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ON THE RATIONALITY OF POINCARÉ SERIES
OF GORENSTEIN ALGEBRAS

VIA MACAULAY’S CORRESPONDENCE

GIANFRANCO CASNATI, JOACHIM JELISIEJEW AND ROBERTO NOTARI

ABSTRACT. Let A be a local Artinian Gorenstein alge-
bra with maximal ideal M,

PA(z) :=
∞∑
p=0

(TorAp (k, k))zp

its Poicaré series. We prove that PA(z) is rational if either
dimk(M

2/M3) ≤ 4 and dimk(A) ≤ 16, or there exist m ≤ 4
and c such that the Hilbert function HA(n) of A is equal to
m for n ∈ [2, c] and equal to 1 for n = c + 1. The results are
obtained due to a decomposition of the apolar ideal Ann(F )
when F = G+H and G and H belong to polynomial rings in
different variables.

1. Introduction and notation. Throughout the whole paper, k
will denote an algebraically closed field of characteristic 0. By ring (re-
spectively, k-algebra) we mean a Noetherian, associative, commutative
and unitary ring A (respectively, algebra A over k). When A is local we
will denote by M its maximal ideal and we will assume that k := A/M.

Since J.P. Serre asked in 1955 if the Poincaré series of the local ring
A, i.e.,

PA(z) :=
∞∑
p=0

dimk(Tor
A
p (k, k))z

p,
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is rational, also proving its rationality when A is regular, many authors
have proved results confirming the rationality of PA in several cases.

Thereafter, in 1982, D.J. Anick gave the first example of an Artinian
local algebra A with transcendental PA. Shortly afterwards, in 1983,
the existence of an Artinian, Gorenstein, local ring with M4 = 0 and
transcendental PA was proved by R. Bøgvad.

Nevertheless, several results show that large classes of local rings
A have rational Poincaré series, e.g., J. Tate proved the rationality
for complete intersections rings (see [16]), L. Avramov, A. Kustin,
M. Miller and C. Jacobsson, A. Kustin and M. Miller for Gorenstein
local rings with dimk(M/M2) ≤ 4 (see [1, 13] respectively), J. Sally
and J. Elias, G. Valla for Gorenstein local rings with dimk(M

2/M3) ≤ 2
(see [8, 14], respectively), the authors for Gorenstein local rings of
multiplicity at most 10 (see [5]), the authors, jointly with J. Elias and
M.E. Rossi for Gorenstein local k-algebras with dimk(M

2/M3) = 4 and
M4 = 0 (see [4]).

All of the above results are based on the same smart combination of
results on the Poincaré series due to L. Avramov and G. Levin (see
[2]) and T.H. Gulliksen and G. Levin (see [11]) first used in [14]
combined with suitable structure results on Gorenstein rings and k-
algebras. In this last case, a fundamental role has been played by
Macaulay’s correspondence.

In Section 2, we give a quick resumé of the main results that we need
later on in the paper about Macaulay’s correspondence. In Section 3,
we extend to arbitrary k-algebras a very helpful decomposition result
already used in a simplified form by J. Elias and M.E. Rossi in [7] and
in the aforementioned [4] for k-algebras with M4 = 0. In Section 4, we
explain how to relate the rationality of the Poincaré series of Goren-
stein k-algebras with their representation in the setup of Macaulay’s
correspondence making use of the aforementioned decomposition re-
sult. Finally, in Section 5, we use that relationship in order to prove
the following two results generalizing the aforementioned quoted re-
sults.

Theorem A. Let A be an Artinian, Gorenstein local k-algebra with
maximal ideal M. If there are integers m ≤ 4 and c ≥ 1 such that
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dimk(M
t/Mt+1) =

{
m if t = 2, . . . , c,

1 if t = c+ 1,

then PA is rational.

Theorem B. Let A be an Artinian, Gorenstein local k-algebra with
maximal ideal M. If dimk(M

2/M3) ≤ 4 and dimk(A) ≤ 16, then PA

is rational.

1.1. Notation. For each N ∈ N we set S[N ] := k[[x1, . . . , xN ]] and
P [N ] := k[y1, . . . , yN ]. We denote by S[N ]q (respectively, P [N ]q) the
homogeneous component of degree q of such a graded k-algebra, and
we set

S[N ]≤q :=

q⊕
i=1

S[N ]i,

respectively,

P [n]≤q :=

q⊕
i=1

P [n]i.

Finally, we set S[n]+ := (x1, . . . , xn) ⊆ S[n]. The ideal S[n]+ is the
unique maximal ideal of S[N ].

A local ring R is Gorenstein if its injective dimension as an R-module
is finite.

If γ := (γ1, . . . , γN ) ∈ NN is a multi-index, then we set tγ :=
tγ1

1 · · · tγN

N ∈ k[t1, . . . , tN ].

For all other notation and results we refer to [10].

2. Preliminary results. In this section we list the main results
on k-algebras we need in the next sections. Let A be a local, Artinian
k-algebra with maximal idealM. We denote byHA the Hilbert function
of the graded associated algebra

gr(A) :=

+∞⊕
t=0

Mt/Mt+1.

We know that
A ∼= S[n]/J
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for a suitable ideal J ⊆ S[n]2+ ⊆ S[n], where n = emdim(A) := HA(1).
Recall that the socle degree sdeg(A) of A is the greatest integer s such
that Ms ̸= 0.

We have an action of S[n] over P [n] given by partial derivation
defined by identifying xi with ∂/∂yi. Hence,

xα ◦ yβ :=

{
α!
(
β
α

)
yβ−α if β ≥ α,

0 if β ̸≥ α.

Such an action endows P [n] with a structure of the module over S[n].
If J ⊆ S[n] is an ideal and M ⊆ P [n] is an S[n]-submodule we set

J⊥ := { F ∈ P [n] | g ◦ F = 0, for all g ∈ J},
Ann(M) := { g ∈ S[n] | g ◦ F = 0, for all F ∈ M}.

For the following results, see e.g., the paper [9] by J. Emsalem,
the book [12] by A. Iarrobino and the references therein. Macaulay’s
inverse system theorem is based on the fact that constructions J 7→ J⊥

and M 7→ Ann(M) give rise to an inclusion-reversing bijection between
ideals J ⊆ S[n] such that S[n]/J is a local Artinian k-algebra and
finitely generated S[n]-submodules M ⊆ P [n]. In this bijection,
Gorenstein k-algebras A with sdeg(A) = s correspond to cyclic S[n]-
submodules ⟨F ⟩S[n] ⊆ P [n] generated by a polynomial F of degree s.
We simply write Ann(F ) instead of Ann(⟨F ⟩S[n]).

On the one hand, given an S[n]-module M , we define

tdf(M)q :=
M ∩ P [n]≤q + P [n]≤q−1

P [n]≤q−1

where

P [n]≤q :=

q⊕
i=0

P [n]i,

and

tdf(M) :=
∞⊕
q=0

tdf(M)q.

The module tdf(M) can be interpreted as the S[n]-submodule of P [n]
generated by the top degree forms of all polynomials in M .
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On the other hand, for each f ∈ S[n], the lowest degree of monomials
appearing with non-zero coefficient in the minimal representation of f
is called the order of f and it is denoted by ord(f). If

f =
∞∑

i=ord(f)

fi, fi ∈ S[n]i,

then ford(f) is called the lower degree form of f . It will be denoted in
what follows with ldf(f).

If f ∈ J , then ord(f) ≥ 2. The lower degree form ideal ldf(J)
associated to J is

ldf(J) := (ldf(f) | f ∈ J) ⊆ S[n].

We have ldf(Ann(M)) = Ann(tdf(M)) (see [9, Proposition 3], see
also [7, formulas (2) and (3)]), whence

gr(S[n]/Ann(M)) ∼= S[n]/ldf(Ann(M)) ∼= S[n]/Ann(tdf(M)).

Thus,

(2.1) HS[n]/Ann(M)(q) = dimk(tdf(M)q).

The module M is said to be non-degenerate if HS[n]/Ann(M)(1) =
dimk(tdf(M)1) = n, i.e., if and only if the classes of y1, . . . , yn are
in tdf(M). If M = ⟨F ⟩S[n], then we write tdf(F ) instead of tdf(M).

Let A be Gorenstein with s := sdeg(A), so that Soc(A) = Ms ∼= k.
In particular, A ∼= S[n]/Ann(F ), where F :=

∑s
i=0 Fi, Fi ∈ P [n]i. For

each h ≥ 0 we set

F≥h :=
s∑

i=h

Fi

(hence, Fs = F≥s).

Trivially, if s ≥ 1, we can always assume that the homogeneous part
of F of degree 0 vanishes, i.e., F = F≥1. Moreover, due to [6, Lemma
2.2], we know that if s ≥ 2 and Ann(F ) ⊆ S[n]2+, then we can also
assume F1 = 0, i.e., F = F≥2; we will always make such an assumption
in what follows.
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We have a filtration with proper ideals (see [12, Definition 1.3]) of
gr(A) ∼= S[n]/ldf(Ann(F )):

CA(0) := gr(A) ⊃ CA(1)⊇CA(2)⊇· · ·⊇CA(s− 2)⊇CA(s− 1) := 0.

Via the epimorphism S[n] � gr(A) we obtain an induced filtration

ĈA(0)⊃ ĈA(1)⊇ ĈA(2)⊇· · ·⊇ ĈA(s− 2)⊇ ĈA(s− 1).

By definition ĈA(0) = S[n] and ĈA(s− 1) = ldf(Ann(F )).

The quotients QA(a) := CA(a)/CA(a + 1) ∼= ĈA(a)/ĈA(a + 1) are
reflexively graded gr(A)-modules whose Hilbert function is symmetric
around (s − a)/2. In general, gr(A) is no longer Gorenstein, but the
first quotient

(2.2) G(A) := QA(0) ∼= S[n]/Ann(Fs)

is characterized by the property of being the unique (up to isomor-
phism) graded Gorenstein quotient k-algebra of gr(A) with the same
socle degree. Moreover, the Hilbert function of A satisfies

(2.3) HA(i) = Hgr(A)(i) =
s−2∑
a=0

HQA(a)(i), i ≥ 0.

SinceHA(0) = HG(A)(0) = 1, it follows that, if a ≥ 1, then QA(a)0 = 0,
whence QA(a)i = 0 when i ≥ s−a (see [12, Theorem 1.5]) for the same
values of a. It follows that

(2.4) HA(i) =


HQA(0)(i) if i = 0, s,
s−i−1∑
a=0

HQA(a)(i) if 1 ≤ i ≤ s− 1.

Moreover,

(2.5) Hgr(A)/CA(a+1)(i) = HS[n]/ĈA(a+1)(i) =

a∑
α=0

HQA(α)(i), i ≥ 0.

We set

fh :=
s−h∑
α=0

HQA(α)(1) = HS[n]/ĈA(s−h+1)(1)

= Hgr(A)/CA(s−h+1)(1)
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(so that n = HA(1) = f2).

Finally, we introduce the following new invariant.

Definition 2.1. Let A be a local, Artinian k-algebra with maximal
idealM and s := sdeg(A). The capital degree of A, denoted by cdeg(A),
is defined to be the maximum integer i, if any, such that HA(i) > 1,
and 0 otherwise. If c = cdeg(A), we also say that A is a c stretched
k-algebra (for short, stretched if c ≤ 1).

By definition cdeg(A) ≥ 0 and cdeg(A) ≤ sdeg(A), if A is Goren-
stein, then we also have cdeg(A) < sdeg(A).

The following result, proved in [6, Lemma 4.1 and Remark 4.2], will
be repeatedly used in the paper.

Lemma 2.2. Let A be a local, Artinian, Gorenstein, c stretched k-
algebra. If n := HA(1), m := HA(2), p := HA(c), s := sdeg(A), then

A ∼= S[n]/Ann(F ),

where

F := ys1 +

c+1∑
i=2

Fi +

n∑
j=m+1

y2j ,

Fi ∈ P [fi]i, i ≥ 3, F2 ∈ P [f3]2,

xc
1 ◦ Fc+1 = xi

1 ◦ Fi = 0, i = 3, . . . , c+ 1

and
x2 ◦ Fc+1, . . . , xp ◦ Fc+1

are linearly independent.

The rationality of the Poincaré series PA of every stretched ring A is
proved in [14]. The proof has been generalized to rings with HA(2) = 2
in [8] and to rings with HA(2) = 3 and HA(3) = 1 in [5]. The
rationality of PA when A is a 2 stretched k-algebra has been studied in
[4] with the restriction sdeg(A) = 3.
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3. Decomposition of the apolar ideal. In the present section, we
explain how to decompose the ideal Ann(F ) as the sum of two simpler
ideals. Such a decomposition will be used in the next section in order
to reduce the calculation of the Poincaré series of A to the one of a
simpler k-algebra.

Lemma 3.1. Let m < n, G ∈ P [m], H ∈ k[ym+1, . . . , yn] be non-zero
and F = G+H. Let us denote by Ann(G) and Ann(H) the annihilators
of G and H inside S[m] and k[[xm+1, . . . , xn]], respectively. Then,

Ann(F ) = Ann(G)S[n] + Ann(H)S[n] + (σG − σH , xixj) 1≤i≤m
m+1≤j≤n

.

where σG ∈ S[m] and σH ∈ k[[xm+1, . . . , xn]] are any series of order
deg(G) and deg(H) such that σG ◦G = σH ◦H = 1.

Proof. The inclusions Ann(G)S[n],Ann(H)S[n] ⊆ Ann(F ) are com-
pletely trivial. Also, the inclusion

(σG − σH , xixj) 1≤i≤m
m+1≤j≤n

⊆ Ann(F )

is easy to check. Thus,

Ann(G)S[n] + Ann(H)S[n] + (σG − σH , xixj) 1≤i≤m
m+1≤j≤n

⊆ Ann(F ).

Conversely, let p ∈ Ann(F ). Grouping the different monomials in p,
we can write a decomposition p = p≤m+p>m+pmix, where p≤m ∈ S[m],
p>m ∈ k[[xm+1, . . . , xn]] and, finally, pmix ∈ (xixj)1≤i≤m,m+1≤j≤n ⊆
S[n].

It is clear that

pmix ∈ (σG − σH , xixj) 1≤i≤m
m+1≤j≤n

⊆ Ann(F ),

hence it suffices to prove that

p≤m + p>m ∈ Ann(G)S[n] + Ann(H)S[n] + (σG − σH , xixj) 1≤i≤m
m+1≤j≤n

.

For this purpose, recall that p≤m+ p>m = p− pmix ∈ Ann(F ); thus,
by definition,

0 = (p≤m + p>m) ◦ F = p≤m ◦G+ p>m ◦H.
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Hence,
p≤m ◦G = u = −p>m ◦H.

Since p≤m ◦ G ∈ P [m] and p>m ◦H ∈ k[ym+1, . . . , yn], it follows that
u ∈ k. So p≤m − u(σG − σH) ∈ Ann(G)S[n], whence

p≤m ∈ (σG − σH) + Ann(G)S[n] ⊆ Ann(G)S[n] + Ann(H)S[n]

+ (σG − σH , xixj) 1≤i≤m
m+1≤j≤n

.

A similar argument shows that

p>m ∈ (σG − σH) + Ann(H)S[n] ⊆ Ann(G)S[n] + Ann(H)S[n]

+ (σG − σH , xixj) 1≤i≤m
m+1≤j≤n

,

and this concludes the proof. �

Let F be as in the statement above. Then Lemma 3.1 with

G :=
s∑

i=2

Fi, H :=
n∑

j=m+1

y2j

yield the following corollary.

Corollary 3.2. Let m < n, G ∈ P [m] be non-zero, and let

F = G+
n∑

j=m+1

y2j .

Let us denote by Ann(G) the annihilator of G inside S[m]. Then

Ann(F ) = Ann(G)S[n] + (x2
j − 2σ, xixj)1≤i<j≤n

j≥m+1
,

where σ ∈ S[m] has order deg(G) and σ ◦G = 1.

Proof. It suffices to apply Lemma 3.1 with

H :=
n∑

j=m+1

y2j ,
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taking into account that

Ann(H) = (x2
j − x2

m+1, xixj)m+1≤i<j≤n
j≥m+1

,

and that x2
m+1 ◦H = 2. �

4. Rationality of Poincaré series. We now focus on the Poincaré
series PA(z) of the k-algebra A defined in the introduction: we will
generalize the aforementioned classical results [5, 8, 14].

Proposition 4.1. Let A be a local, Artinian, Gorenstein, k-algebra
with n = HA(1). Assume A ∼= S[n]/Ann(F ) where

F = F≥2 := G+
n∑

j=m+1

y2j

for a suitable non-zero G ∈ P [m]. Then

PA(z) =
PB(z)

1− (HA(1)−HB(1))zPB(z)
,

where B := S[m]/Ann(G).

Proof. Since F = F≥2, it follows that the same is true for G; hence,
m = HB(1). Now we can use Corollary 3.2 above.

Besides the decomposition result proved in the previous section, we
will also use the two following fundamental facts about Poincaré series:

• for each local Artinian, Gorenstein ring C with emdim(C) ≥ 2,

(4.1) PC(z) =
PC/Soc(C)(z)

1 + z2PC/Soc(C)(z)

(see [2, Theorem 2]);
• for each local Artinian ring C with maximal ideal N and
linearly independent elements c1, . . . , ch ∈ N \ N2 of Soc(C),
then

(4.2) PC(z) =
PC/(c1,...,ch)(z)

1− hzPC/(c1,...,ch)(z)

(see [11, Proposition 3.4.4]).
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Due to Corollary 3.2, we have

Ann(F ) + (σ, xm+1, . . . , xn) = Ann(G)S[n] + (σ, xm+1, . . . , xn),

where σ is as in Corollary 3.2. Thus,

S[n]

Ann(F ) + (σ, xm+1, . . . , xn)
∼=

S[m]

Ann(G) + (σ)
.

Trivially, S[m]/Ann(G) is a local, Artinian, Gorenstein, k-algebra.

On the one hand, we know that Soc(A) is principal because A is
Gorenstein. On the other hand, σ /∈ Ann(F ), because σ ∈ S[m],
whence σ ◦ F = σ ◦ G = 1, and xiσ ∈ Ann(F ) for each i = 1, . . . , n,
because xiσ ◦ F = 0. It follows that the class of σ generates Soc(A).
Formula (4.1) implies that

PA(z) =
PS[n]/Ann(F )+(σ)(z)

1 + z2PS[n]/Ann(F )+(σ)(z)
.

Notice that

xixj ∈ Ann(F ) + (σ), i = 1, . . . , n, j = m+ 1, . . . , n, i ≤ j.

In particular, xm+1, . . . , xn ∈ Soc(S[n]/Ann(F ) + (σ)). It follows from
formula (4.2) that

PS[n]/Ann(F )+(σ)(z) =
PS[n]/Ann(F )+(σ,xm+1,...,xn)(z)

1− (n−m)zPS[n]/Ann(F )+(σ,xm+1,...,xn)(z)
.

The inverse formula of (4.1) finally yields

PS[n]/Ann(F )+(σ,xm+1,...,xn)=PS[m]/Ann(G)+(σ)(z)=
PS[m]/Ann(G)(z)

1−z2PS[m]/Ann(G)(z)
.

The statement now follows by combining the three equalities above. �

A first immediate consequence of Proposition 4.1 is the following
corollary.

Corollary 4.2. Let A be a local, Artinian, Gorenstein, k-algebra with
n = HA(1). Assume that A := S[n]/Ann(F ), where

F = F≥2 := G+
n∑

j=m+1

y2j ,
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for a suitable G ∈ P [m]. Then the series PA(z) is rational if and only
if the same is true for PB(z) where B := S[m]/Ann(G).

Proof. If G ̸= 0, then the result follows from Proposition 4.1 above.

If G = 0, then A is stretched; thus, PA(z) is rational by [14,
Theorem 2]. Moreover, in this case, B = 0; thus, PB(z) = 0 is also
rational and the equivalence holds. �

Corollary 4.3. Let A be a local, Artinian, Gorenstein, k-algebra with
n = HA(1). Assume that A := S[n]/Ann(F ) where

F = F≥2 := G+

n∑
j=m+1

y2j

for a suitable G ∈ P [4]. Then PA(z) is rational.

Proof. The statement follows from rationality of the Poincaré series
of each local Artinian, Gorenstein ring with embedding dimension at
most four (see [13, 16, 17]). �

Let A be a local, Artinian, Gorenstein k-algebra with n := HA(1).
Recall that we defined the numbers fh = Hgr(A)/CA(s−h+1)(1) in
Section 2.

Corollary 4.4. Let A be a local, Artinian, Gorenstein k-algebra such
that f3 ≤ 4. Then PA(z) is rational.

Proof. The statement follows from Corollary 4.3, taking into account
Lemma 2.2. �

5. Examples of algebras with rational Poincaré series. In this
section, we give some examples of local, Artinian, Gorenstein k-algebras
A with rational PA using the results proved in the previous section and
some other classical results that we now go to quickly recall.

Remark 5.1. For the following results, we refer to [3, Chapter 4].
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If i0 ∈ Z is positive, then each positive a ∈ Z can be uniquely written
in the form

a =

i0∑
i=1

(
k(i)

i

)
,

where 0 ≤ k(i− 1) < k(i) (see [3, Lemma 4.2.6]). We define

a⟨i0⟩ :=

i0∑
i=1

(
k(i) + 1

i+ 1

)
.

Macaulay’s growth theorem (see [3, Theorem 4.2.10]) states that
the following conditions are equivalent for a function h : N → N:

• there exists a graded k-algebra R with Hilbert function HR =
h;

• one has h(0) = 1 and h(i+ 1) ≤ h(i)⟨i⟩ for each i ≥ 1.

An immediate consequence of the above equivalence is the following.
Let A be a local k-algebra. IfHA(i) ≤ i for some i, thenHA(j) ≤ HA(i)
for each j ≥ i. Such a remark will be used intensively in the following
proofs.

The following lemma generalizes a result due to Stanley (see [15,
Section II.6 (c)]).

Lemma 5.2. Let A be a local, Artinian, Gorenstein, 3 stretched k-
algebra. If HA(3) ≤ 5, then

s−4∑
a=0

HQA(a)(2) ≥ HA(3).

Proof. We set m := HA(3) and

p :=

s−4∑
a=0

HQA(a)(2).

We have to show that p ≥ m: assume p ≤ m− 1.
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If s = 4, then

HQA(0) =

s−4∑
a=0

HQA(a).

In particular, such a sum is the Hilbert function of a graded Gorenstein
k-algebra; thus, it must be symmetric, say (1,m, p,m, 1).

Let s ≥ 5. Then formula (2.4) for i ≥ 4 implies

1 = HA(i) =
s−5∑
a=0

HQA(a)(i).

Since A is 3-stretched and HQA(0)(i) ≥ 1 for i ≤ s, it follows that
HQA(0)(1) = HQA(a)(s−1) = 1. Thus, Remark 5.1 implies HQA(0)(i) =
1 for i ≤ s.

The same argument also proves HQA(a)(1) = HQA(a)(s− a− 1) = 0
in the range 1 ≤ a ≤ s− 5. Due to formula (2.5) we deduce that

Hgr(A)/CA(s−4)(1) =
s−5∑
α=0

HQA(α)(1) = 1,

whence

Hgr(A)/CA(s−4)(i) =
s−5∑
α=0

HQA(α)(i) = 1 for i ≤ s.

We conclude that

HQA(a) =


(1, 1, 1, 1, 1, . . . , 1) if a = 0,

(0, 0, 0, 0, 0, . . . , 0) if a = 1, . . . , s− 5,

(0,m− 1, p− 1,m− 1, 0, . . . , 0) if a = s− 4.

In particular,
s−4∑
a=0

HQA(a) = HQA(0) +HQA(s−4).

Notice that f4 = m.
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Recall that we have assumed p < m. Formula (2.5) and Remark 5.1
imply that if

p = Hgr(A)/CA(s−4)(2) =

s−4∑
a=0

HQA(a)(2) ≤ 2,

then m = Hgr(A)/CA(s−4)(3) ≤ p, contradicting our assumption p ≤
m − 1. We conclude that 3 ≤ p necessarily. Moreover, if p = 3, then
the bound of Macaulay’s growth theorem (see Remark 5.1) givesm ≤ 4.
Since we assumed m ≤ 5, we are left with two cases: p = 3 and m = 4
or p = 4 and m = 5. We examine the second case, the first one being
analogous.

Lemma 2.2 with c = 3 asserts the existence of a polynomial F :=
ys1 + F4 + F3 + F2 such that Fi ∈ P [fi]i, x

3
1 ◦ F4 = 0, the derivatives

x2 ◦ F4, x3 ◦ F4, x4 ◦ F4 and x5 ◦ F4 are linearly independent and
A ∼= S[n]/Ann(F ). We set B := S[n]/Ann(F≥4).

We first check that

HB =
s−4∑
a=0

HQA(a) = (1, 5, 4, 5, 1, . . . , 1).

On the one hand, [12, Lemma 1.10] implies that ĈA(a) = ĈB(a),
a ≤ s− 3, whence

HB(1) ≥
s−4∑
a=0

HQB(a)(1) =

s−4∑
a=0

HQA(a)(1) = 5.

On the other hand, F≥4 ∈ P [f4] = P [5], whence 5 = HB(1) ≤ 5.
It follows that equality holds; thus, HQB(s−2)(1) = HQB(s−3)(1) = 0.
By symmetry, we finally obtain HQB(s−2) = HQB(s−3) = 0. This last
vanishing completes the proof of the equality

HB =
s−4∑
a=0

HQA(a) = (1, 5, 4, 5, 1, . . . , 1).

Let I ⊆ k[x1, . . . , xn] ⊆ S[n] be the ideal generated by the forms of
degree at most 2 inside Ann(tdf(F≥4)) = ldf(Ann(F≥4)). We obviously
have x6, . . . , xn ∈ I, because F≥4 ∈ P [5].
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Let

Isat :=

∞∪
h=1

(I : (x1, . . . , xn)
h) :

it is easy to check that Isat is an ideal. We set R := k[x1, . . . , xn]/I,
Rsat := k[x1, . . . , xn]/I

sat. Due to the definition of I we know that
HR(t) ≥ HB(t) for each t ≥ 0, and equality holds true for t ≤ 2.
Moreover, we know that

HB(2)
⟨2⟩ = HB(3) ≤ HR(3) ≤ HR(2)

⟨2⟩ = HB(2)
⟨2⟩;

hence,

HR(3) =

(
4

3

)
+

(
2

2

)
= HR(2)

⟨2⟩.

The Gotzmann persistence theorem (see [3, Theorem 4.3.3]) implies
that

HR(t) =

(
t+ 1

t

)
+

(
t− 1

t− 1

)
= t+ 2, t ≥ 2.

We infer HRsat(t) = t+ 2, t ≫ 0.

When saturating, the ideal can only increase its size in each degree;
hence, HRsat(t) ≤ HR(t) for each t ≥ 0. Again Macaulay’s bound
(see Remark 5.1) thus forces HRsat(t) = HR(t) = t + 2 for t ≥ 2. In
particular, the components It and Isatt of degree t ≥ 2 of I and Isat

coincide.

Since HRsat is non-decreasing, it follows that

HRsat(1) ≤ HRsat(2) = 4 < 5 = HB(1) = HR(1).

In particular, there exists a non-zero linear form ℓ ∈ Isat \ I. The
equality I2 = Isat2 forces ℓxj ∈ I2 ⊆ Ann(tdf(F≥4)), j = 1, . . . , n. Since
x6, . . . , xn ∈ I, it follows that we can assume ℓ ∈ S[5] ⊆ S[n], i.e.,

ℓ =

5∑
i=1

ℓixi, ℓi ∈ k.

Moreover, we also know that ys1 ∈ tdf(F≥4) because s ≥ 5. Hence, the
condition ℓx1 ∈ Ann(tdf(F≥4)) implies ℓ1 = 0 and at least one of the
remaining coefficients is non-zero.
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If j ≥ 2, then xj ◦ F≥4 = xj ◦ F4, thus the condition xjℓ ∈
I2 ⊆ Ann(tdf(F≥4)) implies that ℓ ◦ F4 does not depend on such xj ,
j = 2, . . . , 5. It follows that ℓ◦F4 is a multiple of y31 . Since we know that
x3
1 ◦ F4 = 0, we conclude that ℓ ◦ F4 = 0. Such a vanishing contradicts

the linear independence of the derivatives

x2 ◦ F4, x3 ◦ F4, x4 ◦ F4, x5 ◦ F4.

The proof of the statement is now complete. �

Using the results proved in the previous section and Lemma 5.2 we
are able to handle the first example of this section, proving the following
theorem generalizing [4, Corollary 2.2].

Theorem 5.3. Let A be a local, Artinian, Gorenstein k-algebra with
HA(2) ≤ 4 and cdeg(A) ≤ 3. Then PA is rational.

Proof. Let us examine the case cdeg(A) = 3, the other ones being
similar, but simpler. The proofs of these cases are left to the reader.
Lemma 5.2 yields:

(5.1) HA(2) ≥
s−4∑
a=0

HQ(a)(2) ≥ HA(3).

If sdeg(A) ≥ 5, then decomposition (2.3) is

(1, 1, . . . , 1) + (0, a1, a2, a1, 0) + (0, b1, b1, 0) + (0, c1, 0)

for some integers a1, a2, b1, c1. Inequality (5.1) is equivalent to a1 ≤ a2.
We know that HA(2) = a2 + b1 + 1 ≤ 4, so f3 = a1 + b1 + 1 ≤ 4, and
the argument follows from Corollary 4.4. In the case sdeg(A) = 4, the
decomposition (2.3) changes, but the argument stays the same. �

Now we skip the condition cdeg(A) = 3, but we impose a restriction
on the shape of HA. The following theorem generalizes a well-known
result proved when either m = 1, 2 (see [8, 14]) or m ≤ 4 and s = 3
(see again [4]).

Theorem 5.4. Let A be a local, Artinian, Gorenstein k-algebra such
that HA(i) = m, 2 ≤ i ≤ cdeg(A). If m ≤ 4, then PA is rational.
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Proof. Let c := cdeg(A), n := HA(1), take a polynomial F := ys1 +
Fc+1 + · · · , Fc+1 ∈ P [fc+1]c+1 = P [m]c+1 such that A ∼= S[n]/Ann(F )
(see Lemma 2.2) and set B := S[n]/Ann(F≥c+1) so that QA(a) =
QB(a) for a ≤ s − c − 1 (again by [12, Lemma 1.10]). In particular,
HB(c) = m, thus decomposition (2.3) implies HB(1) ≥ m. Since we
know that F≥c+1 ∈ P [m], it follows that HB(1) ≤ m, hence equality
must hold.

As in the proof of the previous lemma one immediately checks that
either s = c+ 1 and HQA(0) = (1,m, . . . ,m, 1), or s ≥ c+ 2 and

HQA(a) =


(1, 1, . . . , 1, 1, . . . , 1) if a = 0,

(0, 0, . . . , 0, 0, . . . , 0) if a = 1, . . . , s− c− 2,

(0,m− 1, . . . ,m− 1, 0, . . . , 0) if a = s− c− 1.

Assume that HB(i) ≤ m − 1 ≤ 3 for some i = 2, . . . , c − 1. Let
i0 be the maximal of such i’s. If i0 ≥ 3, then HB(i0) ≤ i0 < m so
by Remark 5.1, we get that HB(i) < m for all i > i0. In particular,
HB(c) < m, which is a contradiction. We conclude that i0 = 2.

Due to the symmetry of HQB(s−c−1), we deduce that c = 3. If
HQB(s−3)(2) = q, the symmetry of HQB(s−3) implies HQB(s−3)(1) = q;
hence decomposition (2.3) implies

m = HB(1) =
s−2∑
a=0

HQB(a)(1) = m+ q +HQB(s−2)(1).

It follows that q = HQB(s−2)(1) = 0, whence HB = (1,m, p,m, 1, . . . , 1)
where p ≤ m− 1 which cannot occur by Lemma 5.2.

We conclude that HQA(s−c−1)(i) = HQB(s−c−1)(i) = m− 1 for each
i = 2, . . . , c, then the hypothesis on HA(i) and decomposition (2.3)
yield

HQA(a) =

{
(0, 0, 0, . . . , 0, 0, . . . , 0) if a = s− c, . . . , s− 3,

(0, n−m, 0, . . . , 0, 0, . . . , 0) if a = s− 2,

whence

f3 =

s−3∑
a=1

HQ(a)(1) = m ≤ 4. �
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As a third example, we skip the condition on the shape of HA but
we put a limit on dimk(A), slightly extending the result proved in [6].

Theorem 5.5. Let A be a local, Artinian, Gorenstein k-algebra with
dimk(A) ≤ 16 and HA(2) ≤ 4. Then PA is rational.

Proof. Due to [13], we can restrict our attention to k-algebras A
with HA(1) ≥ 5.

Rationality of the Poincaré series of stretched k-algebras is proved
in [14]. For k-algebras A with HA(2) = 2, which are called almost
stretched, see [8]. For the case of k-algebras A with sdeg(A) = 3 and
HA(2) ≤ 4, see [4]. Finally, the case HA(i) = m, 2 ≤ i ≤ cdeg(A) with
m ≤ 4 is covered by Theorem 5.4 above.

There are several cases which are not covered by the aforementioned
results. In each of these cases one can check that the condition f3 ≤ 4
of Corollary 4.4 is fulfilled.

Due to the above summary of known results, we can assume
HA(2) ≥ 3. The restriction HA(2) ≤ 4 implies HA(3) ≤ 5 again by
Remark 5.1.

Theorem 5.3 deals with the case sdeg(A) = 4. Let us analyze the
cases sdeg(A) = 5 and dimk A ≤ 16. The decomposition is

(1, a1, a2, a2, a1, 1) + (0, b1, b2, b1, 0) + (0, c1, c1, 0) + (0, d1, 0),

for some integers a1, a2, b1, b2, c1, d1. If a1 = 1, then the k-
algebra is 3-stretched, so we may suppose a1 ≥ 2. We know that
HA(2) = a2 + b2 + c1 ≤ 4, and we would like to prove a1 + b1 + c1 ≤ 4.
Suppose a1 + b1 + c1 ≥ 5. Then the inequality on the dimension of A
shows that 2 ·a2+b2 ≤ 4, in particular, a2 ≤ 2 and from Remark 5.1, it
follows that a1 = a2 = 2. It follows that b2 = 0 and once again, from the
same remark, b1 = 0. This forces a1+b1+c1 = 2+c1 = a2+b2+c1 ≤ 4,
a contradiction.

Let us now suppose that sdeg(A) = 6. Look at the first row of the
symmetric decomposition (2.3): (1, a1, a2, a3, a2, a1, 1).

• If a1 ≥ 3, then a2, a3 ≥ 3 and the sum of the row is at least 17.
• If a1 = 2, then a2 = a3 = 2 and the sum of the row is 12. If we
suppose that f3 ≥ 5, then the sum of the first column of the
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remaining part of the decomposition will be at least 3, so the
sum of whole remaining part will be at least 2 · 3 = 6, and the
dimension will be at least 12 + 6 > 16.

• Suppose a1 = 1, and look at the second row (0, b1, b2, b2, b1, 0).
If b1 = 0, then the k-algebra is 3-stretched so the result follows
from Theorem 5.3. From HA(2) ≤ 4, it follows that b2 ≤ 3. If
b2 = 3, then b1 ≥ 2 so the dimension is at least 7 + 10 > 16.
If b2 ≤ 2, then b1 ≤ b2 from Remark 5.1. Hence, the same
argument as before applies.

Let us finally suppose that sdeg(A) ≥ 7. Take the first row,
beginning with (1, a1, a2, . . .). If a1 ≥ 3, then its sum is at least
3 · sdeg(A)− 1 > 16. If a1 = 2, the sum of this row is 2 · sdeg(A) ≥ 14.
Then one can argue as in the case sdeg(A) = 6, a1 = 2. A similar
reasoning shows that, when a1 = 1, the k-algebra has decomposition
(1, 1, . . . , 1) + (0, 4, 4, 0), and so HA(2) ≥ 5. �
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