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A CLASS OF NONLINEAR ELLIPTIC SYSTEMS
WITH STEKLOV-NEUMANN

NONLINEAR BOUNDARY CONDITIONS

JULIANO D.B. DE GODOI, OLÍMPIO H. MIYAGAKI
AND RODRIGO S. RODRIGUES

ABSTRACT. We will study a class of nonlinear elliptic
systems involving Steklov-Neumann boundary conditions.
We obtain results ensuring the existence of solutions when
resonance and nonresonance conditions occur. The results
were obtained by using variational arguments.

1. Introduction. In this work, we will show existence results for
the following class of nonlinear elliptic systems with Steklov-Neumann
boundary conditions:

(1.1)

{
−△ U + C(x)U = f(x, U) in Ω,

∂U/∂η = g(x,U) on ∂Ω,

where

U = (u, v) ∈ H(Ω) ≡ H1(Ω)×H1(Ω), Ω ⊂ RN ,

for N ≥ 2, is a bounded domain with ∂Ω ∈ C0,1, and

∂

∂η

.
= η · ∇

is a normal derivative on ∂Ω. We assume the positive definite matrix
on R2 for x ∈ Ω almost everywhere,

(P) C(x) =

(
a(x) b(x)
b(x) c(x)

)
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with a, b, c ∈ Lp(Ω), for p ≥ N/2, with N ≥ 3 (p > 1, when N = 2).
The nonlinearities f = (f1, f2) and g = (g1, g2) satisfy the following
conditions:

(H1) F,G ∈ C1(Ω× R2,R), and, for all x ∈ Ω,

∇UF (x,U) = f(x,U) and ∇UG(x,U) = g(x,U),

where

∇UF
.
=

(
∂F

∂u
,
∂F

∂v

)
.

(G1) There exist constants Ai
1, A

i
2 > 0 such that

|gi(x, u, v)| ≤ Ai
1 +Ai

2 [|u|+ |v|]s ,

with

0 ≤ s <
N

N − 2
, i = 1, 2,

x ∈ Ω and U = (u, v) ∈ R2.

(F1) There exist constants Bi
1, B

i
2 > 0 such that

|fi(x, u, v)| ≤ Bi
1 +Bi

2 [|u|+ |v|]t ,

with

0 ≤ t <
N + 2

N − 2
, i = 1, 2,

x ∈ Ω and U = (u, v) ∈ R2.

(LG) G satisfies

lim
|U |→+∞

[∇UG(x,U) · U − 2G(x,U)] = +∞,

uniformly almost everywhere x ∈ ∂Ω.

(LF) F satisfies

lim
|U |→+∞

[∇UF (x,U) · U − 2F (x,U)] = +∞,

uniformly almost everywhere x ∈ Ω.

Conditions (LG) and (LF) were used in [9]. There are many
papers treating the Neumann boundary conditions, see for example,
[8, 11, 15, 16, 20], while there are few works involving Steklov
boundary conditions, see for example, [1, 7, 14].
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In [12] (see [2] for Neumann and [3, 4, 5, 6] for Steklov), we
established that the eigensystem,{

−△ U + C(x)U = 0 in Ω,

∂U/∂η = µU on ∂Ω,

admits a sequence of the eigenvalues, which we will call Steklov eigen-
values, (µj), such that

0 < µ1 ≤ µ2 ≤ · · · ≤ µj ≤ · · · −→ +∞, as j → +∞.

In addition, the dimension of the eigenspace associated to the eigen-
value µj is finite, for each j, by the variational characterization of the
first eigenvalues µ1,

(1.2) µ1∥U∥22,∂ ≤ ∥U∥2C , for all U ∈ H(Ω),

where

∥U∥22,∂ = ∥u∥22,∂ + ∥v∥22,∂ and ∥U∥2C = ⟨U,U⟩C ,

with the following inner product for H(Ω):

⟨U, V ⟩C =

∫
Ω

[∇U · ∇V + ⟨C(x)U, V ⟩] dx.

When C = id, we denote ||U ||H =
√

⟨U,U⟩ as the usual norm in H(Ω),
which is an equivalent norm to ∥U∥C .

In our work, we also use the following notation for norms:

∥w∥qq,∂
.
=

∫
∂Ω

|w|qdσ,

∥w∥qq =

∫
Ω

|w|qdx,

and

∥U∥qq = ∥u∥qq + ∥v∥qq,

for U = (u, v) ∈ [Lq(Ω)]2 and w ∈ Lq(Ω), with 1 ≤ q < ∞.

In [12], we also prove that the eigensystem{
−△ U + C(x)U = λU in Ω,

∂U/∂η = 0 on ∂Ω,
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admits a sequence of the eigenvalues, called Neumann eigenvalues, (λj),
such that

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λj ≤ · · · −→ +∞, as j → +∞.

In addition, the dimension of the eigenspace associated to the eigen-
value λj is finite, for each j, by the variational characterization of the
first eigenvalues λ1,

(1.3) λ1∥U∥22 ≤ ∥U∥2C , for all U ∈ H(Ω).

Our results are established in accordance with the interactions of
the nonlinearity on the boundary g, with Steklov spectrum, and the
reaction term f , with Neumann spectrum.

By a weak solution for system (1.1), we mean:

Definition 1.1. U ∈ H(Ω) is a weak solution for system (1.1) when∫
Ω

[∇U · ∇V + ⟨C(x)U, V ⟩] dx =

∫
Ω

f(x,U) ·V dx+

∫
∂Ω

g(x,U) ·V dσ,

for all V ∈ H(Ω).

Our first result describes when the nonlinearities are below the first
eigenvalues.

Theorem 1.2. In addition to (P), (H1), (G1) and (F1), suppose the
following condition:

(A1) There exist constants λ, µ ∈ R such that

lim sup
|U |→+∞

2G(x,U)

u2 + v2
≤ µ < µ1

and

lim sup
|U |→+∞

2F (x,U)

u2 + v2
≤ λ < λ1,

uniformly for x ∈ Ω, with λ1µ + µ1λ < µ1λ1. Then system (1.1)
possesses at least one solution U ∈ H(Ω).



STEKLOV-NEUMANN BOUNDARY SYSTEMS 1523

In Figure 1, the hatched region in the Cartesian plane λµ illustrates
λ1µ+ µ1λ < µ1λ1.

..
λ1

.
λ

.

µ1

.

µ

.
0

FIGURE 1.

In the next result, we study the case where the nonlinearity g is
between two consecutive eigenvalues µj , while the other nonlinearity
can be in resonance with one of the eigenvalues.

Theorem 1.3. Assume (P), (H1), (G1), (F1), (LG) and (LF). In
addition, suppose:

(A2) there exist constants A,B, α, β,M ∈ R such that

µj < A ≤ lim inf
|U |→+∞

2G(x,U)

u2 + v2
≤ lim sup

|U |→+∞

2G(x,U)

u2 + v2
≤ B < µj+1

and

α ≤ lim inf
|U |→+∞

2F (x,U)

u2 + v2
≤ lim sup

|U |→+∞

2F (x,U)

u2 + v2
≤ β,

uniformly for x ∈ Ω, with µjλ1 < λ1A + µjα and λ1B + µj+1β <
µj+1λ1.

(A3) There exists M ∈ R such that, for U ∈ R2,

f(x,Un) · Un − 2F (x,Un) ≥ M,(1.4)

uniformly almost everywhere x ∈ Ω,
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and

g(x,Un) · Un − 2G(x,Un) ≥ M,(1.5)

uniformly almost everywhere x ∈ ∂Ω.

Then system (1.1) has at least one solution U ∈ H(Ω).

In Figure 2, the hatched region in the Cartesian plane λµ illustrates

µjλ1 < λ1A+ µjα

and
λ1B + µj+1β < µj+1λ1.

..
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λ

.

µ1

.
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.
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.

µ

.
0

FIGURE 2.

The next result studies when the nonlinearity f is between two
consecutive eigenvalues λj , while the other nonlinearity can be in
resonance with one of the eigenvalues.

Theorem 1.4. Suppose that the assumptions (P), (H1), (G1), (F1),
(LG) and (LF) are satisfied, and the following conditions hold :

(A4) There exist constants A,B, α, β ∈ R such that

A ≤ lim inf
|U |→+∞

2G(x,U)

u2 + v2
≤ lim sup

|U |→+∞

2G(x,U)

u2 + v2
≤ B

and

λj < α ≤ lim inf
|U |→+∞

2F (x,U)

u2 + v2
≤ lim sup

|U |→+∞

2F (x,U)

u2 + v2
≤ β < λj+1,
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uniformly for x ∈ Ω, with

λjµ1 < λjA+ µ1α

and

λj+1B + µ1β < λj+1µ1.

Then system (1.1) admits at least one solution U ∈ H(Ω).

In Figure 3, the hatched region in the Cartesian plane λµ illustrates

λjµ1 < λjA+ µ1α

and
λj+1B + µ1β < λj+1µ1.

..
λ1

.
λ2

.
λ3

.
λ

.

µ1

.

µ

.
0

FIGURE 3.

The above results extend the results in [17], which were established
in the scalar case.

2. Preliminaries. The proof is accomplished by variational argu-
ments. So, we define the functional associated to system (1.1),

I : H(Ω) −→ R,

given by

I(U) =
1

2

∫
Ω

[
|∇U |2 + ⟨C(x)U,U⟩

]
dx

−
∫
Ω

F (x,U) dx−
∫
∂Ω

G(x,U) dσ.



1526 J.D.B. GODOI, O.H. MIYAGAKI AND R.S. RODRIGUES

From (P), (H1), (G1) and (F1), the functional I ∈ C1(H(Ω),R) and
its Fréchét derivative in U ∈ H(Ω) is given by

I ′(U)V = ⟨U, V ⟩C −
∫
Ω

f(x,U) · V dx−
∫
∂Ω

g(x,U) · V dσ,

for all V ∈ H(Ω).

Proposition 2.1. Suppose (P), (H1), (G1) and (F1) hold. Split the
functional I into I = J1 − J2 − J3. Then the functionals

Ji : H(Ω) −→ R, for i = 2, 3,

are weakly continuous. In addition, the operators J ′
2 and J ′

3 are
compact.

Proof.

Claim. J3 is weakly continuous. Indeed, let (Um = (um, vm)) be a
sequence in H(Ω) and U = (u, v) ∈ H(Ω), such that

Um ⇀ U weakly in (H(Ω), ∥ · ∥C).

Since the embeddingH1(Ω) into Ls+1(∂Ω) is compact for 1 ≤ s+1 <
(2N − 2)/(N − 2), we have, up to a subsequence,

Um −→ U in (
[
Ls+1(∂Ω)

]2
, ∥ · ∥s+1).

By the mean value theorem, there exists θ ∈ (0, 1), such that

|J3(Um)− J3(U)| =
∣∣∣∣ ∫

∂Ω

g (x, θUm + (1− θ)U) · (Um − U) dσ

∣∣∣∣.
Applying the Hölder inequality, we obtain

|J3(Um)− J3(U)| ≤ ∥g (x,Γm(U)) ∥(s+1)/s∥Um − U∥s+1,

where Γm(U) = θUm + (1− θ)U . This verifies our claim, since

∥g (x,Γm(U)) ∥(s+1)/s

is bounded in R.

Claim. J2 is weakly continuous. The proof is similar to that above.
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Claim. J ′
3 is a compact operator. In fact, let (Um) be a bounded

sequence in (H(Ω), ∥ · ∥C). Then, up to a subsequence, we have

Um −→ U in (
[
Ls+1(∂Ω)

]2
, ∥ · ∥s+1);

therefore,
∥g(x,Um)− g(x,U)∥(s+1)/s −→ 0,

as m → ∞. On the other hand,

∥J ′
3(Um)− J ′

3(U)∥∗C ≤ sup
∥V ∥≤1

∫
∂Ω

|g(x, Um)− g(x,U) | ∥V ∥ dσ

≤ C∥g(x, Um)− g(x,U)∥(s+1)/s.

Combining the above facts, the claim is proven.

Claim. J ′
2 is a compact operator. The proof is similar to that

above. �

Definition 2.2. Let (E, ∥ · ∥) be a Banach space and J ∈ C1(E,R).
Then J satisfies the Palais-Smale condition, (PS), if every sequence
(um) in E, is such that

(i) (J(um)) is bounded,
(ii) J ′(um) → 0 in (E∗, ∥ · ∥∗) admits a convergent subsequence in E.

The following proposition arises from the above results.

Proposition 2.3. Assume (P), (H1), (G1) and (F1). If (Um) is a
bounded sequence in (H(Ω), ∥ · ∥C) such that I ′(Um) → 0 in (H(Ω)∗,
∥ · ∥∗C), then (Um) admits a convergent subsequence in E.

Next we define the (PS) condition type, called the Cerami condition,
introduced in [10].

Definition 2.4. Let (E, ∥ · ∥) be a Banach space and J ∈ C1(E,R).
We say that J satisfies the Cerami condition at level c, c ∈ R, (Ce)c,
if, for every sequence (um) in E:
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(Ce-1) J(um) → c as m → +∞,
(Ce-2) (1 + ∥um∥)∥J ′(um)∥∗ → 0 as m → +∞

possess a convergent subsequence in E.

The next proposition gives a sufficient condition for the Cerami
condition.

Proposition 2.5. Let (E, ∥ · ∥) be a Banach space, c ∈ R, and
J ∈ C1(E,R) such that :

(I) Every bounded sequence (um) ⊂ E, such that J(um) → c in
(R, | · |) and J ′(um) → 0 in (E∗, ∥ · ∥∗), admits a convergent
subsequence in E;

(II) There exist constants δ,R, α > 0 such that ∥J ′(u)∥∗∥u∥ ≥ α for
all u ∈ J−1([c− δ, c+ δ]), with ∥u∥ ≥ R.

Then J satisfies the Cerami condition at level c.

Proof. Let (um) be a sequence in E satisfying conditions (Ce-1)
and (Ce-2). Notice that, either ∥um∥ → +∞ as m → +∞, or (um) is
bounded in E. However, if ∥um∥ → +∞ as m → +∞, then, we have
for R > 0 (from (II)), that there exists N0 ∈ N such that ∥um∥ ≥ R
for all m ≥ N0. Moreover, by condition (Ce-1), we obtain N1 ∈ N
with N1 ≥ N0 such that um ∈ J−1([c − δ, c + δ]) for all m ≥ N1.

Consequently, following from condition (II), ∥J ′
(um)∥∗∥um∥ ≥ α, for

all m ≥ N1. Hence, by using (Ce-2), we have for m → +∞ that

α ≤ ∥J
′
(um)∥∗∥um∥ ≤ ∥J

′
(um)∥∗(1 + ∥um∥) −→ 0,

so α ≤ 0, which contradicts condition (II). Therefore, we should have
(un) bounded in E.

Claim. J
′
(um) → 0 on (E∗, ∥ · ∥∗).

Indeed, suppose by contradiction that there are ϵ > 0 and a subse-
quence (uml

) of the sequence (um), such that

∥J
′
(uml

)∥∗ ≥ ϵ, for all l ∈ N.

Then, we obtain

(2.1) ϵ(1 + ∥uml
∥) ≤ ∥J

′
(uml

)∥∗(1 + ∥uml
∥), for all l ∈ N.
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But, since (um) is bounded in E, we have (∥uml
∥) bounded in R, and

thus, we can consider (∥uml
∥) convergent in R, that is, there areK1 ≥ 0

such that ∥uml
∥ → K1 as l → +∞. Then, passing the limit l → +∞ in

(2.1) and using condition (Ce-2), K1ϵ+ ϵ ≤ 0, which is absurd. Thus,
we conclude the proof of the claim.

Now, from this claim and since (un) is bounded in E and (Ce-1)
holds, we obtain from (I) that (um) has a convergent subsequence E.

�

We apply an abstract minimax theorem found in [13, Theorem 7],
which is an extended version of the saddle point theorem due to [18,
Theorem 4.6]).

Proposition 2.6. Let (E, ∥ · ∥) be a Banach space and J ∈ C1(E,R).
Suppose that E = V⊕X with dimV < ∞. There exists an R > 0 such
that

sup
u∈∂D

J(u) ≤ inf
u∈X

J(u)

and J satisfies the Cerami condition (Ce)c at level

c = inf
γ∈H

max
u∈D

J(γ(u)),

with

H = {γ ∈ C(D, E) : γ |∂D= id},
D = {u ∈ V : ∥u∥ ≤ R},

and

∂D = {u ∈ V : ∥u∥ = R}.

Then c ≥ inf
u∈X

J(u) and c is a critical value of J .

The following classic abstract result can be found in [18, 19].

Proposition 2.7. Let (E, ∥ · ∥) be a Banach space. If I ∈ C1(E,R)
is bounded below and satisfies the (PS) condition, then c

.
= inf

E
I is a

critical value of I.
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3. Proof of Theorem 1.2. Recalling that U = (u, v), from (A1)
and given ϵ > 0, there exists a positive constant Mϵ > 0 such that

G(x,U) ≤ 1

2
(µ+ ϵ)(u2 + v2) +Mϵ,(3.1)

for all x ∈ Ω, for all U ∈ R2,

and

F (x,U) ≤ 1

2
(λ+ ϵ)(u2 + v2) +Mϵ,(3.2)

for all x ∈ Ω, for all U ∈ R2.

We shall check the assumptions of Proposition 2.7. Since we already
know that I ∈ C1(H(Ω),R), it suffices to show the following claims.

Claim 1. I is coercive on (H(Ω), ∥ · ∥C), that is, I(U) → +∞ as
∥U∥C → +∞.

Claim 2. I is bounded from below.

Claim 3. I satisfies the Palais-Smale (PS) condition.

Verification of Claim 1. Suppose that ∥U∥C → +∞. By continuity
of the embedding H(Ω) ⊂ L2(∂Ω) and equivalence of the norms ∥ · ∥C
and ∥ · ∥H , we infer that either ∥U∥2,∂ → +∞ or ∥U∥2,∂ ≤ K1, where
K1 > 0 is a constant. First, suppose that ∥U∥2,∂ ≤ K1. From equations
(3.1) and (3.2), we have

(3.3)

I(U) =
1

2
∥U∥2C −

∫
Ω

F (x,U) dx−
∫
∂Ω

G(x,U) dσ

≥ 1

2
∥U∥2C − 1

2
(λ+ ϵ)∥U∥22

− 1

2
(µ+ ϵ)∥U∥22,∂ −Mϵ(|Ω|+ |∂Ω|σ).

If λ < 0, then by (3.3), we conclude that I(U) → +∞ as ∥U∥C → +∞,
taking ϵ > 0 such that λ+ ϵ < 0.
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If λ ≥ 0, from inequalities (1.3) and (3.3) with ϵ > 0 such that
λ+ ϵ > 0, we obtain

(3.4) I(U) ≥ 1

2

(
1− λ

λ1
− ϵ

λ1

)
∥U∥2C−

1

2
(µ+ϵ)∥U∥22,∂−Mϵ(|Ω|+|∂Ω|σ).

Since λ < λ1, choose ϵ > 0, such that

1− λ

λ1
− ϵ

λ1
> 0, λ ≥ 0.

By equation (3.4), we conclude that I(U) → +∞ as ∥U∥C → +∞.

Suppose now that ∥U∥2,∂ → +∞. We have four cases:

Case 1. λ < 0 and µ < 0. From equation (3.3), choosing ϵ > 0 such
that λ+ ϵ > 0 and µ+ ϵ > 0, we obtain

I(U) ≥ 1

2
∥U∥2C −Mϵ(|Ω|+ |∂Ω|σ),

from which it follows that I(U) → +∞ as ∥U∥C → +∞.

Case 2. λ < 0 and µ ≥ 0. Using equations (1.2) and (3.3) for ϵ > 0
such that µ+ ϵ > 0, we get

I(U) ≥ 1

2

(
1− µ

µ1
− ϵ

µ1

)
∥U∥2C −Mϵ(|Ω|+ |∂Ω|σ).

Since µ < µ1, by choosing ϵ > 0 such that

1− µ

µ1
− ϵ

µ1
> 0, µ ≥ 0,

we conclude that I(U) → +∞ as ∥U∥C → +∞.

Case 3. λ ≥ 0 and µ < 0. By assumption, λ < λ1, choose ϵ > 0
such that

1− λ

λ1
− ϵ

λ1
> 0.

From equations (1.3) and (3.3), we have

I(U) ≥ 1

2

(
1− λ

λ1
− ϵ

λ1

)
∥U∥2C −Mϵ(|Ω|+ |∂Ω|σ).

Consequently, if ∥U∥C → +∞, we get I(U) → +∞.
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Case 4. λ ≥ 0 and µ ≥ 0. By equations (1.3) and (3.3), we obtain

(3.5) I(U) ≥ 1

2

(
1− λ

λ1
− ϵ

λ1

)
∥U∥2C − 1

2
(µ+ ϵ)∥U∥22,∂ − C(ϵ),

since λ + ϵ > 0 and µ + ϵ > 0, where C(ϵ)
.
= Mϵ(|Ω| + |∂Ω|σ) is a

positive constant. By hypothesis, λ < λ1, for ϵ > 0, we have

1− λ

λ1
− ϵ

λ1
> 0,

and, using equations (1.2) and (3.5), we infer that

(3.6) I(U) ≥ µ1

2

[(
1− λ

λ1
− µ

µ1

)
− ϵ

(
1

λ1
+

1

µ1

)]
∥U∥22,∂ − C(ϵ).

By hypothesis, λµ1 + µλ1 < λ1µ1. Then, choosing ϵ > 0 such that(
1− λ

λ1
− µ

µ1

)
− ϵ

(
1

λ1
+

1

µ1

)
> 0,

and by using equation (3.6), we conclude that I(U) → +∞ as ∥U∥C →
+∞ (supposing ∥U∥2,∂ → +∞).

Verification of Claim 2. From Claim 1, there exists R1 > 0 such
that

(3.7) I(U) ≥ 1, for all U ∈ H(Ω), with ∥U∥C ≥ R1.

Now, for U ∈ H(Ω) such that ∥U∥C ≤ R1, since ∥ · ∥C and ∥ · ∥H are
equivalent norms in H(Ω), there exists a constant R2 > 0, such that
∥U∥2 ≤ R2 and ∥U∥2,∂ ≤ R2. Using equation (3.3) and recalling that
λ < λ1 and µ < µ1, we infer that, for ϵ > 0 fixed,

I(U) ≥ −1

2
(λ1 + ϵ)R2

2 −
1

2
(µ1 + ϵ)R2

2 −Mϵ (|Ω|+ |∂Ω|σ)
.
= K(ϵ),

that is,

(3.8) I(U) ≥ K(ϵ), for all U ∈ H(Ω), with ∥U∥C ≤ R1.

Combining inequalities (3.7) and (3.8), it follows that I is bounded
from below.

Verification of Claim 3. Let (Um) be a sequence in (H(Ω), ∥ · ∥C)
such that (I(Um)) is bounded in R and I ′(Um) → 0 in (H(Ω)∗, ∥ · ∥∗C)
as m → ∞.
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We claim that (Um) is a bounded sequence in (H(Ω), ∥·∥C). Indeed,
suppose on the contrary that, up to a subsequence, ∥Um∥C → +∞,
as m → +∞. By coercivity of the functional I, we get I(Um) →
+∞, as m → +∞, which is a contradiction, because (I(Um)) is
bounded R. Therefore, (Um) is bounded in (H(Ω), ∥ · ∥C). Finally by
Proposition 2.3, the sequence (Um) admits a convergent subsequence in
(H(Ω), ∥ · ∥C). This means that I satisfies the Palais-Smale condition.

Now, applying Theorem 2.7, we conclude that I possesses at least a
critical point U ∈ H(Ω), that is, I ′(U) = 0. This means that U is a
weak solution for system (1.1). �

4. Proof of Theorem 1.3. Now we will check the assumptions
of Proposition 2.6. Since we already know that I ∈ C1(H(Ω),R), it
suffices to show the following lemmata and claims.

Lemma 4.1. Assume the hypotheses of Theorem 1.3. Suppose that
there exist c ∈ R and a sequence (Un) in H(Ω) such that

∥Un∥C −→ +∞, I(Un) −→ c,

and
∥I ′(Un)∥∗C∥Un∥ −→ 0 as n → +∞.

Then there exists either Ω0 ⊂ Ω with |Ω0| > 0 such that |Un(x)| → +∞
as n → +∞ almost everywhere x ∈ Ω0 or Ω1 ⊂ ∂Ω with |Ω1|σ > 0
such that |Un(x)| → +∞ as n → +∞ almost everywhere x ∈ Ω1.

Proof. By continuity and (A2), for ϵ > 0 there exist Cϵ, Eϵ > 0 such
that

G(x,U) ≤ 1

2
(B + ϵ)(u2 + v2) + Cϵ,(4.1)

for all x ∈ Ω, for all U ∈ R2,

and

F (x,U) ≤ 1

2
(β + ϵ)(u2 + v2) + Eϵ,(4.2)

for all x ∈ Ω, for all U ∈ R2.

Ûn =
Un

∥Un∥C
.
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Then, passing to a subsequence if necessary, there exists U ∈ H(Ω)

such that Ûn ⇀ Û weakly in (H(Ω), ∥ · ∥H). Then, we can assume

Ûn → Û , (
[
L2(Ω)

]2
, ∥ · ∥2) and (

[
L2(∂Ω)

]2
, ∥ · ∥2,∂).

This implies that

(4.3) Ûn(x) −→ Û(x), as n → +∞, almost everywhere x ∈ Ω,

and

(4.4) Ûn(x) −→ Û(x), as n → +∞, almost everywhere x ∈ ∂Ω.

By hypothesis, I(Un) → c as n → +∞. Using inequalities (1.2), (1.3),
(4.1) and (4.2), for n sufficiently large, we obtain

1

2
∥Un∥2C ≤ (c+ 1) +

∫
Ω

F (x,Un) dx+

∫
∂Ω

G(x,Un) dσ

≤ (c+ 1) +
β

2
∥Un∥22 +

B

2
∥Un∥22,∂(4.5)

+ Eϵ|Ω|+ Cϵ|∂Ω|σ +Kn(ϵ),

where
Kn(ϵ) =

ϵ

2

[
λ−1
1 ∥Un∥2C + µ−1

1 ∥Un∥2C
]
.

Now, multiplying (4.5) by ∥Un∥−2
C , we obtain

(4.6)
1

2
≤ c+ ϵ

∥Un∥2C
+

β

2
∥Ûn∥22 +

B

2
∥Ûn∥22,∂ +

ϵ

2

[
λ−1
1 + µ−1

1

]
.

Passing to the limit in (4.6), we infer that

1

2
≤ β

2
∥Û∥22 +

B

2
∥Û∥22,∂ ,

which implies that either |Ω0| > 0 or |Ω1|σ > 0, where

Ω0 = {x ∈ Ω : Û(x) ̸= 0}

and

Ω1 = {x ∈ ∂Ω : Û(x) ̸= 0}.

Combining the above with eqautions (4.3) and (4.4), we conclude for n

large enough, either Ûn(x) ̸= 0 almost everywhere x ∈ Ω0 or Ûn(x) ̸= 0
almost everywhere x ∈ ∂Ω.
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Finally, since Un = ∥Un∥CÛn, we have either, as n → +∞ and
|Un(x)| → +∞ almost everywhere x ∈ Ω0 or |Un(x)| → +∞ almost
everywhere x ∈ Ω1. This proves Lemma 4.1. �

Next, we will prove a compactness condition.

Lemma 4.2. Assume all the hypotheses of Theorem 1.3. Then I
satisfies the Cerami condition (Ce)c for all c ∈ R.

Proof. We shall check conditions (I) and (II) of Proposition 2.5.
The first condition (I) is verified by Proposition 2.3, while for condition
(II), suppose by contradiction, that there exist c ∈ R and a sequence
(Un) in H(Ω) such that

∥Un∥c −→ +∞, I(Un) −→ c(4.7)

and

∥I ′(Un)∥∗C∥Un∥ −→ 0, as n → +∞.

By hypothesis, we have

2I(Un)− I ′(Un)(Un) =

∫
Ω

[f(x, Un)− 2F (x,Un)] dx

+

∫
∂Ω

[g(x,Un)− 2G(x,Un)] dσ.

Consequently, by (4.7),

(4.8) lim
n→+∞

[ ∫
Ω

[f(x,Un)− 2F (x,Un)] dx

+

∫
∂Ω

[g(x, Un)− 2G(x,Un)] dσ

]
= 2c.

By Lemma 4.1, there exists either Ω0 ⊂ Ω with |Ω0| > 0 such that
|Un(x)| → +∞ as n → +∞ almost everywhere x ∈ Ω0 or Ω1 ⊂ ∂Ω with
|Ω1|σ > 0 such that |Un(x)| → +∞ as n → +∞ almost everywhere
x ∈ Ω1. Combining this result with conditions (LF) and (LG), we
obtain

(4.9) lim
n→+∞

[f(x,Un(x)) · Un(x)− 2F (x,Un(x))] = +∞,



1536 J.D.B. GODOI, O.H. MIYAGAKI AND R.S. RODRIGUES

almost everywhere x ∈ Ω0, or

(4.10) lim
n→+∞

[g(x,Un(x)) · Un(x)− 2G(x,Un)(x)] = +∞,

almost everywhere x ∈ Ω1.

Denote Pn(x) = f(x,Un(x)) · Un(x) − 2F (x, Un(x)) and Qn(x) =
g(x, Un(x)) · Un(x) − 2G(x,Un(x)). If equation (4.9) occurs, applying
Fatou’s lemma and by (A3), we have

lim inf
n→+∞

[ ∫
Ω

Pn(x) dx+

∫
∂Ω

Qn(x) dσ

]
≥ lim inf

n→+∞

∫
Ω0

Pn(x) dx+M (|Ω \ Ω0|+ |∂Ω|σ) = +∞,

which is a contradiction to equation (4.8). Thus, equation (4.10) holds.
Arguing as above, we have

lim inf
n→+∞

[ ∫
Ω

Pn(x) dx+

∫
∂Ω

Qn(x) dσ

]
≥ lim inf

n→+∞

∫
Ω1

Qn(x) dσ +M (|Ω|+ |∂Ω \ Ω1|σ) = +∞,

which contradicts equation (4.8). Therefore condition (II) of Proposi-
tion 2.5 holds. This proves Lemma 4.2. �

Let
Mk = {V k

1 , V k
2 , . . . , V k

mk
} ⊂ H(Ω) ∩

[
L2(Ω)

]2
be the C-orthonormal basis of Steklov eigenfunctions associated to µk.
In [12], motivated in part by [4], it was proved that, for j ∈ N fixed,

H(Ω) = Vj ⊕C Xj ,

with dim(Vj) < ∞, where

Vj =

[ j∪
k=1

Mk

]
,

Yj =

[ ∞∪
k=j+1

Mk

]
,
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and

Xj = Yj ⊕C (H0(Ω))
2.

Also, we have

(4.11) ||U ||22,∂Ω ≥ µ−1
j ||U ||2C , for all U ∈ Vj ,

and

(4.12) ||U ||22,∂Ω ≤ µ−1
j+1||U ||2C , for all U ∈ Yj .

We claim the following.

Claim 4.3. There exists a constant R > 0 such that

(4.13) sup
U∈∂D

I(U) ≤ inf
V ∈Xj

I(V ),

with D = {U ∈ Vj : ∥U∥C ≤ R}.

Now assuming the proof of Claim 4.3, by Lemmata 4.1 and 4.2, we
can apply Proposition 2.6 to conclude the proof of Theorem 1.3.

Proof of Claim 4.3. The proof will be accomplished in three steps.

Step 1. Firstly, we will prove that −I is coercive on Vj . Indeed,
using (A2) together with continuity of the functions G and F , given

ϵ > 0, there exists a constant C̃ > 0 such that, if x ∈ Ω and U ∈ R2,
then

(4.14) (A− ϵ)
(u2 + v2)

2
− C̃ ≤ G(x,U) ≤ (B + ϵ)

(u2 + v2)

2
+ C̃

and

(4.15) (α− ϵ)
(u2 + v2)

2
− C̃ ≤ F (x,U) ≤ (β + ϵ)

(u2 + v2)

2
+ C̃.

Consequently, for U = (u, v) ∈ Vj , we have

(4.16)
I(U) =

1

2
∥U∥2C −

∫
Ω

F (x,U) dx−
∫
∂Ω

G(x,U) dσ

≤ 1

2
∥U∥2C + P (x,U) +Q(x,U) + Ĉ,
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where Ĉ is a positive constant,

P (x,U) = −1

2
(α− ϵ)∥U∥22

and

Q(x,U) = −1

2
(A− ϵ)∥U∥22,∂ .

Suppose, without loss of generality, that α ≤ 0 in (A2). Using (A2)
and by inequalities (1.3) and (4.11), we have for ϵ > 0 with A− ϵ > 0,

P (x,U) ≤ −1

2
(α− ϵ)λ−1

1 ∥U∥2C

and

Q(x,U) ≤ −1

2
(A− ϵ)µ−1

j ∥U∥2C .

Inserting the above in (4.16), we obtain

I(U) ≤ 1

2

(
1− α

λ1
− A

µj
+

ϵ

λ1
+

ϵ

µj

)
∥U∥2C + Ĉ.

Finally, since λ1µj < αµj + Aλ1, µj ≥ µ1 > 0 and λ1 > 0, choosing
ϵ > 0 such that A− ϵ > 0 and

1− α

λ1
− A

µj
+

ϵ

λ1
+

ϵ

µj
< 0,

we conclude that I(U) → −∞ as U ∈ Vj and ∥U∥C → +∞. Hence,
−I is coercive on Vj .

Step 2. Now, we will prove that I is coercive on Xj . In fact, for
U ∈ Xj , since Xj = Yj ⊕C H0(Ω), there exist, in a unique way,

U0 ∈ H0(Ω) and U ∈ Yj such that U = U0 + U . From (4.14) and

(4.15) and recalling that U0 and U are C-orthogonal, there exists a
constant C > 0 such that

I(U) =
1

2
∥U0∥2C +

1

2
∥U∥2C −

∫
Ω

F (x,U) dx−
∫
∂Ω

G(x,U) dσ

≥ 1

2
∥U0∥2C +

1

2
∥U∥2C − 1

2
(β + ϵ)∥U∥22 −

1

2
(B + ϵ)∥U∥22,∂ − C.
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Consider, without loss of generality, β ≥ 0 in (A2). By (1.3), and
noticing that ∥U∥2,∂ = ∥U∥2,∂ , U0 and U are C-orthogonal, we have

I(U) ≥ 1

2

(
1− β

λ1
− ϵ

λ1

)
∥U0∥2C

+
1

2

[(
1− β

λ1
− ϵ

λ1

)
∥U∥2C − (B + ϵ)∥U∥22,∂

]
− C.

Combining this inequality with (4.12), we obtain

(4.17)

I(U) ≥ 1

2

(
1− β

λ1
− ϵ

λ1

)
∥U0∥2C

+
1

2

(
1− β

λ1
− B

µj+1
− ϵ

λ1
− ϵ

µj+1

)
∥U∥2C − C.

By hypotheses βµj+1 +Bλ1 < λ1µj+1 λ1 > 0 and B > µj > 0, choose
ϵ > 0 such that

M(ϵ)
.
= 1− β

λ1
− ϵ

λ1
> 0,

and

N(ϵ)
.
= 1− β

λ1
− B

µj+1
− ϵ

λ1
− ϵ

µj+1
> 0.

From this, min{M(ϵ), N(ϵ)} > 0 and by (4.17), we have

I(U) ≥ min{M(ϵ), N(ϵ)}
(
∥U0∥2C + ∥U∥2C

)
= min{M(ϵ), N(ϵ)}∥U∥2C .

This implies that I(U) → +∞, when U ∈ Xj and ∥U∥C → +∞.

This proves Step 2.

Step 3. Conclusion. From Step 2, I is coercive on Xj . Then there
exists an R1 > 0 such that I(U) ≥ 1, for all U ∈ Xj , with ∥U∥C > R1.
In addition, if U ∈ Xj satisfies ∥U∥C ≤ R1, arguing as in the proof of
Step 2, we get

I(U) ≥ min{1,−R2
1} = −R2

1, for all U ∈ Xj .

By Step 1, taking R2 < −R2
1, there exists an R > 0 such that, for all

U ∈ Vj with ∥U∥C ≥ R, we have I(U) < R2 < −R2
1. Consequently,

sup
U∈∂D

I(U) ≤ R2 < −R2
1,
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where D = {U ∈ Vj : ∥U∥C ≤ R}. Combining these, the proof of
Claim 4.3 is complete. �

Now, applying Theorem 2.6, we conclude that I has at least one
critical point U , which is a weak solution of system (1.1). Hence,
Theorem 1.3 is proven. �

5. Proof of Theorem 1.4. We have already shown that I ∈
C1(H(Ω),R), and we can prove that I verifies the Cerami condition
(Ce)c, arguing as in Theorem 1.3. Thus, it is enough to prove the
geometry of Theorem 2.6.

The following result is proven in [12].

Let
Bk = {Uk

1 , U
k
2 , . . . , U

k
τk
} ⊂ H(Ω) ∩

[
L2(Ω)

]2
be an orthonormal basis for the eigenspace associated to λk.

For each j ∈ N fixed, consider Fj , the subspace generated by

Ej = {U1
1 , . . . , U

1
τ1 , . . . , U

j
1 , . . . , U

j
τj},

which has dimension τ1 + τ2 + · · ·+ τj . Then[
L2(Ω)

]2
= Fj ⊕ F⊥

j ,

where

F⊥
j = {U ∈

[
L2(Ω)

]2
: ⟨U, V ⟩2 = 0, for all V ∈ Fj}.

Here, ⟨U, V ⟩2 =
∫
Ω
U · V dx. Also, we obtain the decomposition

H(Ω) = Fj ⊕
[
F⊥
j ∩H(Ω)

]
,

where dimFj < ∞ for j ∈ N fixed. In addition, we have the following
inequalities:

(5.1) ||U ||22 ≥ λ−1
j ||U ||2C , for all U ∈ Fj ,

and

(5.2) ||U ||22 ≤ λ−1
j+1||U ||2C , for all U ∈

[
F⊥
j ∩H(Ω)

]
.

Now, we need the following claim.
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Claim 5.1. There exists an R > 0 such that

sup
U∈∂D

I(U) ≤ inf
V ∈F⊥

j ∩H(Ω)
I(V ),

where D = {U ∈ Fj : ∥U∥C ≤ R}.

Assuming Claim 5.1, and applying Theorem 2.6, the proof of Theo-
rem 1.4 is concluded.

The claim will be proved in three steps.

Proof. Step 1. The functional −I is coercive on Fj . Indeed, from
(A4) and by continuity of G and F , it follows that, given ϵ > 0, there

exists a constant C̃ > 0 such that, for x ∈ Ω and U ∈ R2, we get

(5.3) (A− ϵ)

(
u2 + v2

)
2

− C̃ ≤ G(x, U) ≤ (B + ϵ)

(
u2 + v2

)
2

+ C̃,

and

(5.4) (α− ϵ)

(
u2 + v2

)
2

− C̃ ≤ F (x,U) ≤ (β + ϵ)

(
u2 + v2

)
2

+ C̃.

Using these estimates, for U ∈ Fj , there exists a constant C > 0 such
that

(5.5)
I(U) =

1

2
∥U∥2C −

∫
Ω

F (x,U) dx−
∫
∂Ω

G(x,U) dσ

≤ 1

2
∥U∥2C + P̃ (x,U) + Q̃(x,U) + C,

where

P̃ (x,U) = −1

2
(α− ϵ) ∥U∥22

and

Q̃(x,U) = −1

2
(A− ϵ) ∥U∥22,∂ .

Therefore, assume without loss of generality that A < 0 in (A4). Since
α > λj > 0, from inequalities (1.2) and (5.1), for ϵ > 0, we get

P̃ (x,U) ≤ −1

2
(α− ϵ)λ−1

j ∥U∥2C
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and

Q̃(x,U) ≤ −1

2
(A− ϵ)µ−1

1 ∥U∥2C .

From hypotheses λjµ1 < λjA + µ1α, λj ≥ λ1 > 0 and µ1 > 0, we can
choose ϵ > 0 such that α− ϵ > 0 and

1− A

µ1
− α

λj
+

ϵ

λj
+

ϵ

µ1
< 0.

So, from equation (5.5), we infer that

I(U) ≤ 1

2
∥U∥2C − 1

2
(α− ϵ)λ−1

j ∥U∥2C − 1

2
(A− ϵ)µ−1

1 ∥U∥2C + C

=
1

2

(
1− A

µ1
− α

λj
+

ϵ

λj
+

ϵ

µ1

)
∥U∥2C + C.

Therefore, I(U) → −∞, as U ∈ Fj and ∥U∥C → +∞, that is,
−I(U) → +∞, as U ∈ Fj and ∥U∥C → +∞. Hence, Step 1 is proven.

Step 2. The functional I is coercive on F⊥
j ∩ H(Ω). Indeed, for

U ∈ F⊥
j ∩H(Ω), from equations (5.3) and (5.4), for ϵ > 0 and x ∈ Ω,

there exists a constant C̃ > 0 such that

(5.6)
I(U) =

1

2
∥U∥2C −

∫
Ω

F (x,U) dx−
∫
∂Ω

G(x,U) dσ

≥ 1

2
∥U∥2C + P1(x,U) +Q1(x, U) + C̃,

where P1(x,U) = −(β + ϵ)/2∥U∥22 and Q1(x,U) = −(B + ϵ)/2∥U∥22,∂ .
Consequently, assume without loss of generality that B ≥ 0 in (A4)
and since β > λ1 > 0 from equations (1.2) and (5.2), for ϵ > 0, we get

P1(x,U) ≥ −1

2
λ−1
j+1 (β + ϵ) ∥U∥2C

and

Q1(x,U) ≥ −1

2
µ−1
1 (B + ϵ) ∥U∥2C .

Finally, by hypothesis, λj+1B+µ1β < λj+1µ1 and choosing ϵ > 0 such
that

1− B

µ1
− β

λj+1
− ϵ

µ1
− ϵ

λj+1
> 0,
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we conclude by using equation (5.6) that
(5.7)

I(U) ≥ 1

2
∥U∥2C − 1

2
λ−1
j+1 (β + ϵ) ∥U∥2C − 1

2
µ−1
1 (B + ϵ) ∥U∥2C + C̃

=
1

2

(
1− B

µ1
− β

λj+1
− ϵ

µ1
− ϵ

λj+1

)
∥U∥2C + C̃.

Therefore taking ∥U∥C → +∞ with U ∈ F⊥
j ∩ H(Ω), we obtain

I(U) → +∞, that is, I is coercive on F⊥
j ∩H(Ω).

Step 3. Here we present the conclusion of the prove of the claim.
There exists an R > 0 such that

(5.8) sup
U∈∂D

I(U) ≤ inf
V ∈F⊥

j ∩H(Ω)
I(V ),

where D = {U ∈ Fj : ∥U∥C ≤ R}.

Indeed, by Step 2, I is coercive on F⊥
j ∩ H(Ω). There exists an

R1 > 0 such that I(U) ≥ 1 for all U ∈ F⊥
j ∩H(Ω), with ∥U∥C > R1.

Now, for U ∈ F⊥
j ∩H(Ω) satisfying ∥U∥C ≤ R1, then by equation (5.7),

for ϵ > 0 such that

1− B

µ1
− β

λj+1
− ϵ

µ1
− ϵ

λj+1
> 0,

we have

I(U) ≥ −1

2

(
1− B

µ1
− β

λj+1
− ϵ

µ1
− ϵ

λj+1

)
R2

1
.
= R2.

Consequently,

(5.9) inf
U∈F⊥

j ∩H(Ω)
I(U) ≥ R2.

By Step 1, given R3 < R2, there exists an R > 0 such that, for all
U ∈ Fj with ∥U∥C ≥ R, we get I(U) < R3 < R2. This implies that

(5.10) sup
U∈∂D

I(U) ≤ R3 < R2,

where D = {U ∈ Fj : ∥U∥C ≤ R}. Finally, combining inequalities (5.9)
and (5.10), we have inequality (5.8).
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From Theorem 2.6, the functional I possesses at least one critical
point U ∈ H(Ω), which is a solution for system (1.1). This completes
the proof of Theorem 1.4. �
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