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τ-REGULAR FACTORIZATION IN COMMUTATIVE
RINGS WITH ZERO-DIVISORS

CHRISTOPHER PARK MOONEY

ABSTRACT. Recently there has been a flurry of research
on generalized factorization techniques in both integral do-
mains and rings with zero-divisors, namely, τ -factorization.
There are several ways that authors have studied factoriza-
tion in rings with zero-divisors. This paper focuses on the
method of regular factorizations introduced by Anderson and
Valdes-Leon. We investigate how one can extend the notion
of τ -factorization to commutative rings with zero-divisors
by using the regular factorization approach. The study of
regular factorization is particularly effective because the dis-
tinct notions of associate and irreducible coincide for regular
elements. We also note that the popular U-factorization de-
veloped by Fletcher also coincides since every regular divisor
is essential. This will greatly simplify many of the cumber-
some finite factorization definitions that exist in the litera-
ture when studying factorization in rings with zero-divisors.

1. Introduction. There has been a considerable amount of research
done on the factorization properties of commutative rings, especially
domains. For various aspects of the theory see [3, 13, 22, 27, 28, 32].
Unique factorization domains (UFDs) are well understood and have
been studied extensively over the years. More recently, many authors
have studied rings which satisfy various weakenings of the UFD condi-
tions. These factorization properties of domains have been extended,
in several distinct ways to rings with zero-divisors. Traditionally, in the
domain case, authors have studied prime or irreducible factorizations.
More recently, research has been done on generalizing the types of fac-
torizations that have been studied to include things like co-maximal
factorizations or using ⋆-operations to generalize factorization.
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Of particular interest to the current article is the work of Anderson
and Frazier. This is a survey article, [7], on the study of factoriza-
tion in domains in which the authors introduce τ -factorization. The
use of τ -factorization yields a beautiful synthesis of many of these gen-
eralizations of factorizations studied in the integral domain case. In
many ways, this article was able to consolidate all of the factorization
research in integral domains into a single method of studying factor-
ization. Recently, the author has begun to study methods of extending
this powerful approach of τ -factorization to the case of a commutative
ring with zero-divisors. Because of the numerous approaches that have
been taken to study factorization in rings with zero-divisors, this has
led to many approaches to extending τ -factorization.

The theory of factorization in commutative rings with zero-divisors
was initiated by Anderson, et al., [1, 6, 8, 9, 10] and has been
continued by many authors. Recently, there has been an explosion
of different approaches, by many different authors, of studying the
arithmetic of rings with zero-divisors. For instance, see the work of
Chang, Frei, Frisch, Geroldinger, Smertnig, et al., in [21, 26, 29].

In [42], the author used the methods established by Anderson and
Valdes-Leon in [9] to extend many of the τ -factorization definitions to
also work in rings with zero-divisors. In [43], the author investigated
extending τ -factorization using the notion of U-factorizations first
developed by Fletcher in [24, 25] and then studied extensively by
Axtell, Forman, Roersma and Stickles in [11, 12]. In [44], the author
studied yet another approach to extending τ -factorization, by using
complete factorizations which was touched on in [7] in the case of
integral domains.

In the present article, we concentrate on the approach studied in [10,
Section 5] in which Anderson and Valdes-Leon study what was called
regular factorization. This approach takes advantage of the fact that,
for regular elements, all of the traditionally distinct associate relations
and irreducible elements behave as they do in integral domains, where
they are all equivalent once again. We see that this approach will
greatly simplify matters and in fact unifies many of the previous
methods in [42, 43].

In Section 2, we provide some necessary background definitions and
theorems. In Section 3, we develop many of the definitions of τ -regular-
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factorization, τ -regular irreducible elements as well as τ -regular finite
factorization properties that rings may have. This is done by using
the approach of Anderson and Valdez-Leon in [10, Section 5], where
they restrict their study of τ -factorization to the regular elements
of a commutative ring with 1. In subsection 3.2, we prove several
theorems which describe the relationships between the various τ -regular
finite factorization properties that rings may possess. In Section 4,
we compare this new method of extending τ -factorization with the
previous work in [42] and the relation τr := τ ∩ Reg (R) × Reg (R).
In Section 5, we demonstrate how these τ -regular finite factorization
properties are related to other finite factorization properties defined
in other works, especially [42, 43]. Finally, in Section 6, we study
the τ -regular factorization properties of two particular rings that have
been of much interest recently. These rings are the self-idealization of a
PID, R(D) in [21] and Zpn [X] studied in [26]. We see which of the τ -
factorization, τ -U-factorization and τ -regular factorization properties
studied in [42, 43] and the present paper are satisfied by these rings.
We hope this motivates some future questions to be answered about
an even larger class of rings, such as Mori, v-Marot, Krull and C-rings,
that have been of interest in the literature on commutative rings with
zero-divisors.

2. Preliminary definitions and results. We will assume R is a
commutative ring with 1 ̸= 0. Let R∗ = R − {0}, let U(R) be the set
of units of R and let R# = R∗−U(R) be the non-zero, non-units of R.
As in [9], we let a ∼ b if (a) = (b), a ≈ b if there exists λ ∈ U(R) such
that a = λb, and a ∼= b if

(1) a ∼ b

and

(2) a = b = 0 or, if a = rb for some r ∈ R, then r ∈ U(R).

We say a and b are associates (respectively strong associates, very
strong associates) if a ∼ b (respectively a ≈ b, a ∼= b). As in [5], a ring
R is said to be strongly associate (respectively very strongly associate)
ring if for any a, b ∈ R, a ∼ b implies a ≈ b (respectively a ∼= b).

2.1. τ-factorization in rings with zero-divisors. Let τ be a rela-
tion on R#, that is, τ ⊆ R#×R#. We will always assume further that
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τ is symmetric. For non-units a, ai ∈ R, and λ ∈ U(R), a = λa1 · · · an
is said to be a τ -factorization if aiτaj for all i ̸= j. If n = 1, then this
is said to be a trivial τ -factorization. Given the above τ -factorization,
we would say that ai is a τ -factor of a or write ai |τ a.

As in [42], we say τ is multiplicative (respectively divisive) if for
a, b, c ∈ R# (respectively a, b, b′ ∈ R#), aτb and aτc imply aτbc
(respectively aτb and b′ | b imply aτb′). We say τ is associate
(respectively strongly associate, very strongly associate) preserving if,
for a, b, b′ ∈ R# with b ∼ b′ (respectively b ≈ b′, b ∼= b′) aτb implies
aτb′. A τ -refinement of a τ -factorization λa1 · · · an is a factorization of
the form,

(λλ1 · · ·λn)b11 · · · b1m1 · b21 · · · b2m2 · · · bn1 · · · bnmn ,

where ai = λibi1 · · · bimi
is a τ -factorization for each i. We say that τ is

refinable if every τ -refinement of a τ -factorization is a τ -factorization.
We say τ is combinable if whenever λa1 · · · an is a τ -factorization, then
so is each λa1 · · · ai−1(aiai+1)ai+2 · · · an.

We now pause to supply the reader with a few examples of partic-
ularly useful or interesting τ -relations to give an idea of the power of
τ -factorization.

Example 2.1. Let R be a commutative ring with 1.

(i) τ = R# × R#. This yields the usual factorizations in R and |τ
is the same as the usual divides. τ is multiplicative and divisive
(hence associate preserving as we shall soon see).

(ii) τ = ∅. For every a ∈ R#, there is only the trivial factorization
and a | τ b ⇔ a = λb for λ ∈ U(R) ⇔ a ≈ b. Again, τ is both
multiplicative and divisive (vacuously).

(iii) Let S be a non-empty subset of R#, and let τ = S × S, aτb ⇔
a, b ∈ S. So τ is multiplicative (respectively divisive) if and
only if S is multiplicatively closed (respectively closed under non-
unit factors). A non-trivial τ -factorization is up to unit factors a
factorization into elements from S.

(iv) Let ⋆ be a star-operation on R and define aτb ⇔ (a, b)⋆ = R, that
is a and b are ⋆-coprime or ⋆-comaximal. This particular operation
has been studied more in depth by Juett [33]. When ⋆ = d, the
identity star operation, we get the co-maximal factorizations of
McAdam and Swan [41].
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(v) Let aτzb ⇔ ab = 0. Then every a ∈ R# is a τ -atom. The only
nontrivial τ -factorizations are 0 = λa1 · . . . · an where ai · aj = 0
for all i ̸= j. This example was studied extensively in [42] and
has a close relationship with zero-divisor graphs.

(vi) Let aτb ⇔ a, b ∈ Reg (R). Then this gives us the regular
factorization studied in [1]. This is the inspiration for Section 3.

(vii) Letting τ ⊆ R# × R#, then we define τreg := τ ∩ (Reg (R) ×
Reg (R)). Because the collection of regular elements is a satu-
rated, multiplicatively closed set, this has the effect of only allow-
ing trivial factorizations of the zero-divisors. This is the type of
τ -factorization we would like to use to compare with the notion
of τ -factorizations by way of the regular factorizations studied in
[10]. This will be studied more in depth in Section 4.

We now summarize several of the definitions given in [42, 44]. Let
a ∈ R be a non-unit. Then a is said to be τ -irreducible or τ -atomic
if for any τ -factorization a = λa1 · · · an, we have a ∼ ai for some i.
We will say a is τ -strongly irreducible or τ -strongly atomic if for any
τ -factorization a = λa1 · · · an, we have a ≈ ai for some ai. We will
say that a is τ -m-irreducible or τ -m-atomic if for any τ -factorization
a = λa1 · · · an, we have a ∼ ai for all i. Note that the m is for
“maximal” since such an a is maximal among principal ideals generated
by elements which occur as τ -factors of a. As in [44], a ∈ R is said to
be a τ -unrefinable atom if a admits only trivial τ -factorizations. We
will say that a is τ -very strongly irreducible or τ -very strongly atomic if
a ∼= a and a has no non-trivial τ -factorizations. See [42, 44] for more
equivalent definitions of these various forms of τ -irreducibility.

We have the following relationship between the various types of τ -
irreducibles which is proved in [42, Theorem 3.9] as well as [44].

Theorem 2.2. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let a ∈ R be a non-unit. The following
diagram illustrates the relationship between the various types of τ -
irreducibles and might satisfy where ≈ represents R being a strongly
associate ring.
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Following Bouvier, a ring R is said to be présimplifiable if x = xy
implies x = 0 or y ∈ U(R) as in [14, 15, 16, 17]. When R is
présimplifiable, the various associate relations coincide. As seen in [42],
for non-zero elements, if R is présimplifiable, then τ -irreducible will
imply τ -very strongly irreducible and the various types of irreducible
elements will also coincide. Any integral domain or quasi-local ring is
présimplifiable. Examples are given in [9] and abound in the literature
which show that in a general commutative ring setting, each of these
types of irreducible elements are distinct. For further discussion of the
different τ -irreducible elements, the reader is directed to [42].

This leads to the following τ -finite factorization properties that a
commutative ring may possess given a particular choice for τ , defined
in [42, 44]. Let α ∈ {atomic, strongly atomic, m-atomic, unrefinably
atomic, very strongly atomic}, β ∈ {associate, strongly associate,
very strongly associate} and τ a symmetric relation on R#. Then
R is said to be τ -α if every non-unit a ∈ R has a τ -factorization
a = λa1 · · · an with ai being τ -α for all 1 ≤ i ≤ n. We will call
such a factorization a τ -α-factorization. We say R satisfies the τ -
ascending chain condition on principal ideals (ACCP) if for every chain
(a0) ⊆ (a1) ⊆ · · · ⊆ (ai) ⊆ · · · with ai+1 |τ ai, there exists an N ∈ N
such that (ai) = (aN ) for all i > N .

A ring R is said to be a τ -α-β-unique factorization ring (UFR) if

(1) R is τ -α and
(2) for every non-unit a ∈ R any two τ -α factorizations a = λ1a1 · · · an =

λ2b1 · · · bm have m = n and there is a rearrangement so that ai and
bi are β.

A ring R is said to be a τ -α-half factorization ring or half factorial ring
(HFR) if

(1) R is τ -α and
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(2) for every non-unit a ∈ R any two τ -α-factorizations have the same
length.

A ring R is said to be a τ -bounded factorization ring (BFR) if for every
non-unit a ∈ R, there exists a natural number N(a) such that for any
τ -factorization a = λa1 · · · an, n ≤ N(a). A ring R is said to be a τ -β-
finite factorization ring (FFR) if for every non-unit a ∈ R there are only
a finite number of non-trivial τ -factorizations up to rearrangement and
β. A ring R is said to be a τ -β-weak finite factorization ring (WFFR)
if for every non-unit a ∈ R, there are only finitely many b ∈ R such
that b is a non-trivial τ -divisor of a up to β. A ring R is said to be a
τ -α-β-divisor finite ring (df ring) if for every non-unit a ∈ R, there are
only finitely many τ -α τ -divisors of a up to β.

These result in the following diagram accompanying [42, Theorem
4.1] illustrating the relationship between the various τ -finite factor-
ization properties in rings with zero-divisors, where ∇ represents τ
refinable.

τ-α-HFR

∇
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MMM
MMM
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M
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τ-β-WFFR

��

∇
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lll

lll
lll
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2.2. τ-U-factorization definitions. In this section we briefly present
the requisite τ -U-factorization definitions and results from [43]. As in
[12], we define U-factorization as follows. Let a ∈ R be a non-unit. If
a = λa1 · · · anb1 · · · bm is a factorization with λ ∈ U(R), ai, bi ∈ R#,
then we will call

a = λa1a2 · · · an ⌈b1b2 · · · bm⌉

a U-factorization of a if

(1) ai(b1 · · · bm) = (b1 · · · bm) for all 1 ≤ i ≤ n and

(2) bj(b1 · · · b̂j · · · bm) ̸= (b1 · · · b̂j · · · bm) for 1 ≤ j ≤ m where b̂j means
bj is omitted from the product.



1316 CHRISTOPHER PARK MOONEY

Here (b1 · · · bm) is the principal ideal generated by b1 · · · bm. The bi’s in
this particular U-factorization above will be referred to as essential
divisors. The ai’s in this particular U-factorization above will be
referred to as inessential divisors. A U-factorization is said to be trivial
if there is only one essential divisor.

A τ -U-factorization of a non-unit a ∈ R is a U-factorization

a = λa1a2 · · · an ⌈b1b2 · · · bm⌉

for which λa1 · · · anb1 · · · bm is also a τ -factorization.

Given a symmetric relation τ on R#, we say R is τ -U-refinable if for
every τ -U-factorization of any non-unit a ∈ U(R),

a = λa1 · · · an ⌈b1 · · · bm⌉ ,

any τ -U-factorization of an essential divisors,

bi = λ′c1 · · · cn′ ⌈d1 · · · dm′⌉

satisfies

a = λλ′a1 · · · anc1 · · · cn′ ⌈b1 · · · bi−1d1 · · · dm′bi+1 · · · bm⌉

is a τ -U-factorization.

Let α ∈ {irreducible, strongly irreducible, m-irreducible, unrefinably
irreducible, very strongly irreducible}. Let a be a non-unit. If

a = λa1a2 · · · an ⌈b1b2 · · · bm⌉

is a τ -U-factorization, then this factorization is said to be a τ -U-α-
factorization if it is a τ -U-factorization and the essential divisors bi are
τ -α for 1 ≤ i ≤ m.

We now define the finite factorization properties using the τ -U-
factorization approach. Let α ∈ {irreducible, strongly irreducible, m-
irreducible, unrefinably irreducible, very strongly irreducible} and let
β ∈ {associate, strongly associate, very strongly associate}. R is said
to be τ -U-α if for all non-units a ∈ R, there is a τ -U-α-factorization
of a. R is said to satisfy τ -U-ACCP (ascending chain condition on
principal ideals) if every properly ascending chain of principal ideals
(a1) ( (a2) ( · · · such that ai+1 is an essential divisor in some τ -U-
factorization of ai, for each i terminates after finitely many principal
ideals. R is said to be a τ -U-BFR if for all non-units a ∈ R, there is
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a bound on the number of essential divisors in any τ -U-factorization
of a.

R is said to be a τ -U-β-FFR if for all non-units a ∈ R, there are only
finitely many τ -U-factorizations up to rearrangement of the essential
divisors and β. R is said to be a τ -U-β-WFFR if for all non-units
a ∈ R, there are only finitely many essential divisors among all τ -U-
factorizations of a up to β. R is said to be a τ -U-α-β-divisor finite (df)
ring if for all non-units a ∈ R, there are only finitely many essential
τ -α divisors up to β in the τ -U-factorizations of a.

R is said to be a τ -U-α-HFR if R is τ -U-α and for all non-units
a ∈ R, the number of essential divisors in any τ -U-α-factorization of a
is the same. R is said to be a τ -U-α-β-UFR if R is a τ -U-α-HFR and
the essential divisors of any two τ -U-α-factorizations can be rearranged
to match up to β.

The following diagram summarizes the main results from [43, Theo-
rem 4.3, Theorem 4.4] where ≈ represents R being strongly associate, †
represents R is τ -U-refinable, and ∇ represents τ is associate preserving
and refinable:
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3. τ-regular factorization. We will denote the set of regular ele-
ments in a ring R by Reg (R), so R − Z(R) = Reg (R). We will use
Reg (R)# to denote the regular elements which are not units. The pri-
mary benefit of looking at the factorization of the regular elements is
that for regular elements, all of the associate relations coincide. That
is, let a, b ∈ Reg (R), then a ∼ b implies a ∼= b. Suppose a = rb. Neither
a nor b can be zero, or else they could not be regular elements since we
assume R has an identity which is not zero. But a ∼ b implies there
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is an s ∈ R such that b = sa. Thus a = rb = r(sa) = (rs)a, but a is
regular, so a(1− rs) = 0 implies rs− 1 = 0 or rs = 1 and r ∈ U(R) as
desired. Another important consequence is that, for a regular element,
we always have a ∼= a. This means that for a regular, non-unit element
a ∈ Reg (R), if a is irreducible, then a is very strongly irreducible. As a
consequence, for a regular, non-unit a ∈ R we can simply refer to it as
irreducible without any ambiguity. We will soon see that this simplifies
matters considerably.

3.1. τ-regular factorization definitions. Let τ be a symmetric
relation on R#. A τ -factorization, a = λa1 · · · an with λ ∈ U(R),
and aiτaj for all i ̸= j is said to be a τ -regular-factorization or τ -r-
factorization if a ∈ Reg (R). Note that a is regular if and only if ai is
regular for each 1 ≤ i ≤ n.

Proposition 3.1. Let R be a commutative ring with 1 and let τ be
a symmetric relation on R#. Given a ∈ Reg (R), the following are
equivalent.

(i) For any τ -regular-factorization, a = λa1 · · · an, we have a ∼ ai
for some 1 ≤ i ≤ n.

(ii) For any τ -regular-factorization, a = λa1 · · · an, we have a ≈ ai
for some 1 ≤ i ≤ n.

(iii) For any τ -regular-factorization, a = λa1 · · · an, we have a ∼ ai
for all 1 ≤ i ≤ n.

(iv) The only τ -regular factorizations of a are of the form a =
λ(λ−1a).

(v) a ∼= a and for any τ -regular-factorization, a = λa1 · · · an, we have
a ∼= ai for some 1 ≤ i ≤ n.

Proof. (v)⇒ (iv). Suppose a = λa1 · · · an is a τ -regular factorization
with n ≥ 2. Then by hypothesis a ∼= ai for some 1 ≤ i ≤ n. Then

a = (λa1 · · · ai−1âiai+1 · · · an)ai

implies that (λa1 · · · ai−1âiai+1 · · · an) is a unit. Hence the factorization
was a trivial factorization to begin with.

(iv) ⇒ (iii) is immediate. After noting that any divisor of a regular
element must be regular and hence ∼, ≈ and ∼= coincide, it is clear that
(iii) ⇒ (ii) and (ii) ⇒ (i).
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(i) ⇒ (v). Since a is regular by hypothesis, a ∼= a and again ∼, ≈
and ∼= coincide on any divisors of a regular element, completing the
proof. �

We say that a non-unit, a ∈ Reg (R) is τ -r-irreducible or a τ -r-
atom if a satisfies any of the above equivalent conditions. We say R
is τ -r-atomic if for all a ∈ Reg (R)#, there is a τ -r-factorization into
τ -r-irreducible elements. R satisfies τ -r-ACCP if for every chain of
principal ideals generated by regular elements (a1) ( (a2) ( · · · (ai) (
· · · with ai+1 occurring as a τ -divisor in some τ -r-factorization of ai
for all i becomes stationary.

R is a τ -r-half factorization ring (HFR) if

(1) R is τ -r-atomic and
(2) if λa1 · · · am = µb1 · · · bn are two τ -r-atomic τ -factorizations implies

that m = n.

R is said to be a τ -r-unique factorization ring (UFR) if R is a τ -r-
HFR and there is a rearrangement of any two τ -r-atomic factorizations
as above such that ai ∼ bi for all 1 ≤ i ≤ n = m. We define the
τ -regular-elasticity as τ -r-ρ(R) = sup{ρ(a) | a ∈ Reg (R)#} where

ρ(a) = sup

{
m

n
|λa = a1 · · · am = µb1 · · · bnare τ -atomic-factorizations

}
.

Then it is clear that R is a τ -r-HFR if and only if R is τ -atomic and
τ -r-ρ(R)=1.

R is said to be a τ -r-bounded factorization domain (BFR) if for
every a ∈ Reg (R) there exists a natural number Nr(a) such that for
all τ -r-factorizations a = λa1 · · · an, we have n ≤ Nr(a). R is said to
be a τ -r-irreducible-divisor-finite ring (idf ring) if each a ∈ Reg (R)#

has at most a finite number of τ -r-irreducible τ -divisors (up to order
and associates). R is said to be a τ -r-finite factorization ring (FFR)
if for every a ∈ Reg (R)#, a has only a finite number (up to order
and associates) of τ -factorizations. R is said to be a τ -r-weak finite
factorization ring (WFFR) if for every a ∈ Reg (R)# there are only a
finite number of τ -divisors (up to order and associates).

3.2. τ-regular factorization results. We begin with a useful lemma
by Dickson [23].
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Lemma 3.2 (Dickson’s theorem [23]). Let S = N×· · ·×N be the direct
Cartesian product of n copies of N. Let (a1, . . . , an) ≤ (b1, . . . , bn) in
S if and only if ai ≤ bi for 1 ≤ i ≤ n. This is a partial ordering on S.
If ∅ ≠ X ⊆ S, then X has only finitely many minimal elements.

Proposition 3.3. Let R be a commutative ring with 1. Let τ be
a symmetric relation on R# with τ refinable, then the following are
equivalent.

(i) R is a τ -r-FFR.
(ii) R is a τ -r-WFFR.
(iii) R is a τ -r-atomic τ -r-idf ring.
(iv) R is τ -r-atomic and each a ∈ Reg (R)#, a has only finitely many

τ -r-atomic τ -factorizations up to order and associates.
(v) For all a ∈ Reg (R)#, there are only finitely many b ∈ Reg (R)#

up to associate such that b occurs as a τ -factor in a τ -r-
factorization of a.

(vi) For all a ∈ Reg (R)#, (a) is contained in only finitely many
principal ideals (b) where b ∈ Reg (R)# such that b occurs as
a τ -factor in a τ -r-factorization of a.

(vii) For all a ∈ Reg (R)#, there are only finitely many b ∈ Reg (R)#

up to associate such that b |τ a.
(viii) For all a ∈ Reg (R)#, (a) is contained in only finitely many

principal ideals (b) where b ∈ Reg (R)# such that b |τ a.

Proof. (i) ⇒ (ii). Letting R be a τ -r-FFR and a ∈ Reg (R)#, then
there are only a finite number of τ -factorizations (up to order and
associate), each of finite length. Hence, since every τ -divisor of a must
be among these up to associate, R is a τ -r-WFFR.

(ii)⇒ (iii). Let R be a τ -r-WFFR and a ∈ Reg (R)#. If a has a finite
number of τ -divisors, then certainly it has a finite number of irreducible
τ -divisors, so it suffices to show a has a τ -r-atomic factorization. We
instead show the stronger condition, that R satisfies τ -r-ACCP, that
is, any chain of principal ideals generated by regular elements

(a0) ( (a1) ( · · · ( (ai) ( · · ·

with ai+1 occurring as a τ -factor in a τ -r-factorization of ai and
ai ∈ Reg (R)# for all i comes to a halt. Suppose there is an infinite
chain, but then each ai is a τ -divisor of a0 and none of them is associate
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since each containment is proper. Therefore we would have an infinite
number of non-associate τ -r-divisors contradicting the fact that R is a
τ -r-WFFR (note, here we emphasize that τ is refinable to ensure that
at each step we retain a τ -factorization).

(iii) ⇒ (i). We use Dickson’s theorem and modify the proof of [2,
Theorem 4]. Let R be a τ -r-atomic τ -r-idf ring and a ∈ Reg (R)#.
Let a1, . . . , an be the τ -r-irreducible τ -factors of a representatives up
to associate. In particular, they are all regular elements of R since they
divide a regular element. Because τ is refinable and R is τ -r-atomic,
any τ -r-factorization of a = λb1 · · · bn can be τ -refined into a τ -r-atomic
factorization, it suffices to show that there are a finite number of τ -r-
atomic factorizations of a up to rearrangement and associate.

Given any τ -r-atomic factorization of a, since τ is refinable, we can
replace each τ -atomic factor with one from the list a1, . . . , an and
collect all the unit multiples in the front with the λ ∈ U(R). Thus,
given any τ -r-atomic factorization of a, we let ei represent the number
of not necessarily distinct τ -r-factors in the τ -factorization which are
associates of ai. We then could group the terms together based on the
associates of the n given τ -r-atomic divisors of a as follows

a = λae11 · ae22 · · · aenn .

Then ei is a non-negative integer for each 1 ≤ i ≤ n representing the
number of times an associate of ai appears as a factor in the given τ -r-
atomic factorization of a. Consider the set X = {(e1, . . . , en)}, which
stem from the τ -r-atomic factorizations in this way. Since R is τ -r-
atomic, X ̸= ∅. We use the partial ordering provided by Lemma 3.2.
Let (ei), (fi) ∈ X be such that (ei) ≤ (fi). If (ei) ̸= (fi), then there is
some ei < fi, 1 ≤ i ≤ n. Without loss of generality, we suppose it is
e1 < f1. This would imply that

(a) = (af11 · af22 · · · afnn ) ( (ae11 · af22 · · · afnn ) = (ae11 ae22 · · · aenn ) = (a).

This is a contradiction, so each element of X is in fact minimal in
X. By Dickson’s theorem, the set of minimal elements is finite. This
means X itself must be finite. Hence there are only a finite number
of τ -r-atomic factorizations of a up to rearrangement and associates.
Thus R is a τ -r-FFR as desired.

(i) ⇒ (iv). This is clear as we have already seen that a τ -r-FFR is τ -
r-atomic and a τ -r-atomic factorization is certainly a τ -r-factorization,
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so there must be a finite number of τ -r-atomic factorizations up to
order and associate for every a ∈ Reg (R)#.

(iv) ⇒ (iii). Letting a ∈ Reg (R)#, then there are a finite number
of τ -r-atomic factorizations, each of which has a finite number of τ -r-
atomic factors. Therefore the collection of τ -r-atomic divisors is finite,
so R is a τ -r-atomic τ -r-idf ring.

(v) and (vi) are restatements of (ii) and their equivalence is imme-
diate. Furthermore, (v) and (vii) (respectively (vi) and (viii)) are seen
to be equivalent after noting that for b ∈ Reg (R), a |τ b implies there
is some τ -factorization b = λaa1 · · · an, but since b is regular and the
set of regular elements is saturated, every τ -factor must be regular so
this is really a τ -factorization. �

Theorem 3.4. Let R be a commutative ring with 1, with τ a symmetric
relation on R#. We have the following :

(i) R is a τ -r-UFR implies R is a τ -r-HFR.
(ii) For τ refinable, R is a τ -r-HFR implies R is a τ -r-BFR.
(iii) For τ refinable, R is a τ -r-UFR implies R is a τ -r-FFR.
(iv) R is a τ -r-FFR implies R is a τ -r-BFR.
(v) For τ refinable, R is a τ -r-BFR implies R satisfies τ -r-ACCP.
(vi) For τ refinable, R satisfies τ -r-ACCP implies R is τ -r-atomic.

Proof.

(i) This is immediate from the definition.

(ii) Let R be a τ -r-HFR. Suppose a = λa1 · · · an is a τ -r-atomic
factorization. We claim Nr(a) = n. Let a = µb1 · · · bm be a τ -
r-factorization of a. Since R is τ -r-atomic, we can find τ -r-atomic
factorizations for bi, 1 ≤ i ≤ m. We have assumed τ to be refinable, so
we can replace each bi with the corresponding τ -r-atomic factorization
and collect the units in front of the factorization and retain a τ -r-
factorization which is τ -atomic and thus must have length n. The
refinement process can only increase the length of the factorization, so
the length of the original factorization is no longer than n, proving the
claim.

(iii) We show for τ -refinable, R a τ -r-UFR, R is a τ -r-atomic τ -r-idf-
ring which has been shown in Theorem 3.3 to be equivalent to being a
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τ -r-FFR. Since R is a τ -r-UFR, we get τ -r-atomic for free. Furthermore,
any τ -atomic factorization of a ∈ Reg (R)# has the same length, say
n, and can be reordered so that the associates match up. This tells us
there are precisely n τ -irreducible divisors of a up to associate; hence,
R is a τ -r-idf-ring.

(iv) Suppose R is a τ -r-FFR; by definition, we know R is τ -r-atomic.
Now, let a ∈ Reg (R)# and let S be the finite set of all τ -atomic factors
of a. Set N(a) = |S|. Letting a = λa1 · · · an be a τ -atomic factorization
of a, then ai ∈ S for all i, but then {ai}ni=1 ⊆ S and hence is finite and
n ≤ N(a) = |S| as desired. So R is a τ -r-BFR.

(v) Let R be a τ -r-BFR, and suppose for a moment that R does
not satisfy τ -r-ACCP. There must exist an infinite sequence {ai}∞i=1 ⊆
Reg (R)# such that an+1 |τ an, but an+1 ̸∼ an for all n ≥ 1. Let
an = λn+1rn+11 · · · rn+1sn+1an+1 be a τ -factorization of an for all
n ≥ 1. But then we have

a1 = λ2r21 · · · r2s2a2 = λ2r21 · · · r2s2λ3r31 · · · r3s3a3 = · · ·

is a τ -factorization (note we use τ refinable here). This shows that we
can find arbitrarily large τ -factorizations of a1, which contradicts the
fact the R is a τ -r-BFR.

(vi) Let R satisfy τ -r-ACCP, but suppose that R is not τ -r-atomic.
Then there exists a ∈ Reg (R)# with no τ -factorization into τ -atoms. a
itself cannot be a τ -atom, so say a = λa1 · · · an is a τ -factorization with
n > 1. Now again, some ai must not be a product of τ -atoms, or with τ
refinable, we could find a τ -atomic factorization, say a1. Then a1 |τ a
and a1 ̸∼ a produce b1 = a1. Then a1 must have a τ -factorization
a1 = λ2a21 · · · a2n2

where n2 > 1. Again, one of the τ -factors, say a21
cannot be a τ -product of τ -atoms. Here a21 |τ a1 = b1 and a21 ̸∼ a1.
Put b2 = a21 . Continuing in this fashion, we obtain a sequence {bi}∞i=1

of elements of Reg (R)# such that bn+1 |τ bn but bn+1 ̸∼ bn for every
n ≥ 1. This contradicts R satisfying τ -r-ACCP. �

The following diagram summarizes our result where ∇ represents τ
refinable.

4. τreg-factorizations. In this section, we study another approach
which could have been used to extend τ -factorization to commutative
rings with zero-divisors using regular factorizations. In Section 3, we
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τ-r-HFR

∇

#+P
PPP

PPP
PPP

P

PPP
PPP

PPP
PP

τ-ACCP

��
τ-r-UFR

3;nnnnnnnnnnn

nnnnnnnnnnn ∇ +3 τ-r-FFR +3 τ-r-BFR
∇ +3 τ-r-ACCP

∇ +3 τ-r-atomic

τ-r-WFFR

��
∇

KS

#+P
PPP

PPP
PPP

P

PPP
PPP

PPP
PP

τ-r-atomic τ-r-idf

��
∇

KS

+3 τ-r-idf

decided to consider only factorizations of the regular elements. In other
words, we chose to restrict the elements we attempt to factor to the
regular elements of a commutative ring R. We could have instead
chosen to restrict the relation τ itself. This gives us the benefit of
not completely ignoring a possible large number of zero-divisors in the
ring R, but at the cost of choosing a less natural relation τ . Moreover,
it allows us to use much of the work done previously in [42] by just
picking a different τ and keeping all of the original definitions the same.
It turns out that, in many ways, either choice is fine and we end up
at the same place anyway. Studying this will be the motivation of this
section.

Let R be a commutative ring with 1 and τ a symmetric relation on
R#. Then we define a new relation

τreg := τ ∩ (Reg (R)× Reg (R)) .

We may now pursue the τ -factorizations using the approach from
[42] and look at factoring all the non-units in R instead of just the
regular elements. There is certainly a very close relationship between
τreg-factorizations and τ -regular factorizations; however, there are a
few subtle differences that cause some problems, especially with the
definition of τreg-very strongly atomic elements. In, [42], the author
insisted that part of a being τ -very strongly atomic was that a ∼= a.

The fact that the very strongly associate relation need not be
reflexive is the main reason there is not a perfect correspondence
between the two approaches. We will see that τreg-factorizations are
simply very poorly behaved when it comes to τreg-very strong atoms
and rearrangement up to very strong associates. On the bright side,
the τ -unrefinably irreducible element introduced in [44] will also behave
quite nicely here.
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Of course, any non-trivial idempotent element, e, is a zero-divisor
since e(e− 1) = 0. Furthermore, since e = e2 = e · e, with e not a unit,
we see that e ̸∼= e. This means that e is not very strongly atomic for
any non-trivial idempotent element. On the other hand, since every
non-trivial τreg-factorization consists of a product of regular elements,
we can have no non-trivial τreg-factorizations of e. This means the only
τreg-factorizations of any zero-divisor, in particular e, are the trivial
factorizations. Unfortunately, in the case of a non-trivial idempotent,
e, this means e is not a τ -very strong atom and will never have a
τreg-very strongly atomic factorization. We demonstrate this in the
following example.

Example 4.1. Let K be an infinite field,

R = K ×K with τ = R# ×R#.

We consider the element (1, 0) ∈ Z(R). This ring has only elements
which are strongly associate to idempotent elements and units. So the
set of non-unit regular elements is empty and our ring is vacuously a τ -
r-UFR. On the other hand, we have (1, 0) = (µ−1, 1)(µ, 0), for any unit
µ ∈ K∗, which is the only type of τreg-factorization of (1, 0). Yet, none
of these are τreg-very strongly atomic factorizations. The problem is
that (µ, 0) ̸∼= (µ, 0) since we have (µ, 0) = (1, 0)(µ, 0) and (1, 0) is not a
unit. This shows we can have a τ -r-UFR which is not even τreg-atomic.
Moreover, each of these factorizations is non-very strongly associate.

Let µ, λ ∈ K∗. Then (1, 0) = (µ−1, 1)(µ, 0) = (λ−1, 1)(λ, 0) are two
τreg-factorizations of (1, 0), but (µ, 0) = (µλ−1, 0)(λ, 0) with (µλ−1, 0)
not a unit shows (µ, 0) ̸∼= (λ, 0). Since K is infinite, there are infinitely
many τreg-factorizations of (1, 0), none of which are very strongly
associate.

This leads us to the following results.

Lemma 4.2. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let

τreg := τ ∩ (Reg (R)× Reg (R)) .

The collection of non-trivial τ -regular-factorizations and non-trivial
τreg-factorizations coincide.
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Proof. Let a = λa1 · · · an be a non-trivial τ -regular factorization.
Then a ∈ Reg (R) by definition of τ -regular factorization, and aiτaj
for all i ̸= j. Since a is regular, and the set of regular elements is
saturated, we have ai | a ∈ Reg (R) for each 1 ≤ i ≤ n, and we know
that ai ∈ Reg (R) for each 1 ≤ i ≤ n. This means aiτregaj for each
i ̸= j. Thus, a = λa1 · · · an is a τreg-factorization.

Conversely, suppose a = λa1 · · · an is a non-trivial τreg-factorization.
Then aiτregaj for each i ̸= j. This means aiτaj and ai, aj ∈ Reg (R). In
particular, since n ≥ 2, we can conclude that a1a2 · · · an is a product
of regular elements, so a ∈ Reg (R). This means a = λa1 · · · an is a
τ -regular-factorization. �

Theorem 4.3. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let

τreg := τ ∩ (Reg (R)× Reg (R)) .

For a ∈ Reg (R), the following are equivalent :

(i) a is a τ -regular-atom.
(ii) a is a τreg-atom.
(iii) a is a τreg-strong atom.
(iv) a is a τreg-m-atom.
(v) a is a τreg-unrefinable atom.
(vi) a is a τreg-very strong atom.

Proof. When we consider Theorem 2.2, it suffices to show that (ii)
⇒ (vi) and then we show that (i) ⇔ (v). Let a ∈ Reg (R) be a τreg-
atom. Since a ∈ Reg (R), we have a ∼= a since a = ra implies r = 1.
Furthermore, if a = λa1 · · · an is a τreg-factorization of a, then a ∼ ai
for some 1 ≤ i ≤ n. Since a ∈ Reg (R), a ∼= ai and we have shown that
a is a τreg-very strongly atom.

(i) ⇔ (v). In light of Lemma 4.2, a has a non-trivial τ -regular
factorization if and only if a has a non-trivial τreg-factorization. �

Corollary 4.4. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let

τreg := τ ∩ (Reg (R)× Reg (R)) .
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Let

α ∈ {atomic, strongly atomic, m-atomic, unrefinably atomic}.

Letting a ∈ Reg (R) be a non-unit, then a = λa1 · · · an is a τreg-
α-factorization if and only if a = λa1 · · · an is a τ -regular-atomic
factorization.

Proof. This is immediate from what we have shown in Theorem 4.3.
�

Theorem 4.5. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let

τreg := τ ∩ (Reg (R)× Reg (R)) .

If a ∈ Z(R), then the following hold :

(i) a is a τreg-atom.
(ii) a is a τreg-strong atom.
(iii) a is a τreg-m-atom.
(iv) a is a τreg-unrefinable atom.

Proof. By Theorem 2.2, it suffices to show that, for a ∈ Z(R),
a is τreg-unrefinable. Suppose a = λa1 · · · an is a non-trivial τreg-
factorization. This implies n ≥ 2, and therefore aiτregaj for each i ̸= j.
In particular, ai ∈ Reg (R) for all 1 ≤ i ≤ n. This means a is a
product of regular elements and is therefore regular, and hence not
a zero-divisor, a contradiction. Thus there are only non-trivial τreg-
factorizations of a making it a τreg-unrefinable atom as desired. �

Theorem 4.6. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let

τreg := τ ∩ (Reg (R)× Reg (R)) .

The following are equivalent :

(i) R is τ -regular-atomic.
(ii) R is a τreg-atomic.
(iii) R is a τreg-strongly atomic.
(iv) R is a τreg-m-atomic.
(v) R is τreg-unrefinably atomic.
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Proof. Let a be a non-unit in R. Then a ∈ Z(R) or a ∈ Reg (R).
If a ∈ Z(R), we apply Theorem 4.5 to see that a itself is τreg-atomic,
τreg-strongly atomic, τreg-m-atomic, and τreg-unrefinably atomic; and
a = 1 · a is a τreg-atomic, τreg-strongly atomic, τreg-m-atomic, and
τreg-unrefinably atomic factorization of a. For R to be a τ -regular-
atomic ring, we need only check the regular elements for τ -regular
atomic factorizations. If a ∈ Reg (R), we apply Corollary 4.4 to
see that a has a τ -regular-atomic factorization if and only if a has
a τreg-atomic (respectively τreg-strongly atomic, τreg-m-atomic, τreg-
unrefinably atomic) factorization. This completes the equivalence
since we have checked both the zero-divisors as well as the regular
elements. �

Lemma 4.7. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let a = λ(λ−1a) = µ(µ−1a) be two trivial
factorizations of a. Then we have the following :

(i) λ−1a and µ−1a are associates.
(ii) λ−1a and µ−1a are strong associates.

Proof. (µ−1λ)(λ−1a) = µ−1a with (µ−1λ) ∈ U(R) proves λ−1a ≈
µ−1a. If λ−1a ≈ µ−1a, then λ−1a ∼ µ−1a. This proves both (ii) and
(i). �

Remark 1. Given the above situation, λ−1a and µ−1a need not be very
strong associates. For instance R = R× R,

(1, 0) = (1, 1)(1, 0) = (−1,−1)(−1, 0),

yet (1, 0) ̸∼= (−1, 0).

Theorem 4.8. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let

τreg := τ ∩ (Reg (R)× Reg (R)) .

Let

α ∈ {atomic, strongly atomic, m-atomic, unrefinably atomic}
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and

β ∈ {associate, strongly associate}.

Then we have the following :

(i) R satisfies τ -regular-ACCP if and only if R satisfies τreg-ACCP.
(ii) R is a τ -regular-UFR if and only if R is a τreg-α-β-UFR.
(iii) R is a τ -regular-HFR if and only if R is a τreg-α-HFR.
(iv) R is a τ -regular-BFR if and only if R is a τreg-BFR.
(v) R is a τ -regular-idf ring if and only if R is a τreg-α-β-df ring.
(vi) R is a τ -regular-atomic τ -regular-idf ring if and only if R is a

τreg-α, τreg-α-β-df ring.
(vii) R is a τ -regular-WFFR if and only if R is a τreg-β-WFFR.
(viii) R is a τ -regular-FFR if and only if R is a τreg-β-FFR.

If τ is refinable, then (vi) ⇔ (vii) ⇔ (viii).

Proof.

(i) The statement that (a) ( (a1) with a1 |τ a implies that
a = λa1a2 · · · an. We notice here that n ≥ 2 or else we would have
a = λa1 or a ≈ a1 which implies (a) = (a1), a contradiction. So these
properly ascending chains yield non-trivial factorizations at each step.
Thus any properly ascending chain of principal ideals

(4.1) (a1) ( (a2) ( (a3) ( · · ·

such that ai+1 |τreg ai yields a τ -regular factorization of ai with ai+1

as a τ -regular factor. Conversely, any ascending chain as in (4.1) with
ai regular for all i and ai+1 occurring as a τ -factor in some τ -regular
factorization of ai yields a τreg-factorization of ai as well. Hence, R fails
to satisfy τ -regular ACCP if and only if R fails to satisfy τreg-ACCP,
and the proof is complete.

(ii) We know from Theorem 4.6 that R is τ -regular-α if and only
if R is τreg-α. Let a ∈ R be a non-unit. If a ∈ Z(R), we know from
Theorem 4.5 that a is τreg-α. Furthermore, any trivial τreg-factorization
of a is unique up to β by Lemma 4.7. For R to be a τ -regular UFR,
we need only check the regular elements. Let a ∈ Reg (R). We
know from Corollary 4.4, for regular elements, τ -atomic and τreg-α-
factorizations of a coincide, so the uniqueness up to rearrangement and
β is immediate.
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(iii) By Theorem 4.6, R is τ -regular-α if and only if R is τreg-α.
If a ∈ Z(R), then a is τreg-α and has only trivial τreg-factorizations,
each of which has length 1. For a ∈ Reg (R), τ -atomic and τreg-α-
factorizations of a coincide by Corollary 4.4, and the equivalence is
clear.

(iv) For a ∈ Z(R), all τreg-factorizations are trivial and have length 1.
By Lemma 4.2, the set of non-trivial τ -regular factorizations and τreg-
factorizations coincide, and the equivalence is apparent.

(v) If a ∈ Z(R), a itself is τreg-α, and there is precisely one unique
τreg-α-divisor of a up to β since all trivial τreg-factorizations are β
from Lemma 4.7. If a ∈ Reg (R), then the set of τ -regular atomic
divisors and τreg-α-divisors of a are all regular and hence coincide by
Theorem 4.3. So the equivalence is clear.

(vi) This is simply (v) plus Theorem 4.6.

(vii) For a ∈ Z(R), the only τreg-divisors of a are unit multiples of a,
so there is only one τreg-divisor of a up to β. For a ∈ Reg (R), since the
set of τ -regular factorizations and the set of τreg-factorizations of a are
the same, the set of τreg-divisors and τ -regular divisors coincide and are
regular, so the associate relations also coincide. Thus the equivalence
follows.

(viii) For a ∈ Z(R), the only τreg-factorizations of a are of the form
a = λ(λ−1a), so there is only one τreg-factorization of a up to β. For
a ∈ Reg (R), the set of τ -regular factorizations and the set of τreg-
factorizations of a are the same. Moreover, the set of τreg-factors and
τ -regular factors coincide and are regular; hence, the associate relations
also coincide. Thus, the equivalence follows. �

5. Relationship with other finite factorization properties. In
this final section, we would like to demonstrate where the rings satis-
fying the properties in the present article fit in with the various finite
factorization properties already existing in the literature, that is, we
would like to compare the τ -regular and τreg-finite factorization prop-
erties with the regular factorization from [10], the τ -finite factorization
properties defined originally in [42] as well as the τ -U-finite factoriza-
tion properties defined in [43]. As a note to the reader, many of these
terms were defined in Section 2.
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The following theorem demonstrates that the τ -finite factorization
properties defined in [42] are stronger than the ones in the present
article.

Theorem 5.1. Let R be a commutative ring with 1, and let τ be a sym-
metric relation on R#. Let α ∈ {atomic, strongly atomic, m-atomic,
unrefinably atomic, very strongly atomic}, β ∈ {associate, strongly as-
sociate, very strongly associate}. Then we have the following :

(i) If R is a τ -α-β-UFR, then R is a τ -r-UFR.
(ii) If R is a τ -α-HFR, then R is a τ -r-HFR.
(iii) If R is a τ -β-FFR, then R is a τ -r-FFR.
(iv) If R is a τ -β-WFFR, then R is a τ -r-WFFR.
(v) If R is a τ -β-α-df ring, then R is a τ -r-idf ring.
(vi) If R is a τ -BFR, then R is a τ -r-BFR.
(vii) If R satisfies τ -ACCP, then R satisfies τ -r-ACCP.
(viii) If R is τ -α, then R is τ -r-atomic.

This yields the following diagram where ∇ represents τ refinable.

τ-α-β-UFR

��

τ-r-HFR

∇

"*M
MMM

MMM
MMM

MMM
MMM

MMM
M τ-α-HFRks τ-ACCP

��

τ-α

��
τ-r-UFR

3;ooooooooooo

ooooooooooo ∇ +3
τ-r-FFR

+3
KS
∇

��

τ-r-BFR
∇ +3

τ-r-ACCP
∇ +3

τ-r-atomic

τ-β-WFFR +3 τ-r-WFFR

��

τ-BFR

KS

τ-α-β-df ring +3 τ-r-idf ring τ-β-FFR

Ya;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;

Proof.

(viii) Let a ∈ Reg (R). Since R is a τ -α, there is a τ -α-factorization
of the form a = λa1 · · · an. Since a ∈ Reg (R), ai ∈ Reg (R) for all i, by
Proposition 3.1, each of these factorizations is a τ -r-atomic factorization
of a, showing R is τ -r-atomic.

(ii) (respectively (i)). Let a be a regular non-unit element. We have
just seen that R is τ -r-atomic. Given two τ -r-atomic factorizations,
a = λa1 · · · an = µb1 · · · bm, there are also two τ -α-factorizations. By
assumption, we have m = n (respectively and there is a rearrangement
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so that ai ∼ bi for each 1 ≤ i ≤ n). This proves R is a τ -r-HFR
(respectively τ -r-UFR).

(iii)–(vi). Let a ∈ Reg (R). For a regular element a, the set of τ -r-
factorizations and τ -factorizations are identical, proving (iii) and (vi).
Similarly, since every divisor of a regular element is regular, the set of
regular τ -divisors is the same as the set of τ -divisors, proving (iv). As
in 3.1, we know that the set of τ -α-divisors is the same as the set of
τ -r-atoms, proving (v).

(vii) Suppose (a1) ( (a2) ( · · · is a chain of regular principal ideals
such that ai+1 |τ ai. Then, since R satisfies τ -ACCP, it must become
stationary, proving (vii). �

The following gives us a comparison of the regular factorization rings
defined in [10] with the rings defined in the current article.

Theorem 5.2. Let R be a commutative ring with 1 and τ ⊂ Reg (R)#×
Reg (R)#:

(i) R an r-BFR implies R is a τ -r-BFR,
(ii) R an r-FFR implies R is a τ -r-FFR,
(iii) R an r-WFFR implies R is a τ -r-WFFR,
(iv) R satisfies r-ACCP implies R satisfies τ -r-ACCP.

Proof.

(i) Let R be an r-BFR, but suppose R is not a τ -r-BFR. Then
there exists a regular element a ∈ Reg (R)# with τ -factorizations
of arbitrarily long length, but any τ -factorization is certainly a
factorization into regular elements, so this would contradict the
fact that R is an r-BFR.

(ii) Let R be an r-FFR, but suppose that R is not a τ -r-FFR. We then
have a regular element a ∈ Reg (R)# that has an infinite number
of τ -r-factorizations up to rearrangement and associate, but again
each of these is also an r-factorization and are still unique up to
rearrangement and associates, which contradicts the fact that R
is an r-FFR.

(iii) Let a ∈ Reg (R)#. Every τ -r-divisor divisor is a regular divisor of
a, so there can only be finitely many up to associate.
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(iv) Suppose we have an infinite sequence {ai}∞i=1, ak ∈ Reg (R)# for
all k with an+1 |τ an but an+1 ̸∼ an for all n ≥ 1. But then we
still have an+1 |τ an, ak ∈ Reg (R)# for all k but an+1 ̸∼ an, so
we contradict r-ACCP, concluding the proof. �

Corollary 5.3. The r-UFRs, r-FFRs, r-HFRs and r-BFRs as defined
in [1, Section 5] satisfy r-ACCP, and therefore τ -r-ACCP. Hence, for
τ refinable, each is τ -r-atomic by Theorems 3.4 and 5.2.

The following diagram summarizes our results (∇ represents τ re-
finable):

τ-r-HFR

∇

#+O
OOO

OOO
OOO

O

OOO
OOO

OOO
OO

r-BFR

��

r-ACCP

��
τ-r-UFR

3;ooooooooooo

ooooooooooo ∇ +3 τ-r-FFR +3 τ-r-BFR
∇ +3 τ-r-ACCP

∇ +3 τ-r-atomic

r-FFR

3;ooooooooooo

ooooooooooo
τ-r-WFFR

��
∇

KS

#+O
OOO

OOO
OOO

O

OOO
OOO

OOO
OO

τ-ACCP

KS

r-WFFR

3;ooooooooooo

ooooooooooo
τ-atomic τ-r-idf

��
∇

KS

+3 τ-r-idf

Lemma 5.4. Let R be a commutative ring with 1, and let τ be a sym-
metric relation on R#. Let α ∈ {∅, atomic, strongly atomic, m-atomic,
unrefinably atomic, very strongly atomic}. Every non-unit element in
a τreg-U-α-factorization is an essential divisor. Moreover, given a τreg-
α-factorization, every τ -factor is essential. When α = ∅, we mean
simply a τreg-U-factorization.

Proof. Let a ∈ R be a non-unit, and let

a = λa1 · · · an ⌈b1 · · · bm⌉

be a τreg-U-α-factorization. Then

a = λa1 · · · anb1 · · · bm

is a τreg-factorization. If there is only one τreg-factor in the factoriza-
tion, i.e., m + n = 1, then this factor is certainly essential. If it were
removed, then it would imply that a were a unit, a contradiction. We
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now may assume that m+ n ≥ 2, and therefore

a = λa1 · · · anb1 · · · bm

is a τreg-factorization implying that a is a product of regular elements
and hence is regular. Moreover, we have (a) = (b1 · · · bm) so ar =
b1 · · · bm for some r ∈ R. Hence,

a = λa1 · · · an · a · r

and a is regular so cancellation implies that

1 = λa1 · · · an · r,

and in particular ai ∈ U(R) for all 1 ≤ i ≤ n. Hence, there can be no
non-unit inessential τreg-divisors as desired.

Given a τreg-α-factorization of a non-unit a ∈ R, say a = λa1 · · · an,
we show that ai is essential for each 1 ≤ i ≤ n. If n = 1, this is
immediate as above. Thus, n ≥ 2, and therefore, ai is regular for each
1 ≤ i ≤ n. Suppose for a moment that ai were not essential. Then

(a) = (a1 · · · ai−1âiai+1 · · · an) = (a1 · · · an).

But this means that there is an r ∈ R such that

a1 · · · ai−1âiai+1 · · · an = r · a1 · · · an.

After canceling common factors, since each element on the left is
regular, we see that 1 = r · ai, which means ai ∈ U(R), a contradiction
since each aj ∈ R# for all 1 ≤ j ≤ n. Thus, ai is essential for each
1 ≤ i ≤ n and λ⌈a1 · · · an⌉ is indeed a τ -U-α factorization. �

The consequence of this lemma is that we see that τreg-α-factorizations
and τreg-U-α-factorizations coincide and we see there is a correspon-
dence between the sets, given by the map

ϕ : {τreg-U-α-factorizations} −→ {τreg-α-factorizations}

is given by

λa1 · · · an ⌈b1 · · · bm⌉ 7−→ (λa1 · · · an)b1 · · · bm,

and the inverse

ϕ−1 : {τreg-α-factorizations} −→ {τreg-U-α-factorizations}
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is given by
λa1 · · · an 7−→ λ ⌈a1 · · · an⌉ .

This observation allows us to further consolidate many of our finite
factorization properties when it comes to regular factorization. In
particular, we formalize this by way of the following result.

Theorem 5.5. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let τreg := τ ∩ (Reg (R)× Reg (R)). Let

α ∈ {atomic, strongly atomic, m-atomic, unrefinably atomic,

very strongly atomic}

and

β ∈ {associate, strongly associate, very strongly associate}.

Then, for any choice of α and β, we have the following :

(i) R is τreg-U-α if and only if R is τreg-α.
(ii) R satisfies τreg-U-ACCP if and only if R satisfies τreg-ACCP.
(iii) R is a τreg-U-α-β-UFR if and only if R is a τreg-α-β-UFR.
(iv) R is a τreg-U-α-HFR if and only if R is a τreg-α-HFR.
(v) R is a τreg-U-BFR if and only if R is a τreg-BFR.
(vi) R is a τreg-U-α-β-df ring if and only if R is a τreg-α-β-df ring.
(vii) R is a τreg-U-α, τreg-U-α-β-df ring if and only if R is a τreg-α,

τreg-α-β-df ring.
(viii) R is a τreg-U-β-WFFR if and only if R is a τreg-β-WFFR.
(ix) R is a τreg-U-β-FFR if and only if R is a τreg-β-FFR.

If τ is refinable, then (vii) ⇔ (viii) ⇔ (ix).

Proof. (i) (⇒). Let a ∈ R be a non-unit. Then there is a τreg-U-
α factorization of a, by Lemma 5.4. This factorization is of the form
a = λ⌈a1 · · · an⌉. By definition, a = λa1 · · · an is a τreg-factorization
and ai is τreg-α for each 1 ≤ i ≤ n, and therefore, this is a τreg-α-
factorization of a.

(⇐). This is shown in [43, Theorem 4.3].

(ii) (⇒). Let a ∈ R be a non-unit. Suppose there was an ascending
chain of principal ideals of the form (a) ( (a1) ( (a2) ( · · · , such that
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ai+1 |τreg ai for each i. Say the τreg-factorization for each i is given by

ai = λai+1ai1 · · · aini ,

because (ai) ( (ai+1), we know that this τreg-factorization is non-
trivial, and therefore, each τreg-factor is regular. In particular, ai is
regular, and therefore by Lemma 5.4, is essential. This would contradict
the fact that R satisfies τreg-U-ACCP.

(⇐). This is shown in [43, Theorem 4.3].

(iii) (respectively (iv)). Let a ∈ R be a non-unit. Then, by
Lemma 5.4, a has a τreg-U-α factorization if and only if a has a τreg-
α-factorization. Furthermore, since the τreg-U-factorizations have no
inessential divisors, it is clear that the equivalence of the uniqueness
(respectively constant length) of these factorizations follows as well.

(v) and (ix). Let a ∈ R be a non-unit. By Lemma 5.4, the
correspondence shows that we may apply ϕ−1 to any τreg-factorization
of a of length n and get a τreg-U-factorization with the same n τreg-
factors all occurring as the τreg essential divisors in the corresponding
τreg-U-factorization. Similarly, given a τreg-U-factorization with n
essential divisors, we may apply ϕ to this factorization and get a τreg-
factorization of length n with the same τreg-factors as the essential
τreg-divisors. Hence, there is a bound on the length of the number of
essential divisors in any τreg-U-factorization of a if and only if there is
a bound on the length of any τreg-factorization of a. Moreover, this
same correspondence shows that there are the same number of τreg-
factorizations of a up to β as there are τreg-U-factorizations of a up
to β.

(vi) (respectively (viii)). Let a ∈ R be a non-unit. As in the proof
of (v) and (ix), it is clear that the set of τreg-divisors and essential τreg-
divisors of a are the same by the correspondence given in Lemma 5.4
and map ϕ. This means the set of τreg-divisors of a and essential τreg-
divisors of a up to β are the same. Moreover, this also means that
the set of τreg-α divisors and the set of τreg-α-essential divisors are the
same up to β as well.

(vii). This follows immediately by combining the results of parts (i)
and (vi). �
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We can further relate the various properties by removing the very
strongly atomic choice for α and the very strongly associate choice for
β in Theorem 5.5. The results are combined below.

Corollary 5.6. Let R be a commutative ring with 1, and let τ be a
symmetric relation on R#. Let τreg := τ ∩ (Reg (R)× Reg (R)). Let

α ∈ {atomic, strongly atomic, m-atomic, unrefinably atomic}

and

β ∈ {associate, strongly associate}.

Then, for any choice of α and β, we have the following :

(i) R is τreg-U-α if and only if R is τreg-α if and only if R is τ -
regular-atomic.

(ii) R satisfies τreg-U-ACCP if and only if R satisfies τreg-ACCP if
and only if R satisfies τ -regular-ACCP.

(iii) R is a τreg-U-α-β-UFR if and only if R is a τreg-α-β-UFR if and
only if R is τ -regular-UFR.

(iv) R is a τreg-U-α-HFR if and only if R is a τreg-α-HFR if and only
if R is τ -regular-HFR.

(v) R is a τreg-U-BFR if and only if R is a τreg-BFR if and only if R
is τ -regular-BFR.

(vi) R is a τreg-U-α-β-df ring if and only if R is a τreg-α-β-df ring if
and only if R is a τ -regular-idf ring.

(vii) R is a τreg-U-α, τreg-U-α-β-df ring if and only if R is a τreg-α,
τreg-α-β-df ring if and only if R is τ -regular-atomic, τ -regular-idf
ring.

(viii) R is a τreg-U-β-WFFR if and only if R is a τreg-β-WFFR if and
only if R is τ -regular-WFFR.

(ix) R is a τreg-U-β-FFR if and only if R is a τreg-β-FFR if and only
if R is τ -regular-FFR.

If τ is refinable, then (vii) ⇔ (viii) ⇔ (ix).

Proof. The first equivalence in each statement (i) for 1 ≤ i ≤ 9
follows directly from Theorem 5.5. Similarly, the second equivalence in
each statement (i) for 1 ≤ i ≤ 9 follows from Theorem 4.8. �
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We conclude the article with a diagram which summarizes many of
the equivalences and relationships demonstrated thus far where τreg is
defined as above,

α ∈ {atomic, strongly atomic, m-atomic, unrefinably atomic},
β ∈ {associate, strongly associate},

and ∇ represents τ refinable.

τreg-U-α-HFRKS

��
τreg-U-α-β-UFRKS

��

τreg-α-HFRKS

��

τreg-U-BFRKS

��

τreg-U-ACCPKS

��

τreg-U-αKS

��
τreg-α-β-UFRKS

��

τ-r-HFR

∇

"*M
MMM

MMM
MMM

MMM
MMM

MMM
M τreg-BFRKS

��

τreg-ACCPKS

��

τreg-αKS

��
τ-r-UFR

3;ooooooooooo

ooooooooooo ∇ +3 τ-r-FFR +3
KS
∇

��

τ-r-BFR
∇ +3 τ-r-ACCP

∇ +3 τ-r-atomic

τreg-U-α-β-df ringKS

��

τ-r-WFFR

��

τreg-β-FFR

"*

bj MMMMMMMMMM

MMMMMMMMMM
τreg-U-β-FFR+3ks

τreg-α-β-df ring ks +3 τ-r-idf ring τreg-β-WFFR

"*

bj LLLLLLLLLL

LLLLLLLLLL
τreg-U-β-WFFR+3ks

6. Analysis of two explicit rings and further questions. In
this section, we explore some rings which have been studied exten-
sively in the literature to see which of the τ -r-finite factorization prop-
erties these rings satisfy. Many authors have pursued the theory of
factorization in integral domains by way of ideal theory. In the case of
integral domains studying factorization from an element perspective is
the same as studying the principal ideal structure. When dealing with
commutative rings with zero-divisors, these two approaches diverge.
There is a substantial amount of research done on ideal theoretic prop-
erties of commutative rings with zero-divisors. For instance, the mono-
graph of Huckaba [32] uses this approach. The theory of Krull, Mori,
Prüfer, Marot, v-Marot, and C-rings has been studied extensively in
[18, 19, 20, 30, 31, 34, 35, 36, 37, 38, 39, 40, 45].
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We supply some results regarding the τ -regular factorization proper-
ties of the two very explicit rings recently studied in [21, 26]. We hope
that this will serve as an example of the kinds of questions we hope
to eventually be able to answer about a larger class of rings that have
been of interest over the years by many authors studying commutative
rings with zero-divisors.

We begin with the self-idealization of a principal ideal domain (PID)
studied in [21]. Let D be a PID, and let

R(D) =

{(
a b
0 a

) | a, b ∈ D

}
.

Then, it is well known that R(D) is a Noetherian commutative ring
with identity. We include definitions in the theorem for convenience
for the reader. An irreducible or atom is a non-zero non-unit such
that a = bc implies (a) = (b) or (a) = (c). Moreover, a, b ∈ R are
said to be associates if (a) = (b). R is said to be atomic if every
non-zero non-unit has a factorization into irreducible elements. Chang
and Smertnig further investigate factorization properties of these rings,
which we summarize below.

Theorem 6.1. ([21, Corollary 9]). Let D be a PID. Then we have
the following :

(i) R(D) is Noetherian.
(ii) R(D) is a BFR (R is atomic and there is a bound on the length

of irreducible factorizations of every non-zero non-unit of R).
(iii) R(D) is an FFR (R is atomic and each nonzero non-unit has

only nitely many factorizations into irreducibles, up to order and
associates) if and only if D/pD is finite for all prime elements
p ∈ D.

(iv) If D is a field, then every non-zero non-unit of R(D) is a prime,
and hence R(D) is a UFR (R is atomic and every non-zero
principal ideal of R can be written as a product of principal prime
ideals) with a unique nonzero (prime) ideal.

We will use these observations to give examples of rings which
will satisfy various τ -regular finite factorization properties studied in
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the present article as well as other τ -finite factorization properties
previously studied in the literature.

Corollary 6.2. Let D be a PID, and let τ be any symmetric relation
on R(D)#. Let τreg := τ ∩ (Reg (R)× Reg (R)). Let

α ∈ {atomic, strongly atomic, m-atomic, unrefinably atomic}

and

β ∈ {associate, strongly associate}.

Then, for any choice of α and β, we have the following :

(i) R(D) satisfies τ -ACCP, τ -U-ACCP and τ -r-ACCP (equivalently,
τreg-U-ACCP or τreg-ACCP).

(ii) If τ is refinable, then R(D) is τ -atomic, τ -U-atomic, and τ -r-
atomic (equivalently, τreg-U-α or τreg-α).

(iii) R(D) is a τ -BFR, τ -U-BFR, τ -r-BFR (equivalently, τreg-U-BFR
or τreg-BFR).

(iv) If D/pD is finite for all prime elements p ∈ D, then R(D) is a
τ -associate-FFR, τ -U-associate-FFR and τ -r-FFR (equivalently,
τreg-U-β-FFR or τreg-β-FFR).

(v) If D is a field, the R(D) is a τ -atomic-associate-UFR, τ -U-
atomic-associate-UFR,τ -r-UFR (equivalently, τreg-U-α-β-UFR or
τreg-α-β-UFR).

Proof. We begin by noting the equivalent part of each of the above
follows directly from Corollary 5.6.

(i) Since R(D) is Noetherian by Theorem 6.1, R(D) satisfies ACCP.
It was shown in [42, Theorem 4.1] that ACCP implies τ -ACCP for
any τ . By [43, Theorem 4.3], τ -ACCP implies τ -U-ACCP. Finally, by
Theorem 5.1, we see that τ -ACCP implies τ -r-ACCP.

(ii) By [42, Theorem 4.1], since τ is assumed to be refinable, τ -
ACCP implies τ -atomic. By [43, Theorem 4.3], we have τ -atomic
implies τ -U-atomic. Finally, by Theorem 5.1, τ -atomic implies τ -r-
atomic.

(iii) R(D) is a BFR which satisfies ACCP. R(D) satisfies ACCP, so
certainly R(D) is atomic. An atomic ring which has a bound on the
length of atomic factorizations of every non-zero non-unit certainly has
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a bound on the length of all factorizations. We can simply use the same
bound since given any factorization, we could replace the factors with
atomic factorizations and get a possibly even longer factorization which
is atomic. Hence, we can be sure R(D) satisfies the notion of BFR used
in [42], where there is a bound on the length of all factorizations of
each non-zero non-unit. Let a ∈ R(D) be a non-zero, non-unit. Any
τ -factorization of a is certainly a factorization of a, so we may again use
the same bound and this proves R(D) is a τ -BFR. By [43, Theorem
4.3], τ -BFR implies τ -U-BFR and, by Theorem 5.1, we see that τ -BFR
implies τ -r-BFR.

(iv) We again point out that an atomic FFR using the definition from
[21] coincides with the definition used in [42] since any factorization
can be refined into an atomic factorization. Thus, given any non-zero
non-unit a ∈ R, the set of atomic factorizations of a up to rearrange-
ment and associate is finite if and only if the set of factorizations of a
is finite. If D/pD is finite for all prime elements p ∈ D, then R(D)
is an FFR. For every non-zero non-unit a ∈ R(D), there are a finite
number of factorizations of a up to rearrangement and associate. Ev-
ery τ -factorization of a is certainly among the factorizations of a, and
hence the set of τ -factorizations up to rearrangement and associate is
finite proving R(D) is a τ -associate-FFR. By [43, Theorem 4.3], we
have τ -associate-FFR implies τ -U-associate-FFR. By Theorem 5.1, we
see that τ -associate-FFR implies τ -r-FFR.

(v) If D is a field, then R(D) is a UFR. In general, this is not
necessarily enough to conclude that R is a τ -atomic-associate-UFR;
however, in this case, we actually have a stronger condition that
every non-zero, non-unit is prime. Prime implies irreducible, but
not necessarily any of the stronger forms of irreducible. We show
that irreducible implies τ -irreducible. Let a = λa1 · · · an be a τ -
factorization. Then this is a factorization, so a ∼ ai for some 1 ≤ i ≤ n.
Hence a is τ -atomic. This shows that every non-zero non-unit of
a ∈ R(D) is a τ -irreducible element. This means a = 1 · a is a τ -
atomic factorization of a. This is also an atomic factorization. R(D)
is known to be a UFR. Suppose there were another τ -irreducible
factorization of a, say a = λb1 · · · bm. Every bi is a non-zero, non-
unit of R(D), and therefore prime and irreducible. This would yield a
distinct irreducible factorization of a, contradicting the fact that R(D)
is an atomic-associate-UFR, a contradiction. This proves R(D) is a τ -
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atomic-associate-UFR. Since every τ -factorization has length 1, we can
also be sure that every τ -factor is essential, and therefore a τ -atomic-
U-factorization. This proves R(D) is a τ -atomic-associate-UFR. By
Theorem 5.1, we see that τ -atomic-associate-UFR implies τ -r-UFR,
completing the proof. �

Corollary 6.3. Let D be a field, and let τ be a symmetric relation on
R(D)#. Let

α ∈ {atomic, strongly atomic, m-atomic, unrefinably atomic}

and

β ∈ {associate, strongly associate}.

Then, for any choice of α and β, we have the following :

(i) R(D) is a τ -r-UFR (respectively τreg-U -α-β-UFR, τreg-α-β-UFR,
τ -atomic-associate-UFR, τ -U-atomic-associate-UF).

(ii) R(D) is a τ -r-HFR (respectively τreg-U-α-HFR, τreg-α-HFR, τ -
atomic-HFR, τ -U-atomic-HFR).

(iii) R(D) is a τ -r-BFR (respectively τreg-U-BFR, τreg-BFR, τ -BFR,
τ -U-BFR).

(iv) R(D) is a τ -r-FFR (respectively τreg-U-β-FFR, τreg-β-FFR, τ -
associate-FFR, τ -U-associate-FFR).

(v) R(D) is a τ -r-WFFR (respectively τreg-U-β-WFFR, τreg-β-WFFR,
τ -associate-WFFR, τ -U-associate-WFFR).

(vi) R(D) is a τ -r-atomic (respectively τreg-U-α, τreg-α, τ -atomic, τ -
U-atomic) τ -r-idf ring (respectively τreg-U-α-β-df ring, τreg-α-
β-df ring, τ -atomic-associate-idf ring, τ -U-atomic-associate-idf
ring).

(vii) R(D) satisfies τ -r-ACCP (respectively τreg-U-ACCP, τreg-ACCP,
τ -ACCP, τ -U-ACCP).

(viii) R(D) is τ -r-atomic (respectively τreg-U-α, τreg-α, τ -atomic, τ -U-
atomic).

Proof. These are immediate from the observation in Corollary 6.2 (v)
as well as Corollary 5.6. �

We now turn our attention to the ring Zpn [X] which was studied
extensively in [26]. In this article the authors choose the definitions
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weakly irreducible and weakly associate for what we have called ir-
reducible and associate, respectively. They use the terms irreducible
and associate for what we have called strongly irreducible and strongly
associate, respectively. We will soon see that the ring in question is
présimplifiable and therefore certainly strongly associate, and our def-
initions will be equivalent (in fact, very strongly atomic, unrefinably
atomic and m-atomic are also equivalent here), so there will be no
confusion for Zpn [X].

Many of the key factorization properties of this ring derive from the
following fact [26, Fact 1.5], where Nil (R) is the nilradical, J(R) is the
Jacobson radical and Z(R) is the set of zero-divisors.

Nil (Zpn [X]) = J(Zpn [X]) = (p) = Z(Zpn [X]).

If the zero-divisors are contained in the Jacobson radical, then the
ring is présimplifiable. This is discussed in many sources, but for
τ -factorization, the author suggests [42, Lemma 2.2] and [44]. As
mentioned following Theorem 2.2, the présimplifiable property has
the effect of making all of the associate relations coincide, which in
turn makes irreducible and very strongly irreducible (hence everything
in between) as well as τ -irreducible and τ -very strongly irreducible
equivalent. As in [43, Theorem 3.5], this also has the added benefit
of making every non-unit τ -factor essential, so τ -U-factorizations will
also coincide with the usual factorizations.

We now summarize several of the results about Zpn [X] from [26]
which will be of interest in order to draw conclusions about which τ -
regular finite factorization properties this ring will satisfy.

Theorem 6.4 ([26]). Let R = Zpn [X]. Then we have the following :

(i) R is Noetherian,
(ii) R is atomic,
(iii) R has infinite elasticity,
(iv) each regular element of R has a finite number of factorizations

into irreducibles.

These results will allow us to answer several questions about the
factorization properties discussed in this article.
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Theorem 6.5. Let R = Zpn [X], and let τ be a symmetric relation on
R#. Let

α ∈ {atomic, strongly atomic, m-atomic, unrefinably atomic,

very strongly atomic},

and let

β ∈ {associate, strongly associate, very strongly associate}.

(i) R satisfies τ -ACCP, τ -U-ACCP, τ -r-ACCP and τreg-ACCP.
(ii) R is r-atomic, and if τ is refinable, then R is τ -α, τ -U-α, τ -r-

atomic, τreg-α and τreg-U-α.
(iii) R is an r-FFR, τ -r-FFR, τreg-β-FFR and τreg-U-β-FFR.
(iv) R is an r-WFFR, τ -r-WFFR, τreg-β-WFFR and τreg-U-β-WFFR.
(v) R is an r-idf ring, τ -r-idf ring, τreg-U-α-β-df ring and a τreg-α-

β-df ring.
(vi) R is a r-atomic r-idf ring and, if τ is refinable, then R is a τ -r-

atomic τ -r-idf ring, a τreg-U-α τreg-U-α-β-df ring, and a τreg-α
τreg-α-β-df ring.

Proof. We begin by noting that, since R is présimplifiable, all the
associate relations and irreducibles coincide. This allows us to add very
strongly associate and very strongly atomic to the choices of α and β
regarding τreg-factorizations and to use the equivalences laid forth in
Corollary 5.6.

The proof of (i) and (ii) follows from the same argument as for (i)
and (ii) from Corollary 6.2 and from the fact that R is Noetherian.

(iii) Let a ∈ Reg (R)#. Then, since we know R is atomic and there
are finitely many irreducible factorizations of a up to rearrangement
and associate from Corollary 6.4, we can be sure that there are only
finitely many factorizations of a up to rearrangement and associate.
This makes R an r-FFR. If there are finitely many regular factorizations
of a, then we can be sure that R is also a τ -r-FFR since every
τ -r-factorization is among the finitely many r-factorizations (up to
rearrangement and associate).

(iv) Since we have established that R is an r-FFR, there are only
finitely many factorizations of any a ∈ Reg (R)# up to rearrangement



τ -REGULAR FACTORIZATION 1345

and associates. This means there are only finitely many divisors of a
up to associate, making R an r-WFFR. If there are only finitely many
divisors of a up to associate, then there are certainly only finitely many
τ -divisors of a up to associate, making R a τ -r-WFFR.

(v) Let a ∈ Reg (R)#. Then a has a finite number of factors and
τ -factors up to associate. Then a certainly has a finite number of
irreducible divisors and τ -irreducible τ -divisors up to associate. Thus,
R is both an r-idf ring and a τ -r-idf ring.

(vi) This follows immediately from (ii) and (v). �

As a consequence of Theorem 6.4 (iii), we have the following.

Corollary 6.6. Let R = Zpn [X], and let τ be a symmetric relation on
R#. Then:

(i) R is neither an HFR nor a UFR.
(ii) R need not be a τ -HFR, τ -U-HFR, τ -UFR nor a τ -U-UFR.

Proof.

(i) By Theorem 6.4 (iii), we know that R has infinite elasticity. As in
[26], this means that there are non-zero, non-unit elements a ∈ R
such that a can be factored into a product of irreducible elements
of different lengths. This forces R to fail to be an HFR or a UFR.

(ii) Because R is présimplifiable, τ -factorizations and τ -U-factoriza-
tions coincide since every factor is essential. If we were to set
τd := R# ×R#, then we would get the usual factorizations. This
would yield an example of a τ for which R is neither τ -HFR,
τ -U-HFR, τ -UFR nor τ -U-UFR. �

Our hope is that this type of analysis could be performed on the
enormous class of rings that have been studied by many authors
mentioned in the introduction to this section. It would be fascinating to
know which of the various classes of rings satisfy the equivalences given
in the present paper in a similar fashion as above. As one can see by
only looking at these two very explicit rings in this section, there were
a number of results regarding their regular factorization and τ -regular
factorization properties.
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Many of the major breakthroughs in factorization in integral do-
mains have come through studying ideal theory. In the integral do-
main case, studying factorization through principal ideals and ele-
ments coincide; however, this is not the case in rings with zero-
divisors. Many authors have sought to study factorization in rings
with zero-divisors by way of generalizing various types of rings de-
fined through their ideal theory. To name a few, we have Krull, Mori,
Prüfer, Marot, v-Marot, and C-rings, which been studied extensively
in [18, 19, 20, 30, 31, 34, 35, 36, 37, 38, 39, 40, 45].

Many of these rings are well studied in the case of integral domains;
however, as is often the case when extending definitions to rings with
zero-divisors, many formerly equivalent definitions diverge. When
dealing with regular elements as in the present article, there is hope
that many of these definitions may again return to being equivalent,
as we have seen thus far. It would be interesting for future research to
answer many of the questions which arise about which of the various
equivalences laid forth in this article will hold for the different types of
rings mentioned above. Moreover, as suggested by the referee, much of
this work could be reframed in the context of cancellative semigroups
where research abounds in the literature. This may help to connect
the present research with much of the research done on Krull rings.
Unfortunately, the author fears the scope of the aforementioned project
is too large to take on in the present article.
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embarrassing typographical errors and improving the proofs of several
theorems throughout, especially for greatly improving the bibliography
to include many excellent references related to this article and suggest-
ing several ideas for future research in which the final section barely
scratches the surface. The article has no doubt been substantially im-
proved thanks to the diligent and careful work of the referee.

REFERENCES
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