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CONTRACTIONS OF DEL PEZZO SURFACES
TO P2 OR P1 × P1

JAE-HYOUK LEE

ABSTRACT. In this article, we consider r − 1 disjoint
lines given in a del Pezzo surface Sr and study how to
determine if a contraction given by the lines produces a map
to S1 (one point blow up of P2) or P1 × P1 by checking
only the configuration of lines. Here, we show that we
can determine if the disjoint lines produce a contraction to
P1×P1 by combining a quartic rational divisor class to them.
We also study the quartic rational divisor classes along the
configuration of lines in del Pezzo surfaces.

1. Introduction. A del Pezzo surface is a smooth projective surface
Sr whose anticanonical class −KSr is ample. Each del Pezzo surface
Sr can be constructed by blowing up r ≤ 8-points from P2 unless it is
P1 × P1 [2]. Conversely, each r-disjoint line in Sr gives a contraction
to P2. But, if we choose r − 1 disjoint lines in Sr, the corresponding
contraction produces a map to the blow-up of one point in P2 or P1×P1.
Therefrom, we consider the following main question:

Question 1.1. When r − 1 disjoint lines are given on a del Pezzo
surface Sr, can we determine if a contraction given by the lines produces
a map to S1 (one point blow up of P2) or P1 × P1 by checking the
configuration of lines?

Here, lines are rational curves with (−1)-self intersection which
produce contractions of Sr. As a matter of fact, one can figure out
the answer by performing contraction for the given lines indeed. Thus,
the actual issue of the question is if we can determine the dichotomy
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in Question 1.1 by only checking configuration of the lines before we
produce the related contraction.

For given lines li, 1 ≤ i ≤ r − 1, in a del Pezzo surface Sr, the
dichotomy of two different types of contractions is related to the chance
of finding another line lr disjoint to each li so that the r lines produce
a contraction to P2. Otherwise, the given r − 1 lines must produce a
contraction to P1×P1. Therefore, the issue of the main Question 1.1 is
equivalent to finding the characterization of the configuration of r − 1
disjoint lines which can be a subset of r disjoint lines. We recall that,
in [5], the divisor classes of lines (also called lines) corresponded to
vertices of the Gosset polytope (r− 4)21 constructed in PicSr ⊗Q and
a divisor class of r − 1 disjoint lines; a skew (r − 1)-line corresponds
to an (r − 2)-simplex in (r − 4)21. Therefore, the main Question 1.1 is
equivalent to the following Question 1.2.

Question 1.2. For a given (r − 2)-simplex in (r − 4)21, can we
determine whether the simplex is contained in an (r − 1)-simplex in
(r−4)21 by checking the configuration of vertices of the (r−2)-simplex?

In Section 2, we separate the (r − 2)-simplexes into two types (A-
type and B-type) of orbits of an (r − 2)-simplex in (r − 4)21. Here,
the orbit of A-type consists of an (r − 2)-simplex in (r − 4)21 which is
not contained in any (r − 1)-simplex, and the one of B-type consists
of (r− 2)-simplexes where each (r− 2)-simplex is in a (r− 1)-simplex.
To identify the type of each (r − 2)-simplex by the configuration of
vertices in the simplex, we consider a divisor class q ∈ PicSr satisfying
q2 = 2, q · KSr = −4 which is called a quartic rational divisor class.
The quartic rational divisor classes also consist of two types (I and II)
of Weyl orbits. Here, the type I is the orbit containing 2h−e1−e2, and
the type II is the Weyl orbit of 3h−

∑6
i=1 ei + e7 which exist only for

r = 7, 8 (see subsection 2.2). Then we combine A-type (r−2)-simplexes
and type I quartic rational divisor classes to get the following theorem
which gives an answer to Question 1.1 (equivalently Question 1.2).

Theorem. For disjoint lines li, 1 ≤ i ≤ r − 1, on a del Pezzo surface
Sr, they produce a contraction to P1 × P1 if there is a quartic rational
divisor class q on Sr satisfying

2q +KSr ≡ l1 + · · ·+ lr−1.
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Moreover, the quartic rational divisor classes of type I are bijectively
related to A-type (r − 2)-simplexes in (r − 4)21.

Furthermore, we show that, for each type II quartic rational divisor
class q in Sr, r = 7, 8, uniquely there exist a line lq and a divisor class
Dq such that Dq · lq = 0 and q ≡ lp +Dq. Here, the divisor class Dq

satisfies D2
q = 3 and Dq ·KSr = −3, which was studied as A2(1)-divisor

(1-degree 2-simplex divisor) in [6].

The lines in del Pezzo surfaces and their configurations have been
studied from many different motivations [3, 7, 8, 9]. This article gives
an application of previous study [5, 6] where the configurations of lines
are described via subpolytopes in Gosset polytopes. The configuration
of r or r − 1 lines in Sr and related contractions to P2 or P1 × P1 in
Question 1.1 is one of the typical questions to appear in the study of the
Cox rings of del Pezzo surfaces [1]. Furthermore, the quartic rational
divisor classes in the article are also considered in the Mysterious
Duality related to twice-wrapped M5-brane [4].

2. Contractions of del Pezzo surfaces. In this section, we give
an answer to Questions 1.1 and 1.2 by considering rational quartic
divisors and also describe the configuration of the rational quartic
divisor classes.

In the following subsection, we review basic facts about the compar-
ison between subpolytopes in Gosset polytopes and special divisors in
del Pezzo surfaces from [5], and provide an answer for Question 1.2.

2.1. Gosset polytopes and del Pezzo surfaces. In this subsection,
we review general facts on del Pezzo surfaces Sr and Gosset polytopes
(r − 4)21 in the Picard groups PicSr given by Weyl actions [2, 5]. In
addition, we introduce two Weyl orbits in the Picard group related to
(r − 2)-simplexes in (r − 4)21.

2.1.1. Gosset polytopes in Picard groups of del Pezzo surfaces.
We consider a del Pezzo surface Sr given by blowing up r ≤ 8-points
from P2 and the corresponding blow up by πr : Sr → P2. In addition,
K2

Sr
= 9 − r is called the degree of the del Pezzo surface. Each

exceptional curve and the corresponding class given by blowing up are
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denoted by ei, and both the class of π∗
r (h) in Sr and the class of a line

h in P2 are referred to as h. Then, we have

h2 = 1, h · ei = 0, ei · ej = −δij for 1 ≤ i, j ≤ r,

and the Picard group of Sr is PicSr ≃ Zh ⊕ Ze1 ⊕ · · · ⊕ Zer with the
signature (1,−r). In addition,

KSr ≡ −3h+

r∑
i=1

ei.

The inner product given by the intersection on PicSr induces a
negative definite symmetric bilinear form on (ZKSr

)⊥ in PicSr where
we can also define natural reflections. To define reflections on (ZKSr )

⊥

in PicSr, we consider a root system

Rr := {d ∈ Pic Sr | d2 = −2, d ·KSr = 0},

with simple roots d0 = h− e1 − e2 − e3, di = ei − ei+1, 1 ≤ i ≤ r − 1.
Each element d in Rr defines a reflection on (ZKSr

)⊥ in PicSr

σd(D) := D + (D · d)d for D ∈ (ZKSr )
⊥

and the corresponding Weyl group W (Sr) is Er where 3 ≤ r ≤ 8. Here,
the extended list of Er includes E3 = A1 ×A2, E4 = A4 and E5 = D5.
This reflection on K⊥

Sr
can be extended to PicSr. The divisor classes D

satisfyingD·KSr = α, D2 = β where α and β are integers are preserved
by the extended action of W (Sr). Thus, the subsets of special divisors
below can be naturally understood according to the representation of
W (Sr).

Now, we want to construct Gosset polytopes (r− 4)21 in PicSr ⊗Q
as the convex hull of the set of special classes in PicSr, which is known
as lines. A line in PicSr is equivalently a divisor class l with l2 = −1
and KSr · l = −1, and the set of lines is given as

Lr := {l ∈ Pic Sr | l2 = −1, KSr · l = −1}.

As the Weyl group W (Sr) acts as an affine reflection group on the
affine hyperplane given by D · KSr = −1, W (Sr) acts on the set of
lines in PicSr. Therefrom, we construct a semiregular polytope in
PicSr ⊗ Q whose vertices are exactly the lines in PicSr. Since the
symmetry group of the polytope is W (Sr), the polytope is actually a
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Gosset polytope (r−4)21 which is an r-dimensional convex semiregular
uniform polytope given by the symmetry group of Er-type.

For a Gosset polytope (r − 4)21, faces are regular simplexes except
the facets which consist of (r−1)-simplexes and (r−1)-crosspolytopes.
Since the faces in (r − 4)21 are basically configurations of vertices, we
obtain a natural characterization of faces in (r− 4)21 as divisor classes
in PicSr. Here, to identify each face in (r − 4)21, we want to use
the barycenter of the face. Since each vertex of the polytope (r − 4)21
represents a line in Sr, and the honest centers of simplexes (respectively,
crosspolytopes) are written as (l1+ · · ·+ lk)/k (respectively, (l′1+ l′2)/2)
which may not be elements in PicSr. Therefore, alternatively, we
choose (l1 + · · · + lk) as the center of a face so that (l1 + · · · + lk)
is in PicSr.

We use the algebraic geometry of del Pezzo surfaces to identify the
divisor classes corresponding to the faces in (r−4)21. For this purpose,
we consider the following set of divisor classes which are called skew
a-lines, exceptional systems and rulings in PicSr.

La
r := {D ∈ PicSr | D = l1 + · · ·+ la, li disjoint lines in Sr}
Er := {e ∈ PicSr | e2 = 1, KSr · e = −3}
Fr := {f ∈ Pic Sr | f2 = 0, KSr · f = −2}.

In particular, a skew a-line in La
r is an extension of the definition of

lines in Sr. Each skew a-line represents an (a−1)-simplex in an (r−4)21
polytope. Furthermore, for each skew a-line, there is only one set of
disjoint lines in La

r to present it. The skew a-lines also have D2 = −a
and D · KSr = −a, and the divisor classes with these conditions are
equivalently skew a-lines for a ≤ 3, see [5] for details.

After proper comparison between divisor classes obtained from the
geometry of the polytope (r− 4)21 and those given by the geometry of
a del Pezzo surface, we come to the correspondences in Table 1.

Remark 2.1. In particular, in this article, it is a useful fact that the
set of skew a-lines in PicSr, 1 ≤ a ≤ r, is bijective to the set of (a−1)-
simplexes in the Gosset polytope (r − 4)21.
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Table 1. Correspondences between special divisors and subpolytopes.

del Pezzo surface Sr Gosset polytopes (r − 4)21

lines vertices
skew a-lines 1 ≤ a ≤ r (a− 1)-simplexes 1 ≤ a ≤ r
exceptional systems (r − 1)-simplexes (r < 8)
rulings (r − 1)-crosspolytopes

2.1.2. Two orbits of (r − 2)-simplexes in a Gosset (r − 4)21. To
make sense of the above Question 1.2, there should be an (r−2)-simplex
in (r − 4)21 which is not in an (r − 1)-simplex. Indeed, there are two
types of (r − 2)-simplexes in Gosset (r − 4)21 given as two orbits of
Weyl action W (Sr) on PicSr where one of the orbits consists of such
(r − 2)-simplexes in (r − 4)21. For example, for 421, there are two
types of 6-simplexes in it, and the total number of them, N421

6 , can be
calculated as:

s c s s s s sesp p p p p p
−1 0 1 2 3 4

A-type

c s s s s s secp p p ppp
−1 0 1 2 3 4

B-type

N421
6 = [E8 : A6 ×A1] + [E8 : A6]

=
21435527

7!× 2!
+

21435527

7!
= 69120 + 138240 = 207360.

Here, we observe that A-type 6-simplexes cannot be extended to
7-simplexes by an argument using the Coxeter-Dynkin diagram. More-
over, we call an (r−2)-simplex in (r−4)21 B-type (respectively, A-type)
if it is contained in an (r−1)-simplex in (r−4)21 (respectively, if there
is no (r − 1)-simplex in (r − 4)21 containing the (r − 2)-simplex).

By performing the calculation of 6-simplexes in 421 to the other
Gosset polytopes (r−4)21, we get Table 2, which shows (r−2)-simplexes
in (r − 4)21 according to two types of orbits.
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Table 2. Total number of (r − 2)-simplexes in (r − 4)21.

(r − 4)21 −121 021 121 221 321 421
total # 9 30 120 648 6048 207360

A, B 3, 6 10, 20 40, 80 216, 432 2016, 4032 69120, 138240

Table 3. Total number of quartic rational divisor classes.

r 3 4 5 6 7 8

total # 3 10 40 216 2072 82560

I, II 3, 0 10, 0 40, 0 216, 0 2016, 56 69120, 13440

According to the correspondence between (r − 2)-simplexes in (r −
4)21 and skew (r − 1)-lines in PicSr (Table 1), we conclude a skew
(r − 1)-line corresponding to an A-type (r − 2)-simplex produces a
contraction to P1 × P1 and the other case (i.e., B-type) produces a
contraction to S1. Note that, although we have identified two orbits of
(r−2)-simplexes in (r−4)21 via the Weyl action, it is a very complicated
question of group action to identify the related orbit to a given (r−2)-
simplex by checking the configuration of vertices in it. Thus, we transfer
back the configuration of vertices to the configuration of lines via the
correspondences in Table 1 so that we can use the study in [5, 6].

In fact, skew (r − 1)-lines in PicSr produce one of the Weyl orbits
satisfying divisor equations D ·KSr = −(r− 1), D2 = −(r− 1). Recall
that, when k = 1, 2, 3, the divisors with the equations D ·KSr = −k,
D2 = −k, consist of one orbit which is given by skew k-lines, see [5].
But, if k is bigger, there are more orbits which are not well known. In
the following, we introduce a special divisor which happens to be in one
Weyl orbit corresponding to an A-type (r − 2)-simplex and determine
the dichotomy of Question 1.1.

2.2. Contractions and quartic rational divisor classes. We con-
sider a divisor class q ∈ Pic (Sr) satisfying q2 = 2, q · KSr = −4. We
call the divisor class q quartic rational divisor class. The total number
of such divisor classes in Sr is finite and given as in Table 3.

By applying the representation of the Weyl action W (Sr) on PicSr,
we deduce that the set of quartic rational divisor classes in Sr is one
Weyl orbit containing 2h − e1 − e2, except r = 7, 8, which have one
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more Weyl orbit. We call the orbit of 2h− e1 − e2 type I and the other
one of 3h −

∑6
i=1 ei + e7 in r = 7, 8 type II. The sizes of orbits are

listed in Table 3. Here, we observe the list of type I matched with the
list of A-type of (r− 2)-simplexes in (r− 4)21, and we get the following
theorem which gives an answer to Question 1.1.

Theorem 2.2. For disjoint lines li, 1 ≤ i ≤ r−1, on del Pezzo surface
Sr, they produce a contraction to P1 × P1 if there is a quartic rational
divisor class q on Sr satisfying

2q +KSr ≡ l1 + · · ·+ lr−1.

Moreover, the quartic rational divisor classes of type I corresponding to
A-type (r − 2)-simplexes in (r − 4)21.

Proof. We consider a skew (r − 1)-line D := l1 + · · · + lr−1 for the
given disjoint lines li, 1 ≤ i ≤ r − 1. According to the relationship in
Table 1, the skew (r − 1)-line D is bijectively related to an (r − 2)-
simplex in (r − 4)21 which is contained in one of two types in Table 2.

Here we want to show the (r−2)-simplex related to a quartic rational
divisor class is indeed an A-type so that the corresponding contraction
produces a map to P1 × P1.

Suppose D corresponds to a B-type (r − 2)-simplex in (r − 4)21.
Then there is another line lr disjoint to each li, 1 ≤ i ≤ r − 1, so that
li, 1 ≤ i ≤ r, gives an (r − 1)-simplex in (r − 4)21. Thus, we have

lr · (2q) = lr · (l1 + · · ·+ lr−1 −KSr ) = 1

and lr · q = 1/2, which gives the contradiction.

Thus, we conclude each skew (r − 2)-line D, which is injectively
related to a quartic rational divisor class, corresponds to an A-type
(r − 2)-simplex in (r − 4)21.

Now, since the set of skew (r − 1)-lines in PicSr is bijective to the
set of (r− 2)-simplexes in the Gosset polytope (r− 4)21, by comparing
Tables 2 and 3 via Weyl action we conclude the corresponding quartic
rational divisor class must be type I and obtain the bijective relation-
ship between the set of the quartic rational divisor classes of type I and
the set of A-type (r − 2)-simplexes in (r − 4)21. �
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Before we state the converse of the theorem for quartic rational
divisor classes, we show the following theorem about type II quartic
rational divisor classes.

Theorem 2.3. Each pair of disjoint lines la and lb on S8 (respectively,
line l on S7) gives two type II quartic rational divisor classes 2la+ lb−
KS8

and la + 2lb −KS8
(respectively, 2l −KS7

). Conversely, for each
type II quartic rational divisor class q on S8 (respectively, S7), there
is a unique pair of disjoint lines lq and l′q (respectively, unique line lq)
such that q ≡ 2lq + l′q −KS8 (respectively, q ≡ 2lq −KS7).

Proof. For the case of S8, we consider a set of ordered pairs of disjoint
lines la and lb on S8:

L̃2
8 := {(la, lb) | la and lb are disjoint lines in S8},

where |L̃2
8| = (# of 2-skew lines) ×2 = 13440, and we consider a map

ϕ : L̃2
8 → PicS8, defined by ϕ((la, lb)) := 2la + lb −KS8 .

Since (2la+ lb−KS8)
2 = 2 and (2la+ lb−KS8) ·KS8 = −4, the range

of ϕ in PicS8 consists of quartic rational divisor classes. Moreover, ϕ
is one-to-one because of the following reason.

Suppose two pairs of disjoint lines produce the same quartic rational
divisor class, such as

2la + lb −KS8 ≡ 2lc + ld −KS8 .

Then we consider

lc · (2la + lb) = lc · (2lc + ld) = −2,

and we conclude lc · la = −1 and lc · lb = 0 since two lines in S8 may
have intersection −1, 0, 1, 2, 3 (see [5, 6]). Thus, we get lc = la and
then lb = ld.

Recall that the Weyl group W (S8) transitively acts on lines and 2-
skew lines in S8 as well as preserve KS8 , see [5]. Thus, the quartic
rational divisor classes mapped by ϕ form a single orbit of W (S8)
action, i.e., the image of ϕ ∈ PicS8 is a single orbit of W (S8). Since

3h−
6∑

i=1

ei + e7 = 2e7 + e8 −KS8
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is a typical element in the orbit, we conclude the map ϕ is a bijection
between the Weyl orbit of type II quartic rational divisor classes and

L̃2
8.

Similarly, one can show the case of S7. �

Remark 2.4. A quartic divisor la + 2lb − KS8 in S8 is mapped to a
quartic divisor 2lb−KS7

in S7 via π8
la

: S8 → S7, which is a blow down
map given by an exceptional curve in la.

For S7 (respectively, S8), we observe that D = lb−KS7 (respectively,
la+ lb−KS8) is a divisor class satisfying D2 = 3 and D ·KS7 = −3. In
[6], it is shown that such a divisor class can be written asD ≡ l1+l2+l3
where li, i = 1, 2, 3, are lines with intersection 1. As lines in PicSr

present vertices in Gosset polytope (r− 4)21 ∈ PicSr, the divisor class
D ≡ l1 + l2 + l3 is the center of corresponding 2-simplex, and we call
such a divisor class an A2(1)-divisor (1-degree 2-simplex divisor). Note
such a divisor class exists when r = 6, 7, 8 (see [6] for details).

By considering A2(1)-divisor, we obtain the following corollary.

Corollary 2.5. For each type II quartic rational divisor class q on S7

and S8, uniquely there exist a line lq and an A2(1)-divisor Dq such that
Dq · lq = 0 and q = lq+Dq. In particular, for S7, lq and Dq, determine
each other via lq = Dq +KS7 .

Proof. For a type II quartic rational divisor class q on S7, we
consider Dq := lq − KS7 as in the previous theorem. Since D2

q = 3
and Dq · KS7 = −3, the divisor class Dq is an A2(1)-divisor and it
satisfies Dq · lq = (lq − KS7) · lq = 0. Similarly, for S8, we consider
Dq :≡ lq + l′q −KS8 , and this divisor is an A2(1)-divisor satisfying

Dq · lq =
(
lq + l′q −KS8

)
· lq = 0. �

In summary, we have the following theorem.

Theorem 2.6. For each quartic rational divisor class q in Sr, 3 ≤
r ≤ 6, there are r − 1 disjoint lines li, 1 ≤ i ≤ r − 1 satisfying
2q + KSr = l1 + · · · + lr−1. For the quartic rational divisor class
q in Sr, r = 7, 8, either there are r − 1 disjoint lines li, 1 ≤ i ≤ r − 1,
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satisfying
2q +KSr

≡ l1 + · · ·+ lr−1,

or uniquely there exist a line lq and an A2(1)-divisor Dq such that
Dq · lq = 0 and q = lq +Dq.
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