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PARTIAL CROSSED PRODUCTS AND
FULLY WEAKLY PRIME RINGS

WAGNER CORTES AND MARLON SOARES

ABSTRACT. In this paper, we study the necessary and
sufficient conditions for the partial crossed product to be a
fully weakly prime ring. Moreover, we give a description of
the prime radical of the partial crossed product when the
base ring is a fully weakly prime ring.

1. Introduction. Partial actions of groups have been introduced
in the theory of operator algebras as a general approach to studying
C∗- algebras by partial isometries (see, in particular, [11, 12]), and
crossed products classically, which was well established in [8]. They
are the center of the rich interplay between dynamical systems and
operator algebras (see, for instance, [17, 20]). The general notion of
the (continuous) twisted partial action of a locally compact group on
a C∗-algebra and the corresponding crossed product were introduced
in [11]. Algebraic counterparts for some notions mentioned above were
introduced and studied in [7], stimulating further investigations (see,
for instance, [2, 10, 13], and the references therein). In particular,
twisted partial actions of groups on abstract rings and corresponding
crossed products were recently introduced in [8].

In this article, we describe the prime radical of partial crossed
products when the base ring is a fully weakly prime ring (see [14]
for more details about this theory). We describe the necessary and
sufficient conditions for the partial crossed product to be fully weakly
prime and, as a consequence of our techniques, we generalize some of
the results in [15]. Moreover, we study the necessary and sufficient
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conditions for the partial crossed product to be almost fully prime,
thus generalizing some of the results in [15].

In Section 2, we provide definitions and results that will be used
throughout the article. Moreover, we study matrix rings over fully
weakly prime rings.

In Section 3, we describe the prime radical of a partial crossed
product when the base ring is a fully weakly prime ring.

In Section 4, we study the necessary and sufficient conditions for the
partial crossed product to be a fully weakly prime and, as a consequence
of our techniques, we study when the partial crossed product is a
fully prime ring. Moreover, we describe the necessary and sufficient
conditions for the partial crossed products to be almost fully prime.
We also give some examples to show that our results are not an easy
generalization of the global case.

2. Preliminaries. In this section, we review the definitions and
results that will be used throughout this article. Moreover, we present
some new results.

Recall that the multiplier ring of M(A) of an associative non-
necessarily unital ring A is the set

M(A)={(R,L)∈End(AA)× End(AA); (aR)b = a(Lb)},

for all a, b∈A, with the following operations:

(i) (R, L) + (R′, L′) = (R+R′, L+ L′);
(ii) (R, L)(R′, L′) = (R′ ◦ R, L ◦ L′).

Here, we use the right hand side notation for homomorphisms of left
A-modules, while the usual notation shall be used for homomorphisms
of right modules. In particular, we write

a 7−→ aR and a 7−→ La

for R : AA → AA,L : AA → AA with a ∈ A. For the multiplier
w = (R, L) ∈ M(A) and a ∈ A, we set aw = aR and wa = La.
Thus, one always has (aw)b = a(wb), for all a, b ∈ A. The first
(respectively, second) components of the elements of M(A) are called
right (respectively, left) multipliers of A. It is convenient to point
out that, if A is a unital ring, then we have that A ≃ M(A) (see [7,
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Proposition 2.3]). So, in this case, each invertible multiplier may be
considered to be an invertible element of A.

Definition 2.1. [9, Definition 2.1]. A twisted partial action of a group
G on a ring R is a triple,

α = ({Dg}g∈G, {αg}g∈G, {wg,h}(g,h)∈G×G),

where, for each g ∈ G, Dg is a two-sided ideal of R and αg : Dg−1 → Dg

is an isomorphism of rings. For each (g, h) ∈ G×G, wg,h is an invertible
element from M(DgDgh), satisfying the following postulates, for all
g, h, t ∈ G:

(i) D2
g = Dg and DgDh = DhDg;

(ii) De = R and αe is the identity map of R;
(iii) αg(Dg−1Dh) = DgDgh;

(iv) αg ◦ αh(a) = wg,hαgh(a)w
−1
g,h, for all a ∈ Dh−1Dh−1g−1 ;

(v) wg,e = we,g = 1;
(vi) αg(awh,t)wg,ht = αg(a)wg,hwgh,t, for all a ∈ Dg−1DhDht.

Note that, if wg,h = 1M(DgDgh), for all g, h ∈ G, then we have the
partial action defined by Dokuchaev and Exel [7, Definition 1.1]. When
Dg = R, for all g ∈ G, we have that α is a twisted global action.

Let β = (T, {βg}g∈G, {ug,h}(g,h)∈G×G) be a twisted global action
of a group G on a (non-necessarily unital) ring T , and let R be an
ideal of T generated by a central idempotent 1R. We can restrict
β for R as follows. Putting Dg = R ∩ βg(R) = Rβg(R), we have
that each Dg has identity 1Rβg(1R). Then, defining αg = βg|Dg−1 ,

g ∈ G, Definition 2.1 (i)–(iii) are satisfied. Furthermore, defining
wg,h = ug,h1Rβg(1R)βgh(1R), g, h ∈ G, we have that (iv)–(vi) are
also satisfied. Thus, we have obtained a twisted partial action of G
on R.

Definition 2.2. [9, Definition 2.2]. A twisted global action,(
T, {βg}g∈G, {ug,h}(g,h)∈G×G

)
,

of a group G on an associative (non-necessarily unital) ring T is said
to be an enveloping action (or a globalization) for a twisted partial
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action α of G on a ring R, if there exists a ring monomorphism
φ : R→ T such that, for all g and h in G:

(i) φ(R) is an ideal of T ;
(ii) T =

∑
g∈G βg(φ(R));

(iii) φ(Dg) = φ(R) ∩ βg(φ(R));
(iv) φ ◦ αg(a) = βg ◦ φ(a), for all a ∈ Dg−1 ;
(v) φ(awg,h) = φ(a)ug,h and φ(wg,ha) = ug,hφ(a), for all a ∈ DgDgh.

In [9, Theorem 4.1], the authors studied the necessary and sufficient
conditions for a twisted partial action α of a group G on a ring R which
has an enveloping action. Moreover, they studied which rings satisfy
such conditions.

Suppose that (R,α,w) has an enveloping action (T, β, u). In this
case, we may assume that R is an ideal of T , and we can rewrite the
conditions of Definition (2.2) as follows:

(i′) R is an ideal of T ;
(ii′) T =

∑
g∈G βg(R);

(iii′) Dg = R ∩ βg(R), for all g ∈ G;
(iv′) αg(a) = βg(a), for all a ∈ Dg−1 and g ∈ G;
(v′) awg,h = aug,h and wg,ha = ug,ha, for all a ∈ DgDgh and g, h ∈ G.

Given a twisted partial action α of a group G on a ring R, we recall
from [8, Definition 2.2] that the partial crossed product R ∗wα G is the
direct sum, ⊕

g∈G

Dgδg,

where δg’s are symbols, with the usual addition and multiplication
defined by the rule,

(agδg)(bhδh) = αg(α
−1
g (ag)bh)wg,hδgh.

By [8, Theorem 2.4], we have that R ∗wα G is an associative ring
whose identity is 1Rδ1. Moreover, we have the injective morphism
ϕ : R → R ∗wα G, defined by r 7→ rδ1, and we can consider R ∗wα G an
extension of R.
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From now on, we assume that

α = ({Dg}g∈G, {αg}g∈G, {wg,h}(g,h)∈G×G)

is a twisted partial action of a group G on a ring R such that all the
ideals Dg, g ∈ G, are generated by central idempotents 1g. Note that
this is not sufficient for a twisted partial action of a group G on R to
have an enveloping action (see [11, Theorem 4.1]).

Definition 2.3. Let α be a twisted partial action of a group G on a
ringR. An ideal I ofR is said to be α-invariant if αg(I∩Dg−1) ⊆ I∩Dg,
for all g ∈ G.

Note that the definition above is equivalent to αg(I∩Dg−1) = I∩Dg,
for all g ∈ G. If I is an α-invariant ideal of R, then we define I ∗wα G
as the set of all finite sums ∑

g∈G

agδg,

such that ag ∈ I ∩ Dg, for all g ∈ G, with the usual addition and
multiplication determined by the rule,

(agδg)(bhδh) = agαg(bh1g−1)wg,hδgh.

The proof of the next lemma follows the same methods of [18,
page 132]. Thus, we omit the proof here.

Lemma 2.4. Let α be a twisted partial action of a group G on R.

(i) If A is an ideal of R∗wα G, then A∩R is an α-invariant ideal of R
such that (A ∩R) ∗wα G ⊆ A.

(ii) If I is an α-invariant ideal of R, then I ∗wα G is an ideal of R∗wα G
such that (I ∗wα G) ∩R = I.

Definition 2.5. Let α be a twisted partial action of a group G on R.

(i) An α-invariant ideal J of R is said to be α-semiprime if, for an
α-invariant ideal K of R, K2 ⊆ J implies that K ⊆ J . Moreover,
R is said to be α-semiprime if the ideal (0) is α-semiprime.

(ii) An α-invariant ideal P of R is said to be α-prime if, for any α-
invariant ideals I and J of R with IJ ⊆ P , we have that either
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I ⊆ P or J ⊆ P . Moreover, R is said to be α-prime if the ideal (0)
is α-prime.

(iii) The α-prime radical of R is the intersection of all α-prime ideals
of R, and we denote it by Nilα(R).

The proof of Lemma 2.6 is similar to [18, Lemma 14.1], and we
write it here for the reader’s convenience.

Lemma 2.6. Let α be a twisted partial action of a group G on R.

(i) If Q is a prime ideal of R ∗wα G, then Q ∩ R is an α-prime ideal
of R.

(ii) If P is an α-prime ideal of R, then there exists a prime ideal Q
of R ∗wα G such that Q ∩R = P .

Proof.

(i) Let Q be a prime ideal of R ∗wα G, and let I and J be α-invariant
ideals of R such that I, J ⊆ Q ∩ R. Then, (I ∗wα G)(J ∗wα G) ⊆ Q. By
the fact that Q is prime, we have that either I ∗wαG ⊆ Q or J ∗wαG ⊆ Q.
Thus, either I ⊆ Q∩R or J ⊆ Q∩R. Hence, Q∩R is an α-prime ideal
of R.

(ii) Let P be an α-prime ideal of R. Then, by Lemma 2.4 (ii), we
have that (P ∗wα G)∩R = P . By Zorn’s lemma, there exists an ideal Q
in R ∗wα G, maximal with the property Q ∩ R = P . Now, it is easy to
see that Q is a prime ideal of R ∗wα G such that Q ∩R = P . �

Lemma 2.7. Let α be a twisted partial action of a group G on R, and
let (T, β, u) be its enveloping action. If

M =

{∑
g∈G

agδg : ag ∈ R

}
and

N =

{∑
g∈G

agδg : ag ∈ βg(R)

}
,

then the following conditions hold :

(i) M(T ∗uβ G) ⊆M ;
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(ii) (T ∗uβ G)N ⊆ N ;

(iii) (R ∗wα G)M ⊆M ;
(iv) N(R ∗wα G) ⊆ N ;
(v) MN = R ∗wα G;
(vi) NM = T ∗uβ G;
(vii) M(R ∗wα G) ⊆ R ∗wα G;
(viii) (R ∗wα G)N ⊆ R ∗wα G.

Proof. The proofs of (i)–(vi) are similar to those presented in [7,
Propositions 5.1–5.3].

The proof of (vii) is given by the fact thatMM ⊆M and, using (v),
we have that MR ∗wα G =MMN ⊆MN = R ∗wα G.

To prove (viii), note that NN ⊆ N , and using (v), we obtain the
result. �

Recall from [6, page 345] that a ring S is a left (right) s-unital if,
for any r ∈ S, we have that r ∈ Sr (r ∈ rS). A ring S is said to
be s-unital if it is right and left s-unital. We clearly have that every
unital ring is s-unital. Note that, if R is s-unital and (T, β, u) is the
enveloping action of (R,α,w), then by [6, Remark 2.5], we have that
T is s-unital. Using this fact, we obtain Lemma 2.8 which appears in
the proof of [9, Theorem 3.1].

Lemma 2.8. Let R be an s-unital ring, and let α be a twisted partial
action of a group G on R with enveloping action (T, β, u). Then, T ∗uβG
is s-unital.

It is convenient to point out that R being unital implies that T and
T ∗uβG are s-unital. This implication will be used throughout the paper
without further reference.

The proof of the following lemma is standard, and we omit the proof
here.

Lemma 2.9. Let P ′ be an ideal of T ∗uβ G. Then, P ′ ∩ (R ∗wα G) is an
ideal of R ∗wα G.
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Lemma 2.10. There exists a bijective correspondence, via contraction,
between the set of the ideals of R∗wαG and the set of the ideals of T ∗uβG.

Proof. Let P be an ideal of R ∗wα G. Clearly, NPM is a subring of
T ∗uβ G. Since M(T ∗uβ G) ⊆M and (T ∗uβ G)N ⊆ N , it follows that

NPM(T ∗uβ G) ⊆ NPM

and

(T ∗uβ G)NPM ⊆ NPM.

Thus, NPM is an ideal of T ∗uβ G.

Since P = 1RP1R, 1R ∈ N and 1R ∈M , then P ⊆ NPM∩(R∗wαG).
Now, for each x ∈ NPM ∩ (R ∗wα G), we have that x = 1Rx1R ∈
1RNPM1R. By the fact that MN = R ∗wα G, we have that

x = 1Rx1R ∈ 1RNPM1R ⊆ (R ∗wα G)P (R ∗wα G) ⊆ P.

Thus, NPM ∩(R∗wα G) ⊆ P , and it follows that NPM ∩(R∗wα G) = P .

Next, let P ′ be an ideal of T ∗uβ G. Since M(T ∗uβ G) ⊆ M and

MN = R ∗wα G, we obtain that MP ′N ⊆ R ∗wα G, and we easily see
that MP ′N is a subring of R ∗wα G. By the fact that (R ∗wα G)M ⊆M
and N(R ∗wα G) ⊆ N , it follows that

(R ∗wα G)MP ′N ⊆MP ′N

and

MP ′N(R ∗wα G) ⊆MP ′N.

Thus, MP ′N is an ideal of R ∗wα G.
By the fact that MP ′N ⊆ R ∗wα G and P ′ is an ideal of T ∗uβ G, we

have that MP ′N ⊆ P ′ ∩ (R ∗wα G). Now, for each x ∈ P ′ ∩ (R ∗wα G),
we have

x = 1Rx1R ∈ 1RP
′1R ⊆MP ′N.

Thus, P ′ ∩ (R ∗wα G) ⊆ MP ′N , and it follows that P ′ ∩ (R ∗wα G) =
MP ′N . �

The next corollary is a direct consequence of the proof of Lemma 2.10.
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Corollary 2.11. Let P ′ be an ideal of T ∗uβG, and let P be an ideal of

R∗wαG such that P = P ′∩(R∗wαG). Then P =MP ′N and P ′ = NPM .

Recall that, given two rings R and S, bimodules RUS and SVR and
the maps,

θ : U ⊗S V −→ R and ψ : V ⊗R U −→ S,

the collection (R,S, U, V, θ, ψ) is said to be a Morita context if the set,(
R U
V S

)
,

with the usual formal operations of 2 × 2 matrices, is a ring. As in
Lemma 2.7, consider

M=

{∑
g∈G

agδg :ag∈R
}

and

N=

{∑
g∈G

agδg :ag∈βg(R)
}
.

Using Lemma 2.7 and arguments similar to those presented in the proof
of [9, Theorem 3.1], we have the Morita context(

R ∗wα G, T ∗uβ G, M, N, θ, ψ
)
,

where θ and ψ are the obvious maps.

The next result is a generalization of [13, Proposition 5.1].

Lemma 2.12. There exists a bijective correspondence, via contraction,
between the set of the prime ideals of R ∗wα G and the set of the prime
ideals of T ∗uβ G.

Proof. Let P ′ be a prime ideal of T ∗uβ G, and assume that I and J
are ideals of R ∗wα G such that

IJ ⊆ P ′ ∩ (R ∗wα G) = P.
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Since IJ ⊆ P , it follows that

I ′J ′ = (NIM)(NJM) ⊆ NIJM ⊆ NPM = P ′,

so either I ′ ⊆ P ′ or J ′ ⊆ P ′. Thus, either

I =MI ′N ⊆MP ′N = P

or

J =MJ ′N ⊆MP ′N = P.

Hence,
P = P ′ ∩ (R ∗wα G)

is a prime ideal of R ∗wα G. Analogously, it can be seen that, if P is a
prime ideal of R∗wα G, then there exists a prime ideal P ′ of T ∗uβG such

that P = P ′ ∩ (R ∗wα G). �

In what follows, we will see some consequences of the last result that
will be used throughout the rest of the article.

Corollary 2.13. There exists a bijective correspondence, via contrac-
tion, between the set of the prime ideals P ′ of T ∗uβG such that P ′∩T = 0
and the set of the prime ideals P of R ∗wα G such that P ∩R = 0.

Proof. Let P ′ be a prime ideal of T ∗uβ G such that P ′ ∩ T = 0.
Then, by Lemma 2.12, there exists a prime ideal P of R∗wα G such that
P = P ′ ∩ (R ∗wα G). Thus,

P ∩R =
(
P ′ ∩ (R ∗wα G)

)
∩R

= P ′ ∩
(
(R ∗wα G) ∩R

)
= P ′ ∩R ⊆ P ′ ∩ T = 0.

Now, let P be a prime ideal of R ∗wα G such that P ∩R = 0. Then,
by Lemma 2.12, there exists a prime ideal P ′ of T ∗uβ G such that

P = P ′ ∩ (R ∗wα G). Thus,

P ′ ∩R = P ′ ∩
(
(R ∗wα G) ∩R

)
=

(
P ′ ∩ (R ∗wα G)

)
∩R = P ∩R = 0,
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and it follows that (P ′∩T )1R = 0. Since P ′∩T is β-invariant, we have
that (P ′ ∩ T )βg(1R) = 0, for all g ∈ G. By the fact that

T =
∑
g∈G

βg(R),

we obtain that (P ′ ∩ T )T = 0 and, since T is s-unital, it follows that
P ′ ∩ T ⊆ (P ′ ∩ T )T = 0. �

Let α be a twisted partial action of a group G on R, and let I be an
α-invariant ideal of R. We define

I∗ =
{
t ∈ T : βg(t)1R ∈ I for all g ∈ G

}
.

The proof of the following lemma is analogous to the proof of [2,
Lemma 2.3] and will be omitted.

Lemma 2.14. Suppose that (R,α,w) has an enveloping action (T, β, u).
If I is an α-invariant ideal of R, then I∗ is a β-invariant ideal of T ,
with I∗ ∩ R = I. Moreover, for any β-invariant ideal J of T with
J ∩ R = I, we have J ⊆ I∗. In addition, if I is α-prime, then I∗ is
β-prime and, conversely, if J is a β-prime ideal of T , then there exists
an α-prime ideal I of R such that I∗ = J .

Let I be an α-invariant ideal of R. Then, we can extend the twisted
partial action α of G on R to a twisted partial action α of G on R/I
as follows.

For each g ∈ G, we define

αg : (Dg−1 + I)/I −→ (Dg + I)/I

by

αg(a+ I) = αg(a) + I,

and, for each (g, h) ∈ G × G, we extend each wg,h to R/I by wg,h =
wg,h + I.

The next corollary generalizes [18, Lemma 16.6 (iii)].

Corollary 2.15. Suppose that G is a finite group. If P1 and P2 are
prime ideals of R ∗wα G such that P1 ∩R = P2 ∩R, then P1 = P2.
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Proof. Let Q = P1 ∩ R = P2 ∩ R. Then, by Lemma 2.6, Q is an
α-prime ideal of R and, by Lemma 2.14, we have that the set

Q∗ = {t ∈ T : βg(t)1R ∈ Q for all g ∈ G}

is a β-prime ideal of T such that Q∗ ∩ R = Q. By arguments
similar to [13, Proposition 2.10], (R/Q,α,w) has an enveloping action
(T/Q∗, β, u). Thus, we may assume that

Q = P1 ∩R = P2 ∩R = 0,

R is α-prime and T is β-prime. By Corollary 2.13, there exist prime
ideals P ′

1 and P ′
2 of T ∗uβ G, such that P ′

1 ∩ T = P ′
2 ∩ T = 0. Hence,

by [18, Theorem 16.6 (iii)], we have that P ′
1 = P ′

2, and it follows that
P1 = P2. �

Corollary 2.16. Suppose that R is an α-prime ring and that G is
a finite group. A prime ideal P of R ∗wα G is minimal if and only if
P ∩R = 0.

Proof. Let P be a minimal prime ideal of R ∗wα G. Then, by
Lemma 2.12, there exists a prime ideal P ′ of T ∗uβ G such that P ′ ∩
(R ∗wα G) = P . We claim that P ′ is minimal. In fact, let Q′ be a prime
ideal of T ∗uβ G such that 0 ̸= Q′ ⊆ P ′. Thus,

0 ̸= Q = Q′ ∩ (R ∗wα G) ⊆ P,

and, by assumption, Q = P . Hence, Q′ = P ′. Since R is α-prime, then
by Lemma 2.14, we have that T is β-prime. By [18, Theorem 16.2 (i)],
we have that P ′ ∩ T = 0, and, by Corollary 2.13, we obtain that
P ∩R = 0.

Conversely, let P,Q be prime ideals of R ∗wα G such that P ∩R = 0
and 0 ̸= Q ⊆ P . Then, Q∩R ⊆ P ∩R = 0. Thus, Q∩R = P ∩R and,
by Corollary 2.15, we have that Q = P . So, P is a minimal prime ideal
in R ∗wα G. �

Lemma 2.17. If I is a nonzero β-invariant ideal of T , then I∩R ̸= 0.

Proof. Suppose that I ∩R = 0. Then I1R = I ∩R = 0. By the fact
that I is β-invariant, we have that Iβg(1R) = 0, for all g ∈ G, and it
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follows that IT = 0. Since T is s-unital, we have that I ⊆ IT = 0,
which is a contradiction. �

Definition 2.18. [1, Definition 1.1], [15, page 86]. Let S be a ring.

(i) S is said to be a fully prime ring (FPR) if every ideal of S is
prime.

(ii) S is said to be an almost fully prime ring (AFPR) if every proper
ideal of S is prime and S is not a prime ring.

Proposition 2.19. [1, Theorem 1.2]. A ring S is an FPR if and only
if the set of all the ideals of S is totally ordered by inclusion and all the
ideals of S are idempotent.

At this point, it is convenient to point out that any FPR has only
one maximal ideal. The following two results were proved in [21,
Theorems 2.1, 2.2].

Lemma 2.20. Let S be a ring whose set of ideals is not totally ordered
by inclusion. Then S is an AFPR if and only if :

(i) all ideals of S are idempotent and it has exactly two minimal
ideals;

(ii) each minimal ideal of S is contained in all nonzero ideals of S
that are not minimal ideal ;

(iii) the set of the ideals of S that are not minimal is totally ordered
by inclusion.

Lemma 2.21. Let S be a ring whose set of ideals is totally ordered by
inclusion. Then S is an AFPR if and only if S has only one minimal
ideal and every ideal of S except the minimal one is idempotent.

In what follows, we denote the prime radical of a ring S, i.e., the
intersection of all prime ideals of S, by Nil∗(S). The proof of the next
result follows directly from Lemmas 2.20 and 2.21.
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Lemma 2.22.

(i) If S is an AFPR whose set of ideals is not totally ordered by
inclusion, then Nil∗(S) = P1 ∩ P2 = 0, where P1 and P2 are the
minimal ideals of S.

(ii) If S is an AFPR whose set of ideals is totally ordered by inclusion,
then Nil∗(S) = P0, where P0 is the minimal prime ideal of S that
is nilpotent.

Definition 2.23. [14, page 1078, Definition]. Let S be a ring.

(i) A proper ideal I of S is said to be a weakly prime ideal if, for
any ideals J and K of R with 0 ̸= J , K ⊆ I, we have that either
J ⊆ I or K ⊆ I.

(ii) S is said to be a fully weakly prime ring (FWPR) if every proper
ideal of S is weakly prime.

We conclude this section with some results of independent interest.

By [16, Theorem 3.1], there is a bijective correspondence between
the set of ideals of a ring S and the set of ideals of the ring of matrices
Mn(S), i.e., let

{I : I ideal of S}

and

{J : J ideal of Mn(S)}

be the sets. The correspondence is given by:

I −→Mn(I)

and

J −→ {s ∈ S : exists U = [aij ] ∈ J such that a11 = s}.

In the next result, we use this fact without further mention.

Proposition 2.24. S is an FWPR if and only if Mn(S) is an FWPR.

Proof. Suppose that S is an FWPR. Let J be a proper ideal of
Mn(S), and assume that A and B are ideals of Mn(S) such that
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0 ̸= AB ⊆ J . Then there exist ideals I, K and L of S such that

J = Mn(I), A = Mn(K), B = Mn(L) and 0 ̸= KL ⊆ I.

By the fact that S is an FWPR, we have that either K ⊆ I or L ⊆ I.
Thus, either A ⊆ J or B ⊆ J . So, Mn(S) is an FWPR.

Conversely, suppose that Mn(S) is an FWPR . Let K be a proper
ideal of Mn(S), and assume that I and J are ideals of S such that
0 ̸= I, J ⊆ K. Then,

0 ̸= Mn(I)Mn(J) ⊆ Mn(K).

By assuming Mn(S), either Mn(J) ⊆ Mn(K) or Mn(I) ⊆ Mn(K).
Thus, either I ⊆ K or J ⊆ K. So, S is an FWPR . �

By similar methods to the those of Proposition 2.24, we obtain the
following result which contains the result given in [1, Theorem 2.1].

Proposition 2.25. The following statements hold :

(i) S is an FPR if and only if Mn(S) is an FPR.
(ii) S is an AFPR if and only if Mn(S) is an AFPR.

3. Prime radical of partial crossed products. In this section,
we describe the prime radical of partial crossed products when the
base ring is a fully weakly prime ring. To do so, we need the following
definition.

Definition 3.1. Let α be a twisted partial action of a group G on R.
We say that a proper α-invariant ideal Q of R is weakly α-prime if, for
any α-invariant ideals A and B of R with 0 ̸= AB ⊆ Q, we have that
either A ⊆ Q or B ⊆ Q.

The proof of the following lemma is analogous to the proof of [14,
Proposition 1] and we provide it here for the reader’s convenience.

Lemma 3.2. Let P be a weakly α-prime ideal of R that is not α-prime.
Then P 2 = 0.
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Proof. By assumption, there exist α-invariant ideals I and J of R
such that

I * P, J * P and 0 = IJ ⊆ P.

If P 2 ̸= 0, then
0 ̸= P 2 ⊆ (I + P )(J + P ) ⊆ P,

which implies that either I ⊆ P or J ⊆ P , which is a contradiction. �

Given a nonzero element,

a =
∑
g∈G

agδg

of R ∗wα G, the support of a is defined by

supp(a) = {g ∈ G : ag ̸= 0}.

Lemma 3.3. If R is semiprime, then R ∗wα G is semiprime.

Proof. Let

a =
∑
g∈G

agδg ∈ R ∗wα G

be such that a(R ∗wα G)a = 0. Suppose that a ̸= 0. Then there exists
s ∈ supp(a). Note that

1s−1δs−1a(R ∗wα G)1s−1δs−1a ⊆ 1s−1δs−1a(R ∗wα G)a = 0.

Thus, 1s−1δs−1aR1s−1δs−1a = 0, and it follows that

αs−1(as)ws−1,sRαs−1(as)ws−1,s = 0.

Consequently, αs−1(as)ws−1,s = 0, since R is semiprime. Hence, as = 0
is a contradiction because s ∈ supp(a). Thus, R∗wα G is semiprime. �

Since Nil∗(R) is an α-invariant ideal ofR, the twisted partial action α
of G on R induces a twisted partial action of G on R/Nil∗(R). We
denote this partial action by α.

Proposition 3.4. For any twisted partial action α of a group G on R,
we have

Nilα(R) ∗wα G ⊆ Nil∗(R ∗wα G) ⊆ Nil∗(R) ∗wα G.
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Proof. For any prime ideal P of R ∗wα G, by Lemma (2.6) (i), we
obtain that Q = P ∩ R is an α-prime ideal of R. Since Nilα(R) ⊆ Q,
then by Lemma 2.4 (i), we have that

Nilα(R) ∗wα G ⊆ Q ∗wα G = (P ∩R) ∗wα G ⊆ P.

Hence, Nilα(R) ∗wα G ⊆ Nil∗(R ∗wα G).
Moreover, it is well known that Nil∗(R) is a semiprime ideal of R,

and thus, R/Nil∗(R) is a semiprime ring. By Lemma 3.3, we have that
(R/Nil∗(R)) ∗wα G is semiprime. Since

(R/Nil∗(R)) ∗wα G ∼= (R ∗wα G)/(Nil∗(R) ∗wα G),

it follows that

Nil∗(R ∗wα G) ⊆ Nil∗(R) ∗wα G. �

Proposition 3.5. For any twisted partial action α of a group G on R,
we have

Nil∗(R ∗wα G) ∩R = Nilα(R).

Proof. By Lemma 2.6 (ii), for any α-prime ideal Q of R, there
exists a prime ideal P of R ∗wα G such that P ∩ R = Q, and so
Nil∗(R ∗wα G) ∩R ⊆ P ∩R = Q. Hence,

Nil∗(R ∗wα G) ∩R ⊆ Nilα(R).

By Proposition 3.4, we have that Nilα(R) ∗wα G ⊆ Nil∗(R ∗wα G),
and consequently, (Nilα(R) ∗wα G) ∩ R ⊆ Nil∗(R ∗wα G) ∩ R. So, by
Lemma 2.4 (ii), we have that

Nilα(R) = (Nilα(R) ∗wα G) ∩R ⊆ Nil∗(R ∗wα G) ∩R. �

Lemma 3.6. If R is an FWPR, then Nil∗(R) = Nilα(R).

Proof. By Proposition 3.4, we have that

Nilα(R) ∗wα G ⊆ Nil∗(R) ∗wα G.

Thus,

Nilα(R) = (Nilα(R) ∗wα G) ∩R ⊆ (Nil∗(R) ∗wα G) ∩R = Nil∗(R).
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By [14, Theorem 1], we have that Nil∗(R) is nilpotent. Then, since
Nil∗(R) is α-invariant and Nilα(R) is α-semiprime, it follows that
Nil∗(R) ⊆ Nilα(R). So, Nil∗(R) = Nilα(R). �

In [14, Theorem 1], the authors studied the prime radical of rings
that are FWPR. From now on, for any ring S, we denote the sum of
all nilpotent ideals of S by Nil(S), and we denote the Jacobson radical
of S by J(S). Next, we give a description of the prime radical of partial
crossed products when the base ring is an FWPR.

Theorem 3.7. If R is an FWPR, then

Nil∗(R ∗wα G) = Nil(R) ∗wα G = Nilα(R) ∗wα G = Nil∗(R) ∗wα G.

Proof. By [14, Theorem 1] and Lemma 3.6, we have that Nil∗(R) =
Nil(R) = Nilα(R). By Proposition 3.4,

Nilα(R) ∗wα G ⊆ Nil∗(R ∗wα G) ⊆ Nil∗(R) ∗wα G,

it follows that

Nil∗(R ∗wα G) = Nil(R) ∗wα G = Nilα(R) ∗wα G = Nil∗(R) ∗wα G. �

Using [14, Corollary 2] and Theorem 3.7, we obtain the following
result.

Corollary 3.8. If R is a Noetherian FWPR, then

Nil∗(R ∗wα G) = J(R) ∗wα G.

Corollary 3.9. Suppose that R ∗wα G is an FWPR and R is a Noe-
therian FWPR. Then,

Nil∗(R ∗wα G) = J(R ∗wα G) = J(R) ∗wα G.

Proof. By analogous methods to those of [2, Corollary 3.4], R∗wαG is
Noetherian. Now, using [14, Corollary 2] and Theorem 3.7, we obtain
the result. �

Lemma 3.10. If R ∗wα G is an FWPR, then (Nilα(R))
2 = 0.
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Proof. By Proposition 3.5, we have that Nil∗(R∗wαG)∩R = Nilα(R),
and since R ∗wα G is an FWPR, then by [14, Theorem 1], we have that
(Nil∗(R ∗wα G))2 = 0. So,

(Nilα(R))
2 = (Nil∗(R ∗wα G) ∩R)2 ⊆ (Nil∗(R ∗wα G))2 = 0. �

Let α be a twisted partial action of Z on R, and let (T, β, u) be its
enveloping action. By arguments similar to those of [4, Lemma 1.13],
we can show that, if L is an α-prime ideal of R, then L ∗wα Z is a prime
ideal of R ∗wα Z. Thus,

Nil∗(R ∗wα Z) ⊆ Nilα(R) ∗wα Z,

and, using Proposition 3.4, we have that

Nil∗(R ∗wα Z) ⊇ Nilα(R) ∗wα Z.

This leads to the following result.

Proposition 3.11. Let α be a twisted partial action of Z on R. Then,

Nil∗(R ∗wα Z) = Nilα(R) ∗wα Z.

4. Partial crossed products FWPR and AFPR. In this sec-
tion, we study the necessary and sufficient conditions for the partial
crossed products to be fully weakly prime rings. As a consequence of
our techniques we obtain the results for the partial crossed products
to be FPRs, and we obtain the necessary and sufficient conditions for
the partial crossed products to be AFPRs. Moreover, we give some
examples to show that our results are not an easy generalization of the
global case.

Throughout this section, we assume that the twisted partial action α
of G on R has an enveloping action (T, β, u), unless otherwise stated.

In [15, Definition 1], a ring T is said to be a β-FPR if every β-
invariant ideal of T is β-prime and, in [15, page 86], a ring T is said
to be a β-AFPR if every proper β-invariant ideal of T is β-prime and
T is not β-prime. Now, we need the following definitions.

Definition 4.1. Let α be a twisted partial action of a group G on a
ring R.
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(i) We say that R is an α-FPR if every α-invariant ideal of R is
α-prime.

(ii) We say that R is an α-AFPR if every proper α-invariant ideal
of R is α-prime and R is not an α-prime ring.

(iii) We say that R is an α-FWPR if every proper α-invariant ideal
of R is weakly α-prime.

The proof of the following result is similar to the proof of Proposi-
tion 2.19 and will be omitted.

Proposition 4.2. A ring S is an α-FPR if and only if the set of all α-
invariant ideals of S is totally ordered by inclusion and all α-invariant
ideals of S are idempotent.

We recall that, given an α-invariant ideal I of R, we have that

I∗ =
{
t ∈ T : βg(t)1R ∈ I for all g ∈ G

}
,

is a β-invariant ideal of T such that I∗ ∩ R = I, see Lemma 2.14. In
the next result, we use this fact without further mention.

Proposition 4.3. R is an α-FWPR if and only if T is a β-FWPR.

Proof. Let P be a proper β-invariant ideal of T , and assume that
A and B are nonzero β-invariant ideals of T such that 0 ̸= AB ⊆ P .
Thus, by similar arguments to those used in the proof of Lemma 2.17,
we have

0 ̸= (A ∩R)(B ∩R) ⊆ P ∩R,

with 0 ̸= A ∩R = A1R and 0 ̸= B ∩R = B1R. Hence, by assumption,
we have that either A1R ⊆ P ∩R ⊆ P or B1R ⊆ P ∩R ⊆ P . Since A,
B and P are β-invariant ideals of T , it follows that either Aβg(1R) ⊆ P
or Bβg(1R) ⊆ P , for all g ∈ G. So, we have that either AT ⊆ P or
BT ⊆ P and, since T is s-unital, it follows that either A ⊆ AT ⊆ P
or B ⊆ BT ⊆ P . Thus, P is weakly β-prime, and we have that T is a
β-FWPR.

Conversely, let Q be a proper α-invariant ideal of R, and assume
that I and J are α-invariant ideals of R such that 0 ̸= I, J ⊆ Q. Since
I∗ ∩ R = I and J∗ ∩ R = J , we have that 0 ̸= I∗, J∗ ⊆ Q∗. By
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assumption, we have that either I∗ ⊆ Q∗ or J∗ ⊆ Q∗, and it follows
that either I ⊆ Q or J ⊆ Q. Thus, Q is weakly α-prime, and we have
that R is an α-FWPR. �

Using arguments similar to those used in the proof of Proposition 4.3
and using Lemma 2.14, we obtain the following result.

Proposition 4.4.

(i) R is an α-FPR if and only if T is a β-FPR.
(ii) R is an α-AFPR if and only if T is a β-AFPR.

Suppose that G is an infinite cyclic group generated by σ. In this
case, note that T ∗uβ G is the twisted skew Laurent polynomial ring

T ⟨x;σ, u⟩ whose elements are finite sums

m∑
i=n

aix
i,

where m, n ∈ Z, with the usual addition of polynomials and multipli-
cation determined by the rule

(aix
i)(ajx

j) = aiσ
i(aj)uσi,σjxi+j .

For each i, j ∈ Z, we simply denote uσi,σj by ui,j . As a subring
of T ⟨x;σ, u⟩, we have T [x;σ, u], the twisted skew polynomial ring whose
elements are the polynomials

n∑
i=0

aix
i,

with the usual addition and multiplication defined as above, and the
leading coefficient of

f =

n∑
i=0

aix
i,

denoted by lc(f) = an. We define Tm as the set of f ∈ T [x;σ, u] such
that τ(f) ≤ m, where τ(f) denotes the degree of the polynomial f .
Now, let J be a nonzero ideal of T ⟨x;σ, u⟩. We define J ∩ Tm as the
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set f ∈ J ∩ T ⟨x;σ, u⟩ such that τ(f) ≤ m. Moreover, for an element

m∑
i=n

aix
i ∈ T ⟨x;σ, u⟩,

we define

σj

( n∑
i=m

aix
i

)
=

n∑
i=m

σj(ai)x
i = xj

( n∑
i=m

aix
i

)
x−j .

An ideal I of T ⟨x;σ, u⟩ is said to be T -disjoint if I ∩ T = 0. Now,
using these facts and with minor adaptations from [19, Lemma 2.11],
we have the following result.

Lemma 4.5. Let I be a nonzero T -disjoint ideal of T ⟨x;σ, u⟩, and let
f ∈ I be a nonzero polynomial of minimal degree n such that lc(f) = a.
Suppose that m > n and g ∈ I∩Tm. If aj ∈ T , and ij is a non-negative
integer for each j ∈ {1, 2, . . . ,m− n}, then there exists h ∈ Tm−n such
that

ha0σ
i0(f) = g

m−n∏
j=0

σ−n
(
am−n−jσ

im−n−j (a)
)
,

for all a0 ∈ T and i0 ∈ Z.

Now, we are ready to prove Proposition 4.6 which generalizes [3,
Lemma 2.7].

Proposition 4.6. Suppose that T is σ-prime and P is a nonzero T -
disjoint ideal of T ⟨x;σ, u⟩. Then, P is a prime ideal if and only if P is
maximal in the set of T -disjoint ideals.

Proof. Suppose that P is a prime ideal of T ⟨x;σ, u⟩, and let I be a T -
disjoint ideal of T ⟨x;σ, u⟩ such that P ⊆ I. Let f ∈ I be a polynomial
of minimal degree n in I such that lc(f) = a, and let g ∈ P be a nonzero
polynomial of minimal degreem in P such that lc(g) = b. Suppose that
m > n. For each g ∈ P ∩ Tm ⊆ I ∩ Tm, we have, by Lemma 4.5, that
there exists h ∈ Tm−n such that

ha0σ
i0(f) = g

m−n∏
j=0

σ−n
(
am−n−jσ

im−n−j (a)
)
,
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for all a0 ∈ T and i0 ∈ Z. Since g ∈ P , we obtain that hTσi0(f) ⊆ P ,
for all i0 ∈ Z. Then, for each txk ∈ T ⟨x;σ, u⟩, we have that
htσk(f)σk(c)xk ∈ P , where c ∈ T is such that fc = c. By the fact
that

htxkfx−kσk(c)xk = htxkfu−k,k,

we have that htxkfu−k,kT ⊆ P . In the proof of [9, Theorem 4.1], we
have that u−k,kT = Tu−k,k = T , and it follows that htxkfT ⊆ P ,
which implies that htxkf ∈ P . Consequently, hT ⟨x;σ, u⟩f ⊆ P and,
since P is prime, we have that either h ∈ P or f ∈ P . Thus, either
f = 0 or h = 0, which contradicts the fact that h and f are nonzero
polynomials, and it follows that m = n.

Next, let f ∈ I and g ∈ P be such that τ(f) = n+ 1 and τ(g) = n.
Then, for

l = axtxigcx−i − fσ−(n+1)
(
σ(tσi(b)ui,nun+i,−i)u1,n

)
,

where lc(g) = b, lc(f) = a and t ∈ T , we easily have that τ(l) = n.
Hence, l ∈ I ∩ Tn = P ∩ Tn, and it follows that fTσi−n(b) ⊆ P ,
for all i ∈ Z. Using similar arguments, we obtain that f ∈ P , and
consequently, I ∩ Tn+1 = P ∩ Tn+1. Now, proceeding by induction, we
have that I ∩ Tm = P ∩ Tm, for all m > 0. So, I = P .

The converse uses arguments similar to those used in [3, Lemma 2.7].
�

We recall that, given a twisted partial action α of G on a ring R,
an ideal J of R ∗wα G is said to be R-disjoint if J ∩R = 0. Lemma 4.7
generalizes [5, Corollary 2.12].

Lemma 4.7. Suppose that G is an infinite cyclic group. If P1 and P2

are prime ideals of R ∗wα G such that P1 ∩R = P2 ∩R, then P1 = P2.

Proof. Since L = P1 ∩ R = P2 ∩ R is an α-invariant ideal of R, we
consider the partial crossed product Z =

(
R/L

)
∗wα G. Note that the

images of P1 and P2 in Z are R/L-disjoint prime ideals. Thus, we may
assume that P1 ∩ R = P2 ∩ R = 0. Since Pi is prime, for i = 1, 2, it
follows that R is α-prime, and we have that T is β-prime. Again, by
the fact that Pi∩R = 0, we have that the prime ideal P ′

i of T ∗uβG, such
that Pi = P ′

i ∩ (R∗wα G), satisfies P ′
i ∩T = 0. Then, by Proposition 4.6,
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we have that P ′
i is maximal in the set of T -disjoint ideals of T ∗uβ G

and, since
Pi = P ′

i ∩ (R ∗wα G),

it is not difficult to see that Pi is maximal in the set of the R-disjoint
ideals of R ∗wα G. Suppose, without loss of generality, that P1 * P2.
Thus, P1 $ P1 + P2 and, by Proposition 4.6, P1 is maximal in the set
of R-disjoint ideals. It follows that (P1 + P2) ∩ R ̸= 0. Hence, there
exists a nonzero element

r = a0 + b0 ∈ ((P1 + P2) ∩R),

such that a0 ∈ P1∩R and b0 ∈ P2∩R. By the fact that r ̸= 0, we have
that either a0 ̸= 0 or b0 ̸= 0, and we obtain that either P1 ∩ R ̸= 0 or
P2 ∩R ̸= 0, which is a contradiction. Therefore, P1 = P2. �

In Proposition 4.8, we study partial crossed products by infinite
cyclic groups that are FWPR.

Proposition 4.8. Suppose that G is an infinite cyclic group. If R∗wαG
is an FWPR, then R is an α-FWPR, and there exists a bijective
correspondence between the set L1 of the ideals of R ∗wα G that contains
the prime radical of R ∗wα G and the set L2 of the α-invariant ideals of
R which contains the α-prime radical of R.

Proof. Let A be a proper α-invariant ideal of R, and assume that I
and J are α-invariant ideals of R such that 0 ̸= IJ ⊆ A. By Lemma
2.4 (ii), we have that

0 ̸= (I ∗wα G)(J ∗wα G) ⊆ A ∗wα G,

and, by assumption, we have that either

I ∗wα G ⊆ A ∗wα G or J ∗wα G ⊆ A ∗wα G.

Consequently, either I ⊆ A or J ⊆ A.

Note that, by Lemma 3.10, the intersection of all α-prime ideals of
R is a nilpotent ideal. Now, we define

Ψ : L1 −→ L2

by Ψ(L) = L ∩ R. If L ∈ L1 and L properly contains Nil∗(R ∗wα G),
then L is a prime ideal; otherwise, by [14, Proposition 1], we would
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have L2 = 0, and hence, L = Nil∗(R ∗wα G). Since L is a prime ideal,
by Lemma 2.6 (ii), we have that L ∩ R is an α-prime ideal of R that
contains the α-prime radical. By Lemma 4.7, we easily see that Ψ is
injective. We show that Ψ is surjective. In fact, let K be an α-invariant
ideal of R that properly contains Nilα(R). If K was nilpotent, then we
would have that K ⊆ Nilα(R), this contradicts the assumption on K.
Hence, K2 = K and, by Lemma 3.2, K is α-prime. Using the same
techniques of [4, Lemma 1.13], we obtain that K ∗wα G is a prime ideal
of R ∗wα G which contains the prime radical of R ∗wα G. �

Lemma 4.9. R ∗wα G is an FWPR if and only if T ∗uβ G is an FWPR.

Proof. Suppose that R∗wαG is an FWPR. Let P ′ be a proper ideal of
T ∗uβG, and assume that I ′ and J ′ are ideals of T ∗uβG such that 0 ̸= I ′

and J ′ ⊆ P ′. Note that, given an ideal A′ of T ∗uβ G, by Lemma 2.10,

there exists an ideal A of R∗wαG such that A = A′∩(R∗wαG). Moreover,
by Corollary 2.11, we have that A = MA′N and A′ = NAM . Using
these facts and the relations of Lemma 2.7, we obtain that 0 ̸= I,
J ⊆ P . Since P is weakly prime, we have that either I ⊆ P or J ⊆ P .
Hence, either I ′ ⊆ P ′ or J ′ ⊆ P ′. Thus, P ′ is weakly prime and so
T ∗uβ G is an FWPR.

By similar arguments, we obtain the converse. �

By Lemma 2.10, there exists a bijective correspondence between the
set of the ideals of R ∗wα G and the set of the ideals of T ∗uβ G and, by
Lemma 2.12, there exists a bijective correspondence between the set of
the prime ideals of R ∗wα G and the set of the prime ideals of T ∗uβ G.
Thus, we obtain the following result.

Lemma 4.10.

(i) R ∗wα G is an FPR if and only if T ∗uβ G is an FPR.

(ii) R ∗wα G is an AFPR if and only if T ∗uβ G is an AFPR.

Using the same arguments as in the proofs of Proposition 4.8 and
Corollary 2.15 to prove the injectivity, we obtain the following result.
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Proposition 4.11. Suppose that G is a finite group. If R ∗wα G is an
FWPR, then R is an α-FWPR, and there is a bijective correspondence
between the set L1 of the ideals of R∗wαG that contains the prime radical
of R ∗wα G and the set L2 of all α-invariant ideals of R which contains
the α-prime radical of R.

From now on, we denote the set of the ideals of R by L(R), the set of
the α-invariant ideals of R by α−L(R), and the set of the non-minimal

ideals of R by L(R).

Theorem 4.12. Suppose that G is any group. If R is an α-FWPR
and the map,

φ : L(R ∗wα G) −→ α− L(R),

defined by φ(J) = J ∩R, is bijective, then R ∗wα G is an FWPR.

Proof. Note that, by injectivity of φ, we have (A ∩ R) ∗wα G = A,
for any ideal A of the R ∗wα G. Let P be a proper ideal of R ∗wα G, and
assume that I and J are ideals of R∗wα G such that 0 ̸= I, J ⊆ P . Since

IJ = [(I ∩R) ∗wα G][(J ∩R) ∗wα G] ⊆ (I ∩R)(J ∩R) ∗wα G,

it follows that (I ∩R)(J ∩R) ̸= 0. Then 0 ̸= (I ∩R)(J ∩R) ⊆ (P ∩R)
and, by the fact that R is an α-FWPR, we have that either I∩R ⊆ P∩R
or J ∩R ⊆ P ∩R. Hence, either

I = (I ∩R) ∗wα G ⊆ (P ∩R) ∗wα G = P,

or
J = (J ∩R) ∗wα G ⊆ (P ∩R) ∗wα G = P.

Thus, P is weakly prime and so R ∗wα G is an FWPR. �

The next proposition generalizes [15, Theorem 2].

Proposition 4.13. Suppose that G is a finite group. Then R ∗wα G is
an FPR if and only if R is an α-FPR, and the map ϕ : L(R ∗wα G) →
α− L(R), defined by ϕ(I) = I ∩R, is bijective.

Proof. Suppose that R∗wαG is an FPR. Let A be an α-invariant ideal
of R, and assume that I and J are α-invariant ideals of R such that
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IJ ⊆ A. Then
(I ∗wα G)(J ∗wα G) ⊆ A ∗wα G,

and, by assumption, we have that either I ∗wα G ⊆ A ∗wα G or J ∗wα G ⊆
A ∗wα G. Consequently, either I ⊆ A or J ⊆ A. Thus, A is α-prime
and so R is an α-FPR. By Lemma 2.4 (ii), clearly ϕ is surjective.
Moreover, ϕ is injective because, if I and J are ideals of R ∗wα G such
that I ∩R = J ∩R, then by Lemma 2.15, we have that I = J .

By similar arguments to those of Theorem 4.12, we obtain the
converse. �

Lemma 4.14. Let α be a twisted partial action of a finite group G on
R. Suppose that R ∗wα G is an AFPR whose set of ideals is not totally
ordered by inclusion, and let P1 and P2 be the minimal ideals of R∗wαG.
Then, P1 ∩R = 0 if and only if P2 ∩R = 0.

Proof. If P1∩R = 0, then by Lemma 2.6 (i) we have that 0 = P1∩R
is an α-prime ideal of R. Thus, R is α-prime. Since P2 is minimal, then
by Corollary 2.16, we have that P2 ∩ R = 0. We obtain the converse
analogously. �

Lemma 4.15. Suppose that α is a twisted partial action of a group G
on a ring R which is an AFPR. If the map

ϕ : L(R ∗wα G) −→ L(R),

defined by P 7→ P ∩R, is bijective, then all proper ideals of R ∗wα G are
prime.

Proof. By arguments similar to those of Theorem 4.12, we obtain
the result. �

In the next result, we study the sufficient conditions for the partial
crossed product to be an AFPR and it partially generalizes [15,
Theorems 4.5]. Moreover, we do not know if the converse of the next
result is true.

Theorem 4.16. Suppose that α is a twisted partial action of a finite
group G on R which is an AFPR. If one of the following conditions is
satisfied, then R ∗wα G is an AFPR.
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(i) The map ϕ1 : L(R ∗wα G) → L(R), defined by P 7→ P ∩ R, is
bijective;

(ii) (a) R ∗wα G has exactly two minimal ideals, P1 and P2, which are
prime;

(b) the map ϕ2 : L(R ∗wα G) → L(R), defined by P 7→ P ∩ R, is
bijective.

(iii) (a) R ∗wα G has only one minimal ideal P0 which is prime and
nilpotent ;

(b) the map ϕ3 : L(R ∗wα G) → L(R), defined by P 7→ P ∩ R, is
bijective.

Proof. Suppose that (i) holds. We have two cases to consider.

Case 1. L(R) is totally ordered by inclusion. By Lemma 2.21, R
has a unique minimal nilpotent ideal Q0, and we easily obtain that
P0 = Q0 ∗wα G is a nilpotent minimal ideal of R ∗wα G. Hence, R ∗wα G is
not prime. Moreover, by Lemma 4.15, all proper ideals of R ∗wα G are
prime. So, R ∗wα G is an AFPR.

Case 2. L(R) is not totally ordered by inclusion. By Lemma 2.20,
R has two minimal ideals, Q1 and Q2. Since ϕ is bijective, there
exist nonzero ideals P1 and P2 of R ∗wα G such that P1 ∩ R = Q1 and
P2 ∩ R = Q2. It is not difficult to show that P1 and P2 are minimal
prime ideals of R ∗wα G. Thus, P1P2 = 0, and it follows that R ∗wα G is
not prime. Moreover, by Lemma 4.15, all proper ideals of R ∗wα G are
prime. So, R ∗wα G is an AFPR.

Suppose that (ii) holds. Let P be a proper ideal of R ∗wα G. If
P is minimal, then P is prime, by (a). If P is not minimal, then

P ∈ L(R ∗wα G) and, by the fact that ϕ2 is bijective, we have, by
arguments similar to those used in the proof of Theorem 4.12, that P
is prime. So, any proper ideal of R ∗wα G is prime. Moreover, since P1

and P2 are minimal ideals of R ∗wα G, we have that P1P2 = 0, and it
follows that R ∗wα G is not prime. Hence, R ∗wα G is an AFPR.

Suppose that (iii) holds. By analogous methods to those used in the
proof of (ii), we obtain that any proper ideal of R ∗wα G is prime. Since,
by (a), the minimal ideal P0 is nilpotent, it follows that R ∗wα G is not
prime. So, R ∗wα G is an AFPR. �
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Theorem 4.17. [15, Theorems 6, 7]. Let α be a twisted partial action
of a finite group G on R. Then, R ∗wα G is an AFPR if and only if
either :

(i) (a) R is an α-AFPR;
(b) the map ϕ1 : L(R ∗wα G) → α−L(R), defined by P 7→ P ∩R,

is bijective; or,
(ii) (a) R is an α-FPR;

(b) the minimal ideals of R ∗wα G are prime;

(c) the map ϕ2 : L(R ∗wα G) → α−L(R), defined by P 7→ P ∩R,
is bijective.

Proof. Suppose that R ∗wα G is an AFPR. We have two cases to
consider.

Case 1. L(R ∗wα G) is not totally ordered by inclusion. By Lemma
2.20 (i), R ∗wα G has two minimal ideals, P1 and P2, which are prime
because R ∗wα G is an AFPR. Now, we have the following subcases.

Subcase 1.1. P1∩R ̸= 0. By methods analogous to those used in the
proof of Proposition 4.13, we have that all nonzero α-invariant ideals
of R are α-prime. Since P1 ∩ R ̸= 0, by Lemma 4.14, we have that
P2 ∩R ̸= 0. Thus, (P1 ∩R)(P2 ∩R) ⊆ P1P2 = 0, and consequently, R
is not α-prime. Hence, R is an α-AFPR.

Using Corollary 2.15 and Lemma 2.4 (ii), we easily obtain that ϕ1
is bijective.

Subcase 1.2. P1 ∩ R = 0. By the same arguments as those of
subcase 1.1, we have that all nonzero α-invariant ideals of R are α-
prime. Since, by Lemma 2.6 (i), P1 ∩R = 0, then R is α-prime, and it
follows that R is an α-FPR.

Note that, for each P ∈ L(R ∗wα G)\{0}, we have that ϕ2(P ) =
P ∩ R ̸= 0; otherwise, P would be minimal by Corollary 2.16 since
R is α-prime. By the facts that Nilα(R) = 0 and Nil∗(R ∗wα G) =
P1 ∩ P2 = 0, we have, by similar arguments to those used in the proof
of Proposition 4.11, that ϕ2 is bijective.

Case 2. L(R ∗wα G) is totally ordered by inclusion. By Lemma 2.21,
R∗wα G has a unique minimal nilpotent ideal P0 which is prime because
R ∗wα G is an AFPR. Now, we have the following subcases.
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Subcase 2.1. P0 ∩ R ̸= 0. By arguments analogous to those of
Proposition 4.13, we have that all nonzero α-invariant ideals of R are
α-prime. By the fact that (P0)

2 = 0 we have that (P0 ∩R)(P0 ∩R) ⊆
(P0)

2 = 0, with P0 ∩ R ̸= 0. Hence, R is not α-prime, and it follows
that R is an α-AFPR. Moreover, analogously to subcase 1.1, we obtain
that ϕ1 is bijective.

Subcase 2.2. P0 ∩ R = 0. By similar arguments to those of
subcase 1.2, we obtain that R is an α-FPR, and ϕ2 is bijective.

Conversely, suppose that Theorem 4.17 (i) holds. Since ϕ1 is
bijective, then by analogous techniques to Proposition 4.13, we show
that all proper ideals of R ∗wα G are prime. Since R is an α-AFPR,
there exist nonzero α-invariant ideals A and B of R such that AB = 0.
Hence, (A ∗wα G)(B ∗wα G) = 0, and we have that R ∗wα G is not prime.
So, R ∗wα G is an AFPR.

Suppose that Theorem 4.17 (ii) holds. Let P be a proper ideal of
R ∗wα G. If P is minimal then, by Theorem 4.17 (ii) (b), P is prime. If
P is not minimal, let I and J be ideals of R ∗wα G such that I, J ⊆ P .
Then,

(I ∩R)(J ∩R) ⊆ P ∩R.

Since R is an α-FPR, we have that P ∩ R is α-prime, and it follows
that either I ∩ R ⊆ P ∩ R or J ∩ R ⊆ P ∩ R. By the fact that ϕ2 is
bijective, we have that

I = (I ∩R) ∗wα G,
J = (J ∩R) ∗wα G,

and

P = (P ∩R) ∗wα G.

Consequently, either

I = (I ∩R) ∗wα G ⊆ (P ∩R) ∗wα G = P

or
J = (J ∩R) ∗wα G ⊆ (P ∩R) ∗wα G = P.

Hence, all proper ideals of R ∗wα G are prime. Now, if L(R ∗wα G) is not
totally ordered by inclusion, then there exist nonzero ideals I and J of
R ∗wα G such that I * J and J * I. Note that I ∩ J = 0; otherwise,
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I ∩ J would be prime, and we would obtain that I ⊆ I ∩ J ⊆ J or
J ⊆ I ∩J ⊆ I, which is a contradiction. Consequently, IJ ⊆ I ∩J = 0,
and we have that R ∗wα G is not a prime ring. Now, suppose that
L(R ∗wα G) is totally ordered by inclusion. In this case, R ∗wα G has a
minimal ideal P0. Note that P0 ∩R is an α-invariant ideal of R. Thus,
there exists an ideal P ∈ L(R ∗wα G) such that P ∩ R = P0 ∩ R. So,
P = 0; otherwise, we would have that P is prime and, by Corollary 2.15,
it follows that P = P0. Thus, P0 ∩R = 0. We clearly have that R ∗wα G
is not a prime ring because, if 0 were prime, then, by Corollary 2.15,
we would have that P0 = 0, which is a contradiction. So, R ∗wα G is an
AFPR. �

It is natural to ask if R is either FWPR, AFPR, FPR, or if the
set of ideals is totally ordered by inclusion, then would T either be
FWPR, AFPR, FPR, or would the set of ideals of T be totally ordered
by inclusion? The examples below show that this is not the case and
that our results are not an easy generalization of the global case.

Example 4.18.

(i) Let K be a field, and let {ei : i ∈ Z} be a set of orthogonal
central idempotents and T = ⊕i∈ZKei. We define a global action of
the infinite cyclic group G generated by σ on T by σ(ei) = ei+1, for all
i ∈ Z. If R = Ke0, then we clearly have a partial action of the group
G on R. Note that R is an FPR, but T is not an FPR. Moreover, all
ideals of R are totally ordered by inclusion, but the set of the ideals of
T is not totally ordered by inclusion. In turn, if R = Ke0 ⊕Ke1, then
R is an AFPR, but T is not an AFPR.

(ii) Let K be a field, let {e1, e2, e3, e4} be a set of orthogonal central
idempotents and let T = ⊕4

i=1Kei. We define a global action of the
finite cyclic group of order 4 generated by σ on T by σ(e1) = e2,
σ(e2) = e3, σ(e3) = e4 and σ(e4) = e1. If R = Ke1, then we clearly
have a partial action of G on R. Note that R is an FPR, but T is not
an FPR. Moreover, all ideals of R are totally ordered by inclusion, but
the set of ideals of T is not totally ordered by inclusion.

(iii) Let T and σ be as in (ii). If R = Ke1 ⊕Ke2, then we clearly
have a partial action of G on R. Note that R is an AFPR, but T is
not an AFPR. Moreover, note that R is an FWPR, but T is not an
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FWPR because we let I = Ke1 ⊕ Ke3 and J = Ke1 ⊕ Ke2. Then
0 ̸= I, J ⊆ Ke1 ⊕Ke4, but I * Ke1 ⊕Ke4 and J * Ke1 ⊕Ke4.

Remark 4.19. Let β be a twisted global action of a group G on a
ring T . If the set of all the ideals of T are totally ordered by inclusion,
then all the ideals of T are β-invariant. If it is possible to generalize this
fact to twisted partial actions, then it is possible to prove the converse
of Theorem 4.16. However, until now, we could not prove this fact, nor
provide a counterexample.
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