0.

Consequently, although u was a sign-changing solution for (P), the
functions u± do not belong both to N . Hence, some arguments used
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to prove the existence of sign-changing solutions for a problem like

(P1)

{
−∆u+ u = f(u) in R3,

u ∈ H1(R3),

cannot be applied; thus, a careful analysis is necessary in many esti-
mates.

Consider the Sobolev space H1(R3) endowed with the norm

||u||2∗ =

∫
R3

(|∇u|2 + V∞u2) dx.

Let
J∞ : H1(R3) −→ R

be the functional given by

J∞(u) =
1

2
||u||2∗ +

1

4

∫
R3

ϕuu
2dx−

∫
R3

F (u) dx,

and consider

N∞ = {u ∈ H1(R3) \ {0} : J ′
∞(u)u = 0}, c∞ = inf

N∞
J∞.

The next lemma establishes that c0 is a positive level. A similar
result holds for c∞.

Lemma 2.2. There exists ρ > 0 such that

(i) J(u) ≥ ||u||2/4 and ||u|| ≥ ρ for all u ∈ N ;
(ii) ||w±|| ≥ ρ for all w ∈ M.

Proof. From Remark 1.1, for every u ∈ N ,

4J(u) = 4J(u)− J ′(u)u

= ∥u∥2 +
∫
R3

(f(u)u− 4F (u)) dx ≥ ∥u∥2,

and (i) follows. For α > 0 given by (V1), we set ϵ ∈ (0, α). Since f
satisfies (f1)–(f2), there exists a C = C(ϵ) > 0 such that

(2.1) f(s)s ≤ ϵs2 + Cs6 for all s ∈ R.
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For every w ∈ M, we have J ′(w±)w± < 0, which gives

∥w±∥2 ≤ ∥w±∥2 +
∫
R3

ϕw±(w±)2dx <

∫
R3

f(w±)w±dx.

From equation (2.1), we obtain

∥w±∥2 ≤ ϵ

∫
R3

(w±)2dx+ C

∫
R3

(w±)6dx

≤ ϵ

α

∫
R3

V (x)(w±)2dx+ C

∫
R3

(w±)6dx

≤ ϵ

α
∥w±∥2 + C∥w±∥6,

and (ii) is proved. �

The next lemma is a consequence of Miranda’s theorem. Since the
idea of the proof follows the same type of arguments explored in [1,
Section 2], we will omit its proof.

Lemma 2.3. Let v ∈ H1(R3) satisfy v± ̸= 0. Then, there are t, s > 0
such that

J ′(tv+ + sv−)v+ = 0

and

J ′(tv+ + sv−)v− = 0.

Moreover, if J ′(v)(v±) ≤ 0, we have s, t ≤ 1.

3. The choice of the minimizing sequence. Given R > 0, let
BR be the ball of radius R centered at 0. Consider the problem:

(APR)


−∆u+ V (x)u+ ϕu = f(u) in BR,

−∆ϕ = ũ2 in R3,

ϕ ∈ D1,2(R3) u ∈ H1
0 (BR),

where

ũ(x) =

{
u(x) if x ∈ BR,

0 if x ∈ R3 \BR.
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By similar reasoning as used in [1], we can prove that, for each R > 0,
there exists a sign-changing solution u = uR of (APR) such that

(3.1) cR = inf
u∈MR

JR(u) = JR(uR),

where
JR : H1

0 (BR) −→ R

is the energy functional given by

JR(u) =
1

2

∫
BR

|∇u|2 + 1

4

∫
BR

ϕuu
2dx−

∫
BR

F (u) dx,

and

MR = {u ∈ H1
0 (BR) : J

′
R(u)u

+ = 0 = J ′
R(u)u

− = 0, u± ̸= 0}.

Lemma 3.1. Let c0 be the nodal level of J . Then

lim
R→+∞

cR = c0.

Proof. Since R 7→ cR is a non-increasing function and cR ≥ c0 for
all R > 0, if

lim
R→+∞

cR = ĉ > c0,

then there exists a φ ∈ M such that J(φ) < ĉ. From φ ∈ M, φ± ̸= 0.
Let φn ∈ C∞

0 (R3) be such that φn → φ in H1(R3). We may assume
that φ±

n ̸= 0. By Lemma 2.3, there exist tn, sn > 0 such that

J ′(tnφ
+
n + snφ

−
n )φ

+
n = 0

and

J ′(tnφ
+
n + snφ

−
n )φ

−
n = 0.

In particular,

J ′(tnφ
+
n + snφ

−
n )(tnφ

+
n + snφ

−
n ) = 0.

Using

(tnφ
+
n + snφ

−
n )

+ = tnφ
+
n ̸= 0
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and

(tnφ
+
n + snφ

−
n )

− = snφ
−
n ̸= 0,

we find that
tnφ

+
n + snφ

−
n ∈ M∩ C∞

0 (R3).

We claim that there exists a subsequence, still denoted by

(tnφ
+
n + snφ

−
n ),

such that
J(tnφ

+
n + snφ

−
n ) −→ J(φ).

Suppose for the moment that the limit holds. Let n and R > 0 be such
that

tnφ
+
n + snφ

−
n ∈ MR

and

J(tnφ
+
n + snφ

−
n ) < ĉ.

Hence,
cR ≤ J(tnφ

+
n + snφ

−
n ) < ĉ,

and finally,
ĉ = lim

R→+∞
cR ≤ J(tnφ

+
n + snφ

−
n ) < ĉ,

which is impossible. To establish the last claim we begin with the
observation that there exist subsequences (not renamed) such that
tn → 1 and sn → 1. In fact, suppose, by contradiction, that
lim supn→∞ tn > 1. Given δ > 0, there exists a subsequence, still
denoted by tn, such that tn ≥ σ for every n, for some σ > 1. Since

J ′(φn) −→ J ′(φ) = 0 and the function u 7−→ u+

is continuous, we have

(3.2) ∥φ+
n ∥2 +

∫
R3

ϕφ+
n
(φ+

n )
2dx ≤

∫
R3

f(φ+
n )φ

+
n dx+ on(1).

However,
J ′(tnφ

+
n + snφ

−
n )tnφ

+
n = 0,
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that is,

(3.3)
1

t2n
∥φ+

n ∥2 +
∫
R3

ϕφ+
n
(φ+

n )
2dx =

∫
R3

f(tnφ
+
n )tnφ

+
n

t4n
dx.

Combining equation (3.2) with equation (3.3) gives
(3.4)(

1− 1

t2n

)
∥φ+

n ∥2≤
∫
R3

[
f(φ+

n )φ
+
n

(φ+
n )4

− f(tnφ
+
n )tnφ

+
n

(tnφ
+
n )4

]
(φ+

n )
4dx+ on(1).

From (f4) and Fatou’s lemma, we have

0 ≤
∫
R3

[
f(σφ+)σφ+

(σφ+)4
− f(φ+)φ+

(φ+)4

]
(φ+)4dx ≤

(
1

σ2
− 1

)
∥φ+∥2 < 0,

which is impossible. Hence, lim supn→∞ tn ≤ 1. Consequently, there
exists a subsequence (not renamed) such that limn→∞ tn = t0. Taking
to the limit as n → ∞ in equation (3.4) and using (f4) again, we
get t0 = 1. In exactly a similar way, there exists a subsequence (not
renamed) such that limn→∞ sn = 1. Finally, considering that

J(tnφ
+
n + snφ

−
n ) =

t2n
2
∥φ+

n ∥2 +
s2n
2
∥φ−

n ∥2 +
t4n
4

∫
R3

ϕφ+
n
(φ+

n )
2dx

+
s4n
4

∫
R3

ϕφ−
n
(φ−

n )
2dx−

∫
R3

F (tnφ
+
n + snφ

−
n ) dx,

we obtain that
J(tnφ

+
n + snφ

−
n ) −→ J(φ),

by Lemma 2.1 and the convergence φn → φ in H1(R3). �

4. The minimum level is achieved on M. In this section, our
main goal is to prove that the infimum c0 of J on M is achieved. From
Lemma 2.2 (i), we deduce that c0 > 0. We begin with the next lemma.

Lemma 4.1. Suppose that (un) is a sequence in M such that

lim sup
n→∞

J(un) < c+ c∞.

Then (un) has a subsequence which converges weakly to some w ∈
H1(R3) such that w± ̸= 0.
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Proof. From Lemma 2.2 (i), (un) is a bounded sequence. Hence,
without loss of generality, we may suppose that there is a w ∈ H1(R3)
verifying un ⇀ w in H1(R3) and un(x) → w(x) almost everywhere in
R3. Observing that

J(un) = J(u+
n ) + J(u−

n ) +
1

2

∫
R3

ϕu−
n
(u+

n )
2dx,

and

J ′(u+
n )u

+
n = −

∫
R3

ϕu−
n
(u+

n )
2dx = J ′(u−

n )u
−
n ,

we can suppose that

J(u+
n ) +

1

4

∫
R3

ϕu−
n
(u+

n )
2dx = θ + on(1)

and

J(u−
n ) +

1

4

∫
R3

ϕu−
n
(u+

n )
2dx = σ + on(1),

where θ + σ < c + c∞. We claim that w+ ̸= 0. Suppose, by
contradiction, that w+ ≡ 0. From condition (V2) and the Sobolev
compact imbedding, we obtain∫

R3

V (x)(u+
n )

2dx =

∫
R3

V∞(u+
n )

2dx+ on(1),

which implies

J∞(u+
n ) = J(u+

n ) + on(1)

and

J ′
∞(u+

n )u
+
n = J ′(u+

n )u
+
n + on(1).

Hence,

J∞(u+
n ) +

1

4

∫
R3

ϕu−
n
(u+

n )
2dx = θ + on(1)

and

J ′
∞(u+

n )u
+
n = −

∫
R3

ϕu−
n
(u+

n )
2dx+ on(1).



14 C.O. ALVES, M.A.S. SOUTO AND S.H.M. SOARES

We observe that θ ≥ c∞. In fact, let tn > 0 be such that

J∞(tnu
+
n ) ≥ J∞(tu+

n ),

for all t > 0. We have three possibilities for (tn):

(i) lim sup
n→∞

tn > 1,

(ii) lim sup
n→∞

tn = 1,

(iii) lim sup
n→∞

tn < 1.

We now show that (i) cannot occur and (ii) or (iii) imply θ ≥ c∞. From

J ′
∞(tnu

+
n )tnu

+
n = 0,

we have

(4.1) t2n||u+
n ||2∞ + t4n

∫
R3

ϕu+
n
(u+

n )
2dx =

∫
R3

f(tnu
+
n )tnu

+
n dx,

and from J ′(un)u
+
n = 0, it follows that

||u+
n ||2 +

∫
R3

ϕu+
n
(u+

n )
2dx+

∫
R3

ϕu−
n
(u+

n )
2dx =

∫
R3

f(u+
n )u

+
n dx,

which implies

(4.2) ||u+
n ||2∞ +

∫
R3

ϕu+
n
(u+

n )
2dx+

∫
R3

ϕu−
n
(u+

n )
2dx

=

∫
R3

f(u+
n )u

+
n dx+ on(1).

Combining equations (4.1) and (4.2), we obtain

(4.3)

(
1− 1

t2n

)
||u+

n ||2∞ +

∫
R3

ϕu−
n
(u+

n )
2dx

=

∫
R3

[
f(u+

n )

(u+
n )3

− f(tnu
+
n )

(tnu
+
n )3

]
(u+

n )
4dx+ on(1).

If (i) holds, there exists an a > 1 such that tn ≥ a for infinitely many n.
By Lemma 2.2 (ii), the left hand side in equation (4.3) is bounded from
below by a positive number. On the other hand, by (f4), the integral
on the right hand side of equation (4.3) is non-positive. This yields
a contradiction. Hence, (i) does not hold. Suppose that (iii) holds.
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Then, tn ≤ 1 and Remark 1.1 imply

4c∞ ≤ 4J∞(tnu
+
n )

= 4J∞(tnu
+
n )− J ′

∞(tnu
+
n )(tnu

+
n )

= t2n||u+
n ||2∗ +

∫
R3

[f(tnu
+
n )tnu

+
n − 4F (tnu

+
n )]dx

≤ ||u+
n ||2∗ +

∫
R3

[f(u+
n )u

+
n − 4F (u+

n )]dx

= 4J∞(u+
n )− J ′

∞(u+
n )(u

+
n )

= 4J∞(u+
n ) +

∫
R3

ϕu−
n
(u+

n )
2dx+ on(1)

= 4θ + on(1).

Taking the limit n → ∞, we find θ ≥ c∞. If (ii) occurs, there exists
a subsequence (still denoted by tn) such that limn→∞ tn = 1. As a
consequence,

4J∞(tnu
+
n )− J ′

∞(tnu
+
n )(tnu

+
n ) = 4J∞(u+

n )− J ′
∞(u+

n )(u
+
n ) + on(1).

Thus,

4c∞ ≤ 4J∞(tnu
+
n )

= 4J∞(tnu
+
n )− J ′

∞(tnu
+
n )(tnu

+
n )

= 4J∞(u+
n )− J ′

∞(u+
n )(u

+
n ) + on(1)

= 4J∞(u+
n ) +

∫
R3

ϕu−
n
(u+

n )
2dx+ on(1)

= 4θ + on(1).

Taking the limit n → ∞, we also obtain θ ≥ c∞. Since θ + σ < c+ c∞
and θ ≥ c∞, we have σ < c. Let sn > 0 be such that J(snu

−
n ) ≥ J(tu−

n )
for all t > 0. Using that J ′(u−

n )(u
−
n ) < 0, we get sn < 1. Hence,

4c ≤ 4J(snu
−
n )

= 4J(snu
−
n )− J ′(snu

−
n )(snu

−
n )

= s2n∥u−
n ∥2 +

∫
R3

[f(snu
−
n )snu

−
n − 4F (snu

−
n )]dx

≤ ∥u−
n ∥2 +

∫
R3

[f(u−
n )u

−
n − 4F (u−

n )]dx



16 C.O. ALVES, M.A.S. SOUTO AND S.H.M. SOARES

= 4J(u−
n )− J ′(u−

n )(u
−
n )

= 4J(u−
n ) +

∫
R3

ϕu−
n
(u+

n )
2dx,

= 4σ + on(1),

which implies c ≤ σ, contrary to σ < c. Hence, w+ ̸= 0, as claimed.
Similar arguments to those above show that w− ̸= 0, and the proof is
complete. �

Lemma 4.2. If c0 < c+ c∞, there exists a w ∈ M which minimizes J
on M.

Proof. We begin by recalling (equation (3.1)) that there exists a least
energy sign-changing solution un to (APR) for R = n, that is,

J(un) = cn = inf
Mn

J,

where cn = cR and Mn = MR. By Lemma 3.1, cn → c0 as n → ∞.
Moreover, J ′(un)v = 0 for all v ∈ H1

0 (Bn). Since c0 < c + c∞,
un converges weakly to some w ∈ H1(R3) such that w± ̸= 0 by
Lemma 4.1. Using J ′(un)v = 0 for all v ∈ H1

0 (Bn), we get J ′(w) = 0,
and consequently, w ∈ M.

We claim that J(w) = c0. In fact, combining Fatou’s lemma with
Remark 1.1, we have

c0 ≤ J(w)− 1

4
J ′(w)w ≤ lim inf

n→∞

(
J(un)−

1

4
J ′(un)un

)
= c0,

which implies that c0 = J(w). �

Up until now, we have proved that, under condition c0 < c + c∞,
there exists a w ∈ M such that J(w) = c0 and J ′(w) = 0.

5. Estimate on the level c0. This section is devoted to showing
that c0 < c + c∞. The proofs herein are based upon ideas found in
[18]. From now on, set u, v ∈ H1(R3) to be ground state solutions
of (P) and (P∞) given by [2, Theorems 1.3 and 1.5], respectively.
We know that u and v should have defined signs. Without loss of
generality, we will suppose that u and v are positive functions in R3,
J(u) = c, J∞(v) = c∞, J ′(u) = 0 and J ′

∞(v) = 0. Using Moser’s
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and De Giorgi’s iterations, we can show that u and v have exponential
decay, and consequently, ϕv and ϕu have the same behavior. Using this
information, a direct computation gives the next result:

Lemma 5.1. There exist C > 0 and δ > 0 such that, for all R > 0,∫
|x|≥R

(|∇u|2 + u2) dx ≤ Ce−δR,∫
|x|≥R

(|∇v|2 + v2) dx ≤ Ce−δR,∫
|x|≥R

(F (u) + uf(u) + F (v) + vf(v)) dx ≤ Ce−δR,∫
|x|≥R

ϕuv
2dx+

∫
|x|≥R

ϕvu
2dx ≤ Ce−δR.

For each n ∈ N, set vn(x) = v(x + ne1), where e1 = (1, 0, 0) ∈ R3.
The same conclusion for Lemma 5.1 is satisfied by function vn and

(5.1)

∫
R3

ϕuv
2
ndx =

∫
R3

ϕvnu
2dx = O(e−nδ).

Lemma 5.2. Suppose that V satisfies (V2)–(V3) and f satisfies (f2)
and (f5). Then,

sup
(α,β)∈R2

J(αu+ βvn) < c+ c∞,

provided n is sufficiently large.

Proof. We begin by proving that there is an r0 > 0 such that

J(αu+ βvn) ≤ 0 for all (α, β) ∈ R2

such that α2 + β2 ≥ r0 and n ≥ r0. Since J(v) ≤ J∞(v) for all v, it is
sufficient to show that

J∞(αu+ βvn) ≤ 0 for all α2 + β2 ≥ r0, n ≥ r0.

In fact, suppose that J∞ does not satisfy this claim. Thus, for each
n, there are (αn, βn) ∈ R2 such that J∞(αnu + βnvn) > 0 and
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α2
n + β2

n → ∞, that is,

(5.2)
1

2
||αnu+ βnvn||2∗ +

1

4

∫
R3

ϕ(αnu+βnvn)(αnu+ βnvn)
2dx

≥
∫
R3

F (αnu+ βnvn) dx.

We have ||vn||∗ = ||v||∗, and from Lemma 5.1,

(5.3)

∫
R3

(∇u∇vn + V∞uvn) dx = O(e−nδ).

It follows that

(5.4) ||αnu+ βnvn||2∗ = α2
n||u||2∗ + β2

n||v||2∗ +O(e−nδ),

and then σn = ||αnu+ βnvn||∗ → +∞. Set

zn =
αnu+ βnvn

||αnu+ βnvn||∗
,

and suppose that zn ⇀ z. Dividing (5.2) by σ4
n, we have

1

2σ2
n

+
1

4

∫
R3

ϕznz
2
ndx ≥

∫
R3

F (αnu+ βnvn)

(αnu+ βnvn)4
z4n dx.

The boundedness of (zn) together with the above inequality and (f3)
shows that z ≡ 0. Passing to the limit as n → ∞ in the equality,

on(1) =

∫
R3

(∇u∇zn + V∞uzn) dx

= αn||αnu+ βnvn||−1
∗ ||u||2∗

+ βn||αnu+ βnvn||−1
∗

∫
R3

(∇u∇vn + V∞uvn) dx,

we obtain from equations (5.3) and (5.4) that αn||αnu + βnvn||−1
∗

converges to 0. By Lemma 2.1 (iv),

J∞(αnu+ βnvn) = J∞(αnun + βnv),

where un(x) = u(x − ne1). Proceeding exactly as in the previous
argument we can show that βn||αnu + βnvn||−1

∗ converges to 0. From
equation (5.4), zn → 0, which contradicts ||zn||∗ = 1. Hence, the claim
holds for J∞, and, in consequence, for J .
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We now consider n ≥ ro, α
2 + β2 ≤ r0. From equation (5.1) and

Lemma 5.1, there are δ > 0 and C = C(u, v, r0) such that∣∣∣∣ ∫
R3

[F (αu+ βvn)− F (αu)− F (βvn)] dx

∣∣∣∣ ≤ Ce−nδ,∣∣∣∣ ∫
R3

[
ϕ(αu+βvn)(αu+ βvn)

2 − α4ϕuu
2 − β4ϕvnv

2
n

]
dx

∣∣∣∣ ≤ Ce−nδ,∣∣∥αu+ βvn∥2 − α2∥u∥2 − β2∥vn∥2
∣∣ ≤ Ce−nδ.

Hence,

(5.5) J(αu+ βvn) ≤ J(αu) + J(βvn) + Ce−nδ.

Let tn > 0 be such that

J(tnvn) = max
t≥0

J(tvn).

We observe that

J(tnvn) = J∞(tnvn) +

∫
R3

(V (x)− V∞)t2nv
2
ndx

and ∫
R3

(V (x)− V∞)t2nv
2
n dx ≤

∫
|x−ne1|≤1

(V (x)− V∞)t2nv
2
n dx.

For R0 > 0 and ρ, the non-increasing function given by (V3), we have∫
|x−ne1|≤1

(V (x)− V∞)t2nv
2
ndx ≤ −ρ(n+ 1)

∫
|x−ne1|≤1

t2nv
2
n dx,

for every n ≥ R0 + 1. Hence,

(5.6) J(βvn) ≤ J(tnvn) ≤ J∞(tnvn)− ρ(n+ 1)t2n|v|2L2(B1(0))
,

for every n ≥ R0 + 1. By the definition of tn we have

(5.7) tn∥vn∥2 + t3n

∫
R3

ϕvnv
2
ndx =

∫
R3

f(tnvn)vndx =

∫
R3

f(tnv)v dx.

Combining equation (5.7) with the fact

∥vn∥2 = ∥vn∥2∗ + on(1) = ∥v∥2∗ + on(1),
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by (V2)-(V3), and using Lemma 2.1 (iv) and equation (2.1), we get

t2n(∥v∥2∗ + on(1)) ≤ t2n(∥v∥2∗ + on(1)) + t4n

∫
R3

ϕvv
2dx

= tn

∫
R3

f(tnv)vdx

≤ ϵt2n

∫
R3

v2dx+ Ct6n

∫
R3

v6dx,

for some positive constant C. Therefore, there exists τ > 0 such that
t2n ≥ τ for every n. Using equations (5.5), (5.6) and the fact that

J∞(tnvn) = J∞(tnv) ≤ J∞(v) = c∞,

we have

J(αu+ βvn) ≤ J(αu) + J∞(tnvn) + Ce−nδ − t2nρ(n+ 1)|v|2L2(R3)

≤ c+ c∞ + e−nδ
(
C − τ |v|2L2(R3)e

nδρ(n+ 1)
)
,

and the proof follows by the limit condition on ρ in (V3). �

We now have the next lemma.

Lemma 5.3. The number c0 verifies the inequality :

(5.8) c0 < c+ c∞.

Proof. Let u and vn be functions as in the proof of Lemma 5.2. Let

D =

[
1

2
,
3

2

]
×
[
1

2
,
3

2

]
and

Ψ(ξ, τ) =
(
J ′((ξu− τvn)

+)(ξu− τvn)
+, J ′((ξu− τvn)

−)(ξu− τvn)
−) .

Using J ′(u)u = 0 and (f4), we obtain

(5.9) J ′
(
1

2
u

)
1

2
u > 0 and J ′

(
3

2
u

)
3

2
u < 0.



A SIGN-CHANGING SOLUTION 21

Lemma 2.1 (iv), condition (V2) and J ′
∞(v)v = 0 imply that there exists

n0 ∈ N such that

(5.10) J ′
(
1

2
vn

)
1

2
vn > 0 and J ′

(
3

2
vn

)
3

2
vn < 0,

for all n ≥ n0. Since v(x) → 0 as |x| → ∞, it follows from (5.9)–(5.10),
by increasing n0 if necessary, that

J ′
((

1

2
u− τvn

)+)(
1

2
u− τvn

)+

> 0,(5.11)

J ′
((

3

2
u− τvn

)+)(
3

2
u− τvn

)+

< 0,(5.12)

for every n ≥ n0 and τ ∈ [1/2, 3/2], and

J ′
((

ξu− 1

2
vn

)−)(
ξu− 1

2
vn

)−

> 0,(5.13)

J ′
((

ξu− 3

2
vn

)−)(
ξu− 3

2
vn

)−

< 0,(5.14)

for every n ≥ n0 and ξ ∈ [1/2, 3/2]. Noting that the function
Ψ is continuous in D and considering inequalities (5.11)–(5.14), we
can apply Miranda’s theorem [20] and conclude that there exists
(ξ0, τ0) ∈ D such that Ψ(ξ0, τ0) = (0, 0). This gives ξ0u − τ0vn ∈ M
for every n ≥ n0. Consequently,

c0 ≤ J(ξ0u− τ0vn),

which implies

c0 ≤ sup
(α,β)∈R2

J(αu+ βωn).

The lemma follows by combining the last inequality with Lemma 5.2.
�

6. Proof of Theorem 1.2. In this section we establish a proof of
Theorem 1.2. From Sections 5 and 6, there exists a critical point w
of J , which is a sign-changing solution for problem (SP). The proof is
completed by showing that w has exactly two nodal domains. Arguing
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by contradiction, we suppose that

w = u1 + u2 + u3, with ui ̸= 0, u1 ≥ 0, u2 ≤ 0

and
supp (ui) ∩ supp (uj) = ∅ for i ̸= j, i, j = 1, 2, 3,

with supp (ui) denoting the support of ui. Setting v = u1 + u2, we see
that v± ̸= 0. Moreover, using the fact that J ′(w) = 0, it follows that

J ′(v)(v±) ≤ 0.

By Lemma 2.3, there are t, s ∈ (0, 1] such that tv+ + sv− ∈ M, or
equivalently, tu1 + su2 ∈ M, and so,

(6.1) J(tu1 + su2) ≥ c0.

Since w = v + u3, we have w2 = v2 + u2
3 and ϕw = ϕv + ϕu3 . Hence,

(6.2) J(w) = J(v) + J(u3) +
1

2

∫
R3

ϕvu
2
3 dx.

Supposing that u3 ̸= 0, we claim that

(6.3) J(u3) +
1

4

∫
R3

ϕvu
2
3 dx > 0.

In fact, by Remark 1.1 and using J ′(w)u3 = 0 combined with u3 ̸= 0,
we obtain

J(u3) +
1

4

∫
R3

ϕvu
2
3 dx = J(u3) +

1

4

∫
R3

ϕvu
2
3 dx− 1

4
J ′(w)u3

=
1

4
∥u3∥2 +

1

4

∫
R3

(f(u3)u3 − 4F (u3)) dx > 0.

Similar arguments to those above show that

(6.4) J(v) +
1

4

∫
R3

ϕvu
2
3 dx =

1

4
∥v∥2 + 1

4

∫
R3

(f(v)v − 4F (v)) dx.

From (6.1)–(6.4), for every t, s ∈ (0, 1], we have

c0 ≤ J(tu1 + su2)

= J(tu1 + su2)−
1

4
J ′(tu1 + su2)(tu1 + su2)

=
t2

4
∥u1∥2 +

s2

4
∥u2∥2
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+
1

4

∫
R3

[f(tu1 + su2)(tu1 + su2)− 4F (tu1 + su2)] dx

≤ 1

4
∥u1∥2 +

1

4
∥u2∥2

+
1

4

∫
R3

[f(u1 + u2)(u1 + u2)− 4F (u1 + u2)] dx

= J(v) +
1

4

∫
R3

ϕvu
2
3dx

< J(v) +
1

4

∫
R3

ϕvu
2
3dx+ J(u3) +

1

4

∫
R3

ϕvu
2
3dx

= J(v) + J(u3) +
1

2

∫
R3

ϕvu
2
3dx

= J(w) = c0,

which is a contradiction. Therefore, u3 = 0 and w has exactly two
nodal domains. �
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