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QUADRATIC HYPERBOLICITY PRESERVERS
AND MULTIPLIER SEQUENCES

R. BATES AND R. YOSHIDA

ABSTRACT. It is known (see [4, Brändén, Lemma
2.7]) that a necessary condition for T :=

∑
Qk(x)D

k to
be hyperbolicity preserving is that Qk(x) and Qk−1(x)
have interlacing zeros. We characterize all quadratic linear
operators; as a consequence, we find several classes of the
Pn-multiplier sequence.

1. Introduction. It is well known (see [8], [9, page 32]) that, if T
is any linear operator defined on the space of real polynomials, R[x],
then there is a sequence of real of polynomials, {Qk(x)}, such that

(1.1) T =
∑

Qk(x)D
k, where D =

d

dx
.

Our investigation involves such operators that act on polynomials, in
particular, we are interested in polynomials with the following property.

Definition 1.1. A polynomial f(x) ∈ R[x] whose zeros are all real is
said to be hyperbolic. Following the convention of Pólya and Schur [10,
page 89], the constant 0 is also deemed to be hyperbolic.

Definition 1.2. A linear operator T : R[x] → R[x] is said to be
preserve hyperbolicity (or T is a hyperbolicity preserver) if T [f(x)] is a
hyperbolic polynomial, whenever f(x) is a hyperbolic polynomial.

Hyperbolicity preserving operators have been studied by virtually
every author who has studied hyperbolic polynomials (see [5] and
the references contained therein). The focus of our investigation
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involves the relationship between hyperbolicity preserving operators
and hyperbolic polynomials with interlacing zeros.

Definition 1.3. Let f, g ∈ R[x] with deg(f) = n and deg(g) = m. We
say that f and g have interlacing zeros, if f is hyperbolic with zeros
α1, . . . , αn and g is hyperbolic with zeros β1, . . . , βm, where |n−m| ≤ 1,
with one of the following forms holding:

(i) α1 ≤ β1 ≤ α2 ≤ β2 ≤ . . . ≤ αn ≤ βm,
(ii) β1 ≤ α1 ≤ β2 ≤ α2 ≤ . . . ≤ βm ≤ αn,
(iii) α1 ≤ β1 ≤ α2 ≤ β2 ≤ . . . ≤ βm ≤ αn, or
(iv) β1 ≤ α1 ≤ β2 ≤ α2 ≤ . . . ≤ αn ≤ βm.

We will also say that the zeros of any two hyperbolic polynomials of
degree 0 or 1 interlace. By convention, the zero polynomial interlaces
with any hyperbolic polynomial.

Definition 1.4. Given two non-zero polynomials f, g ∈ R[x], we say
f and g are in proper position and write f ≪ g if one of the following
conditions holds:

(i) f and g have interlacing zeros with form (i) or (iv) in Definition
1.3, and the leading coefficients of f and g are of the same sign,
or

(ii) f and g have interlacing zeros with form (ii) or (iii) in Defini-
tion 1.3, and the leading coefficients of f and g are of opposite
sign.

We will say that the zero polynomial is in proper position with any
other hyperbolic polynomial f and write 0 ≪ f or f ≪ 0.

Notice that, by Definition 1.4, if f and g are in proper position, then
f and g are hyperbolic. Also, to be clear, a non-zero constant can only
be in proper position with another constant or a linear polynomial.
However, the zero polynomial is in proper position with any hyperbolic
polynomial.

Definition 1.5. For any two real polynomials f and g, the Wronskian
of f and g is defined, on R, by

W [f, g] := f(x)g′(x)− f ′(x)g(x).
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It is a common exercise to show that, for f and g with interlacing
zeros, if W [g, f ] ≤ 0 on the whole real line, then f ≪ g.

The following lemma demonstrates that proper position plays an
important role in understanding hyperbolicity preservers.

Lemma 1.6. [4, Lemma 2.7]. Suppose the linear operator

(1.2) T =
N∑

k=M

Qk(x)D
k,

where Qk(x) ∈ R[x] for M ≤ k ≤ N , and QM (x)QN (x) ̸≡ 0, preserves
hyperbolicity. Then Qj(x) ≪ Qj+1(x) for M ≤ j ≤ N − 1. In
particular, Qj(x) is hyperbolic or identically zero for all M ≤ j ≤ N .

In the special case for M = 0 and N = 2 in (1.2), we find sufficient
conditions that guarantee when T preserves hyperbolicity. Our main
result is the following:

Theorem 1.7. Suppose Q2, Q1, Q0 are real polynomials such that
deg(Q2) = 2, deg(Q1) ≤ 1, deg(Q0) = 0. Then

T = Q2D
2 +Q1D +Q0

preserves hyperbolicity if and only if

W [Q0, Q2]
2 −W [Q0, Q1]W [Q1, Q2] ≤ 0, Q0 ≪ Q1 and Q1 ≪ Q2.

2. Quadratic hyperbolicity preservers. We concern ourselves
with operators of the following form.

Definition 2.1. We will call the second order differential operators of
the form

(2.1) T = Q(x)D2 + P (x)D +R(x)

a quadratic operator, where the polynomials: Q(x) is quadratic, P (x)
is linear and R(x) is constant. If (2.1) is also hyperbolicity preserving,
then we will refer to it as a quadratic hyperbolicity preserver.
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The following proposition presents an operator that has been quite
influential to our exposition.

Proposition 2.2 (Forgács et al. [1, Proposition 5]). If 0 < d < 1,
then the operator

T = (x2 − 1)D + 2xD + d

preserves hyperbolicity.

For motivation, we present several other similar examples of qua-
dratic operators.

Example 2.3.

T1 = (x2 − 1)D2 + 2xD − 1(2.2)

T2 = (x2 − 1)D2 + 2xD + 0(2.3)

T3 = (x2 − 1)D2 + 2xD + 1(2.4)

T4 = (x2 − 1)D2 + 2xD + 2(2.5)

T5 = (x2 − 1)D2 − 2xD − 1(2.6)

T6 = (x2 − 1)D2 − 2xD + 0(2.7)

T7 = (x2 − 1)D2 − 2xD + 1(2.8)

T8 = (x2 − 1)D2 − 2xD + 2(2.9)

It was shown in [1, Lemma 5] that (2.4) is hyperbolicity preserving.
Notice that T2 = D(x2−1)D, and thus (2.3), is hyperbolicity preserving
as well. The other six examples can easily be shown not to preserve
hyperbolicity.

T1[x
2 − 1] = 5x2 + 2.(2.10)

T4[(x− 10)3] = 2(x− 10)(7x2 − 50x+ 97).(2.11)

T5[x
2] = −3x2 − 2.(2.12)

T6[x
2] = −2x2 − 2.(2.13)

T7[x
2] = −x2 − 2.(2.14)

T8[(x− 10)3] = 2(x− 10)(x2 + 10x+ 97).(2.15)
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These examples show that the property of interlacing coefficients is
not sufficient to establish hyperbolicity preserving. Furthermore, (2.5)
demonstrates that the condition of proper position in Lemma 1.6 is
also not sufficient to establish hyperbolicity preserving. The examples
motivate us to find the necessary and sufficient conditions on the
polynomial coefficients in the quadratic operator (2.1).

We will completely characterize all quadratic hyperbolicity pre-
servers. For our characterization, we will need a result due to Borcea
and Brändén.

Theorem 2.4 (Borcea and Brändén [3, Theorem 1.3]). Let T : R[x] →
R[x] be a finite-differential linear operator such that, for some real
polynomials {Qk(x)}nk=0,

T =

n∑
k=0

Qk(x)D
k.

Then T is hyperbolicity preserving if and only if

n∑
k=0

Qk(x)(−w)k ̸= 0

for every x,w ∈ H+, where H+ is the upper half plane.

In general, Theorem 2.4 can be difficult to apply since very little is
known about two variable stable polynomials (see [3]). The next few
lemmas establish a small class of two variable stable polynomials.

Lemma 2.5. Let A, B ∈ C−R be two non-real complex numbers such
that

(i) 0 < Arg(B) < Arg(A) < 2π,
(ii) Arg(A)−Arg(B) < π, and
(iii) ℑ(A) < ℑ(B).

Then, for any r1, r2 ∈ R, r1 < r2, there exist x,w ∈ H+ such that
(x+ r1)w = A and (x+ r2)w = B.

Proof. Consider the following cases.
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Case 1. B ∈ H+. The point B may be located in either quadrant I,
on the positive imaginary axis, or in quadrant II, as described in
Figure 1. The hypotheses (i), (ii) and (iii) imply that point A is located
somewhere in the shaded region of the corresponding point B.

..

B

..

B

..

B

Figure 1

Define the function f : [0,Arg(B)] → R by

(2.16) f(θ) := ℑ(e−iθA)−ℑ(e−iθB).

Then f(0) < 0 by (iii), and f(Arg(B)) > 0 by (ii). Thus, by continuity,
there exist θ0 ∈ (0,Arg(B)) such that f(θ0) = 0, which implies that
(e−iθ0B − e−iθ0A) > 0 by (i). Define the function g : [0,∞) → R by

(2.17) g(k) := k(e−iθ0B − e−iθ0A).

Notice g ≥ 0, g(0) = 0, and limk→+∞ g(k) = +∞. Thus, there exists
k0 > 0 such that g(k0) = r2 − r1. Let

(2.18) x =
1

2
(k0e

−iθ0B + k0e
−iθ0A− r1 − r2) and w =

1

k0
eiθ0 .

It follows that x,w ∈ H+, (x+ r1)w = A, and (x+ r2)w = B.

Case 2. B ∈ H−. Similar to Case 1, point B may be located in
either quadrant III, on the negative imaginary axis, or in quadrant IV,
as described in Figure 2. Point A is located somewhere in the shaded
region of the corresponding point B by hypotheses (i), (ii) and (iii).

Define the function f : [0, 2π −Arg(B)] → R by

(2.19) f(θ) := ℑ(eiθA)−ℑ(eiθB).

Then f(0) < 0 by (iii), and f(2π − Arg(B)) > 0 by (ii). Thus, by
continuity, there exist θ0 ∈ (0, 2π − Arg(B)) such that f(θ0) = 0,
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..

B

..

B

..

B

Figure 2

which implies that (eiθ0B − eiθ0A) < 0 by (i). Define the function
g : (−∞, 0] → R by

(2.20) g(k) := k(eiθ0B − eiθ0A).

Then g ≥ 0, g(0) = 0, and limk→−∞ g(k) = +∞. Thus, there exist
k0 < 0 such that g(k0) = r2 − r1. Let

(2.21) x =
1

2
(k0e

iθ0B + k0e
iθ0A− r1 − r2), and w =

1

k0
e−iθ0 .

It follows that x,w ∈ H+, (x+ r1)w = A and (x+ r2)w = B. �

Lemma 2.6. Let a, b, r1, r2, r ∈ R, a, b ≥ 0, and r1 ̸= r2. Set

(2.22) f(x,w) = ((x+ r1)w − a)((x+ r2)w − b), x, w ∈ C.

Then

f(x,w) ̸= r for all x,w ∈ H+

if and only if r ∈ [0, ab].

Proof. Since the factors of f(x,w) in (2.22) are symmetric, we let
r1 < r2. There are three cases to prove necessity. The following is the
outline.

Case 1. r ∈ (−∞, 0) and a < b+ 2
√
|r|.

Case 2. r ∈ (−∞, 0) and a ≥ b+ 2
√
|r|.

Case 3. r ∈ (ab,∞).

We show in each case that there exist x,w ∈ H+ such that f(x,w) = r.
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Case 1. Consider r ∈ (−∞, 0) and a < b + 2
√
|r|. Define

g : [0, π/2] → R by

(2.23)
g(θ) :=

(√
|r|eiθ + b

)
−
(√

|r|ei(π−θ) + a
)

=
√

|r|(2 cos(θ))− a+ b.

The function g is real valued and g(0) = b + 2
√
|r| − a > 0 by

assumption. Thus, by continuity, there exists θ0 ∈ (0, π/2) such that
g(θ0) > 0, which implies the following.

(a) ℑ(
√
|r|eiθ0 + b)−ℑ(

√
|r|ei(π−θ0) + a) = 0,

(b) ℜ(
√
|r|eiθ0 + b)−ℜ(

√
|r|ei(π−θ0) + a) > 0, and

(c) (
√
|r|eiθ0 + b), (

√
|r|ei(π−θ0) + a) ∈ H+.

By (a), (b) and (c),

(2.24) Arg
(√

|r|ei(π−θ0) + a
)
−Arg

(√
|r|eiθ0 + b

)
> 0.

Define the function h : (0, 1] → R by

(2.25) h(k) := Arg
(
k
√

|r|ei(π−θ0) + a
)
−Arg

(√
|r|
k

eiθ0 + b

)
.

The function h is real valued, and h(1) > 0. Thus by continuity, there
exists k0 ∈ (0, 1) such that h(k0) remains positive,

(2.26) Arg
(
k0
√
|r|ei(π−θ0) + a

)
−Arg

(√
|r|
k0

eiθ0 + b

)
> 0,

but the imaginary parts differ,

(2.27) ℑ
(
k0
√
|r|ei(π−θ0) + a

)
< ℑ

(√
|r|
k0

eiθ0 + b

)
.

Let

(2.28) A = k0
√
|r|ei(π−θ0) + a, and B =

√
|r|
k0

eiθ0 + b.

Then (2.26) and (2.27) satisfy items (i), (ii) and (iii) of Lemma 2.5;
hence, there exist x,w ∈ H+ such that (x+ r1)w = A and (x+ r2)w =
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B. Thus,

(2.29)

f(x,w) = ((x+ r1)w − a)((x+ r2)w − b)

=
(
k0
√
|r|ei(π−θ0)

)(√
|r|
k0

eiθ0
)

= −|r| = r.

Case 2. We consider r ∈ (−∞, 0) and b + 2
√
|r| ≤ a. We will only

need b < a+ 2
√
|r|. This is easily seen to be true by adding 2

√
|r| to

both sides of b + 2
√
|r| ≤ a and observing b < b + 4

√
|r|. Define the

function g : [0, π/2] → R by

(2.30)
g(θ) :=

(√
|r|ei(2π−θ) + a

)
−

(√
|r|ei(π+θ) + b

)
=

√
|r|(2 cos(θ)) + a− b.

Again, g is real valued, and g(0) = a + 2
√
|r| − b > 0. Thus, by

continuity, there exists θ0 ∈ (0, π/2) such that g(θ0) > 0, which implies
the following:

(a) ℑ(
√
|r|ei(2π−θ0) + a)−ℑ(

√
|r|ei(π+θ0) + b) = 0,

(b) ℜ(
√
|r|ei(2π−θ0) + a)−ℜ(

√
|r|ei(π+θ0) + b) > 0,

(c) (
√
|r|ei(2π−θ0) + a), (

√
|r|ei(π+θ0) + b) ∈ H−.

By (a), (b) and (c),

(2.31) Arg
(√

|r|ei(2π−θ0) + a
)
−Arg

(√
|r|ei(π+θ0) + b

)
> 0.

Define the function h : [1,∞) → R by

(2.32) h(k) := Arg
(
k
√
|r|ei(2π−θ0) + a

)
−Arg

(√
|r|
k

ei(π+θ0) + b

)
.

The function h is real valued, and h(1) > 0. Thus, by continuity, there
exists k0 > 1 such that h(k0) remains positive,

(2.33) Arg
(
k0
√
|r|ei(2π−θ0) + a

)
−Arg

(√
|r|
k0

ei(π+θ0) + b

)
> 0,

but the imaginary parts differ,

(2.34) ℑ
(
k0
√
|r|ei(2π−θ0) + a

)
< ℑ

(√
|r|
k0

ei(π+θ0) + b

)
.
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Let

A = k0
√
|r|ei(2π−θ0) + a,(2.35)

and

B =

√
|r|
k0

ei(π+θ0) + b.

Then (2.33) and (2.34) satisfies items (i), (ii) and (iii) of Lemma 2.5;
hence, there exist x,w ∈ H+ such that (x+ r1)w = A and (x+ r2)w =
B. Thus,

(2.36)

f(x,w) = ((x+ r1)w − a)((x+ r2)w − b)

=
(
k0
√
|r|ei(2π−θ0)

)(√
|r|
k0

ei(π+θ0)

)
= −|r| = r.

Case 3. We consider r ∈ (ab,∞). Since r > ab, r = a′b′, for some
a′ > a and b′ > b. Define the function g : [π/2, π] → [a−a′, a]×[b−b′, b]
by

(2.37) g(θ) :=
(
ℜ(a′e−iθ) + a, ℜ(b′eiθ) + b

)
.

Since a− a′, b− b′ < 0, g(π) = (a− a′, b− b′) has negative coordinates.
By continuity, there exists θ0 ∈ (π/2, π) such that g(θ0) has negative
coordinates, which implies that a′e−iθ0 + a is in quadrant three, and
b′eiθ0 + b is in quadrant two. Let

(2.38) A = a′e−iθ0 + a and B = b′eiθ0 + b.

Again, by Lemma 2.5, there exist x,w ∈ H+ such that (x+ r1)w = A,
and (x+ r2)w = B. Thus,

(2.39)

f(x,w) = ((x+ r1)w − a)((x+ r2)w − b)

=
(
a′e−θ0i

) (
b′eθ0i

)
= a′b′ = r.

To prove sufficiency, first consider r ∈ (0, ab]. By way of contra-
diction, assume there exist x,w ∈ H+ such that ((x + r1)w − a)((x +
r2)w− b) = r. Let A = ((x+ r1)w− a) and B = ((x+ r2)w− b). Since
x + r1, x + r2 ∈ H+, the rotation by Arg(w) ∈ (0, π) and the shifts
to the left by a, b > 0 restrict the location of A and B considerably.
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Indeed, since AB is a positive real number, Arg(A)+Arg(B) = 2π. In
particular, since r1 < r2, B must be in H+, which implies

(2.40) 0 < Arg(w) < Arg((x+ r2)w) < Arg((x+ r2)w − b) < π,

and A must be in H−, which implies

(2.41) π < Arg((x+ r1)w− a) < Arg((x+ r1)w) < π−Arg(w) < 2π.

The following figure illustrates inequalities (2.40) and (2.41).

..
Origin
. Real Line.

Arg(w)
.

ϵ

.

(x+ r2)w

.

b

.

B = (x+ r2)w − b

.

A = (x+ r1)w − a

.

a

.

(x+ r1)w

.

δ

We let ϵ and δ be the horizontal distance from (x+ r1)w and (x+ r2)w
to the line formed by Arg(w). In fact, δ = ℑ(x+ r1)/sin(Arg(w)), and
ϵ = ℑ(x+ r2)/sin(Arg(w)), so that δ = ϵ > 0. We redraw the picture
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with different labels and examine the points geometrically.

.. Real Line.
α

.

π − (α+ θ)

.θ .
θ

.

α− θ

.

π − α

.

α

.

π − α

.

b+ ϵ

.

|B|

.

a+ δ

.

|A|

The inequalities α − θ > 0 and π − (α + θ) > 0 imply 0 < θ < α <
π − θ < π, so that

sin(θ) < sin(α),

since sin(θ) = sin(π − θ). Thus,

(2.42) 0 <

(
sin(θ)

sin(α)

)2

< 1,

and the law of sines yields that

(2.43)

(a+ δ)(b+ ϵ) =
|A| sin(α− θ)

sin(π − α)
· |B| sin(π − (α+ θ))

sin(α)

=

(
1−

(
sin(θ)

sin(α)

)2)
|AB| < |AB|.

Hence, we have the contradiction that

(2.44) ab < (a+ δ)(b+ ϵ) < |AB| = r.

To finish the proof, consider r = 0. By way of contradiction, suppose
there are x,w ∈ H+ such that

((x+ r1)w − a)((x+ r2)w − b) = 0.
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Thus, (x + r1)w = a or (x + r2)w = b. However, neither of these can
hold, since the product of any two complex numbers in H+ cannot be
a non-negative real number. �

Theorem 2.7. Let a, b ≥ 0, r1, r2, r ∈ R and r1 ̸= r2. Then,

r ∈ [0, ab]

if and only if

T := (x+ r1)(x+ r2)D
2 + (b(x+ r1) + a(x+ r2))D + r

(where D := d/dx), is hyperbolicity preserving.

Proof. To prove necessity, assume r ∈ [0, ab]. By Theorem 2.4, it
suffices to show, for every x,w ∈ H+,

(2.45) (x+ r1)(x+ r2)w
2 − (b(x+ r1) + a(x+ r2))w + r ̸= 0.

By Lemma 2.6, since ab− r ∈ [0, ab], then for every x,w ∈ H+,

(2.46) ((x+ r1)w − a)((x+ r2)w − b) ̸= ab− r.

We rewrite equation (2.46) and attain (2.45).

To prove sufficiency, suppose T is hyperbolicity preserving. By
Theorem 2.4, for every x,w ∈ H+,

(2.47) (x+ r1)(x+ r2)w
2 − (b(x+ r1) + a(x+ r2))w + r ̸= 0.

We factor (2.47) to obtain

(2.48) ((x+ r1)w − a)((x+ r2)w − b) ̸= ab− r, for all x,w ∈ H+,

which implies that r ∈ [0, ab] by Lemma 2.6. �

Theorem 2.8. For ci, rj ∈ R, i = 0, 1, 2, j = 1, 2, 3, c2 ̸= 0, r1 ̸= r2,
let Q0(x) = c0, Q1(x) = c1(x − r3) and Q2(x) = c2(x − r1)(x − r2).
Then

0 ≤ c21

(
(r1 − r3)(r3 − r2)

(r2 − r1)2

)
− c0c2,

and c0, c1, c2 are of the same sign if and only if

T := Q2(x)D
2 +Q1(x)D +Q0(x)

(where D := d/dx), preserves hyperbolicity.
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Proof. To prove sufficiency, if T preserves hyperbolicity, then by
Lemma 1.6, ci, i = 0, 1, 2 are of the same sign and the zeros of Q2 and
Q1 interlace. Since

(2.49)

T = c2

(
(x− r1)(x− r2)D

2 +
c1
c2

(x− r3)D +
c0
c2

)
= c2

(
(x− r1)(x− r2)D

2

+
c1
c2

[
(r1 − r3)

(r1 − r2)
(x− r2) +

(r3 − r2)

(r1 − r2)
(x− r1)

]
D +

c0
c2

)
,

then, by Theorem 2.7,

(2.50)
c0
c2

∈
[
0,

(
c1
c2

)2
(r1 − r3)(r3 − r2)

(r1 − r2)2

]
,

and so

(2.51) 0 ≤ c21

(
(r1 − r3)(r3 − r2)

(r2 − r1)2

)
− c0c2.

To prove necessity, suppose ci, i = 0, 1, 2, are of the same sign, and

(2.52) 0 ≤ c21

(
(r1 − r3)(r3 − r2)

(r2 − r1)2

)
− c0c2.

Let

a :=
c1
c2

(r1 − r3)

(r1 − r2)
, and b :=

c1
c2

(r3 − r2)

(r1 − r2)
.

By Theorem 2.7, we want to conclude that a, b ≥ 0. To this end,
if c1 = 0, then a, b ≥ 0. Suppose c1 ̸= 0, and that r1 < r2. Then
(2.52) implies 0 ≤ (r1−r3)(r3−r2), and we conclude that r1 ≤ r3 ≤ r2
(i.e., r3 < r1 < r2 cannot hold, since it implies (r1 − r3)(r3 − r2) < 0,
and also if r1 < r2 < r3, then (r1 − r3)(r3 − r2) < 0), and hence,
a, b ≥ 0. By symmetry, the same conclusion is true if r2 < r1. Thus,
by Theorem 2.7, T preserves hyperbolicity. �

The equality of (2.49) uses a fact established in [6, page 13, Lemma
1.20]. For the sake of completeness, we state the result.

Lemma 2.9 ([6, page 13, Lemma 1.20]). Assume that f is a poly-
nomial of degree n, with positive leading coefficient, and with zeros
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{a1, . . . , an}. Suppose that g is a polynomial with positive leading coef-
ficient. If g has degree n− 1, and we write

g(x) = c1
f(x)

x− a1
+ · · ·+ cn

f(x)

x− an
,

then f and g have interlacing zeros if and only if all ci ≥ 0 for
i = 1, 2, . . . , n.

We now remove the condition of Q2 having distinct zeros. We begin
with a lemma that is analogous to Lemma 2.6.

Lemma 2.10. Let a, r ∈ R, a ≥ 0. Set

f(z) := z2 − az + r, z ∈ C.

Then

f(z) ̸= 0 for all z ∈ C− [0,∞)

if and only if r ∈
[
0,

a2

4

]
.

Proof. The zeros of f are (a±
√
a2 − 4r)/2. There are two cases to

prove necessity.

Case 1. If r < 0, then one of the zeros of f is a negative real number;
thus, there exist z0 ∈ C− [0,∞) such that f(z0) = 0.

Case 2. If r > a2/4, then f has two imaginary zeros; thus, the zeros
of f are in C− [0,∞).

To prove sufficiency, suppose 0 ≤ r ≤ a2/4. Then f has two non-
negative real zeros so that f never vanishes in C− [0,∞). �

Theorem 2.11. Let a ≥ 0, r,R ∈ R. Then,

R ∈
[
0,

a2

4

]
if and only if

T := (x+ r)2D2 + a(x+ r)D +R

is hyperbolicity preserving.
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Proof. To prove necessity, assume R ∈ [0, a2/4]. By Theorem 2.4, it
suffices to show, for every x,w ∈ H+,

(2.53) (x+ r)2w2 − a(x+ r)w +R ̸= 0.

We assume, on the contrary, that (2.53) is false for some x,w ∈ H+.
Let z = (x+ r)w in (2.53), so that z ∈ C− [0,∞), and

(2.54) z2 − az +R = 0.

This is impossible by Lemma 2.10, a contradiction.

To prove sufficiency, suppose T is hyperbolicity preserving. By
Theorem 2.4, for every x,w ∈ H+,

(2.55) (x+ r)2w2 − a(x+ r)w +R ̸= 0.

Let z = (x+ r)w in (2.55), so that z ∈ C− [0,∞), and

(2.56) z2 − az +R ̸= 0, for all z ∈ C− [0,∞),

which, by Lemma 2.10, implies that R ∈ [0, a2/4]. �

The analogous statement of Theorem 2.8 is the following, and its
proof follows, mutatis mutandis, from the proof of Theorem 2.8.

Theorem 2.12. For r, ci ∈ R, i = 0, 1, 2, c2 ̸= 0, let Q0(x) = c0,
Q1(x) = c1(x− r) and Q2(x) = c2(x− r)2. Then

0 ≤ c21

(
1

4

)
− c0c2

and c0, c1, c2 are of the same sign, if and only if

T = Q2(x)D
2 +Q1(x)D +Q0(x)

preserves hyperbolicity.

We now wish to find a condition that combines the statements of
Theorem 2.12 and Theorem 2.8. To this end, we prove the following
lemma.

Lemma 2.13. For ci, rj ∈ R, i = 0, 1, 2, j = 1, 2, 3, c2 ̸= 0, let
Q0(x) = c0, Q1(x) = c1(x − r3) and Q2(x) = c2(x − r1)(x − r2). If
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T = Q2(x)D
2 +Q1(x)D +Q0(x) is hyperbolicity preserving, then

0 ≤ c21

(
1

4

)
− c0c2.

Furthermore, if r1 ̸= r2, then

0 ≤ c21
(r1 − r3)(r3 − r2)

(r2 − r1)2
− c0c2 ≤ c21

(
1

4

)
− c0c2.

Thus, if c21 − 4c0c2 = 0, then 2r3 = r1 + r2.

Proof. Theorem 2.12 deals with the case of when r1 = r2, thus it
suffices to show

(2.57) 0 ≤ (r1 − r3)(r3 − r2)

(r2 − r1)2
≤ 1

4
.

The left inequality holds because Q2 and Q1 have interlacing zeros by
Lemma 1.6. To show the right inequality, we proceed as follows,

(2.58) 0 ≤ (2r3 − (r1 + r2))
2,

(2.59) 4(r1r3 + r2r3) ≤ (r2 + r1)
2 + 4r23,

(2.60) 4(r1r3 − r1r2 − r23 + r2r3) ≤ r22 − 2r1r2 + r21,

�(2.61) 4(r1 − r3)(r3 − r2) ≤ (r2 − r1)
2.

Theorem 2.14. For ci, rj ∈ R, i = 0, 1, 2, j = 1, 2, 3, c2 ̸= 0, let
Q0(x) = c0, Q1(x) = c1(x − r3) and Q2(x) = c2(x − r1)(x − r2) with
Q0(x) ≪ Q1(x) and Q1(x) ≪ Q2(x). Then

T = Q2(x)D
2 +Q1(x)D +Q0(x)

preserves hyperbolicity if and only if

W [Q0, Q2]
2 −W [Q0, Q1]W [Q1, Q2] ≤ 0.
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Proof. Since Q0 ≪ Q1 and Q1 ≪ Q2, the signs of c0, c1, c2 are same,
and r1 ≤ r3 ≤ r2. Define

w(x) := W [Q0, Q2]
2 −W [Q0, Q1]W [Q1, Q2]

= c0c2(4c0c2 − c21)x
2 + 2c0c2(−2c0c2(r1 + r2) + c21r3)x

+ c0c2(c0c2(r1 + r2)
2 + c21(r1r2 − r1r3 − r2r3)).

Suppose r1 = r2. Then w(x) = −c0c2(c
2
1 − 4c0c2)(x − r1)

2. It is
clear that w(x) ≤ 0 if and only if 0 ≤ c21 − 4c0c2; thus, we apply
Theorem 2.12.

Suppose 0 = c21 − 4c0c2 and r1 ̸= r2. By Lemma 2.13, Theorem 2.8
can restated as, “T is hyperbolicity preserving if and only if 2r3 =
r1 + r2.” We recalculate w, under the assumption that c21 − 4c0c2 = 0,

w(x) = 4c20c
2
2(2r3 − r1 − r2)x

+ c20c
2
2(2(r1 + r2)(r1 + r2 − 2r3)− (r1 − r2)

2).

We now see that w(x) ≤ 0, if and only if 2r3 = r1 + r2.

Thus, we may assume 0 ̸= c21 − 4c0c2 and r1 ̸= r2, in which case the
graph of w(x) is a parabola with vertex

(2.62)

(
r3,

c0c
2
1c2

c21 − 4c0c2

(
c0c2(r1 − r2)

2 + c21(r1 − r3)(r2 − r3)
))

.

Since w is a quadratic, w(x) ≤ 0 if and only if the leading coefficient

(2.63) c0c2(4c0c1 − c21) < 0,

and y-coordinate of the vertex

(2.64)
c0c

2
1c2

c21 − 4c0c2

(
c0c2(r1 − r2)

2 + c21(r1 − r3)(r2 − r3)
)
≤ 0.

Thus, we can say that w(x) ≤ 0 if and only if 0 < c21 − 4c0c1 and 0 ≤
c21(r1− r3)(r3− r2)− c0c2(r1− r2)

2. By Lemma 2.13 and Theorem 2.8,
those conditions are equivalent to T preserving hyperbolicity. �

It is unnecessary to assume that the polynomial coefficients of T
have real zeros as this will follow from Lemma 1.6. Furthermore, if Q2
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is a quadratic, then Lemma 1.6 states that Q1 cannot be a non-zero
constant, if T is to preserve hyperbolicity. To summarize, we restate
Theorem 2.14 with a little more generality.

Theorem 1.7. Suppose Q2, Q1, Q0 are real polynomials such that
deg(Q2) = 2, deg(Q1) ≤ 1 and deg(Q0) = 0. Then

T = Q2D
2 +Q1D +Q0

preserves hyperbolicity if and only if

W [Q0, Q2]
2 −W [Q0, Q1]W [Q1, Q2] ≤ 0, and Q0 ≪ Q1 ≪ Q2.

3. Multiplier sequences. We now wish to establish several conse-
quences of the above quadratic operators.

Definition 3.1. Let {Pn} be a basis for R[x]. We call a set of
polynomials simple if each polynomial Pn has degree n. Let {An} be
a sequence of real numbers. If there is a linear operator, T , such that
T [Pn] = AnPn for every n ∈ N, then we call T a Pn-multiplier operator.
If there is a hyperbolicity preserver, T , such that T [Pn] = AnPn for
every n ∈ N, then we call T a Pn-multiplier sequence.

The following theorem summarizes the natural relationship be-
tween differential equations, differential operators and Pn-multiplier
sequences.

Theorem 3.2. Let Pn be a simple basis for R[x]. Suppose, for each
n ∈ N, Pn satisfies the differential equation

∞∑
k=0

Qk(x)y
(k) = Any,

where {Qk} is a sequence of real polynomials and {An} is a sequence
of real numbers. Then An is a Pn-multiplier sequence if and only if

∞∑
k=0

QkD
k

is a hyperbolicity preserver.
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Using Theorem 2.8, we can restate Theorem 3.2.

Theorem 3.3. Let Pn be a simple set for R[x], and let {An} be a
sequence of real numbers. Let ci, rj ∈ R, i = 0, 1, 2, j = 1, 2, 3 and
c2 ̸= 0. Suppose, for each n ∈ N, that Pn satisfies the differential
equation

c2(x− r1)(x− r2)y
′′ + c1(x− r3)y

′ + c0y = Any.

Then {An} is a Pn-multiplier sequence if, and only if, c0, c1, c2 are of
the same sign and

0 ≤ c21

(
(r1 − r3)(r3 − r2)

(r2 − r1)2

)
− c2c0.

In light of Theorem 2.12, we take [(r1 − r3)(r3 − r2)]/(r2 − r1)
2 = 1/4

in the case that r1 = r2 = r3. Also, if r1 = r2 and r1 ̸= r3, then {An}
is not a Pn-multiplier sequence.

A large number of very well-known bases for R[x] satisfy differential
equations of the above form ([12, pages 173, 188, 204, 258]). We exhibit
classes of multiplier sequences for Legendre, Jacobi and the standard
basis. We state the corresponding differential equations:

Standard basis:

(3.1) Ax2(xn)′′ +Bx(xn)′ + C(xn) = (An(n− 1) +Bn+ C)xn.

Lengendre polynomials:

(3.2) A(x2 − 1)P ′′
n + 2AxP ′

n +BPn = (An(n+ 1) +B)Pn.

Jacobi polynomials:

(3.3) A(x2 − 1)(P (α,β)
n )′′

+A((α+ β + 2)x− (β − α))(P (α,β)
n )′ +BP (α,β)

n

= (An(n+ α+ β + 1) +B)P (α,β)
n .

We now establish several classes of multiplier sequences. Note that
multiplier sequences that arise from the standard basis are commonly
referred to as classic multiplier sequences.
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Theorem 3.4. Let A,B,C ∈ R. Then {An(n − 1) + Bn + C} is a
classic multiplier sequence if and only if A,B,C are of the same sign
and

0 ≤ B2 − 4AC.

Theorem 3.5 ([1, Theorem 11]). Let A,B ∈ R, A ̸= 0. Then
{An(n + 1) + B} is a Pn-multiplier sequence (Lengendre multiplier
sequence) if and only if

0 ≤ B

A
≤ 1.

Theorem 3.6. Let A,B ∈ R, A ̸= 0. Then {An(n+α+β+1)+B} is a

P
(α,β)
n -multiplier sequence (Jacobi multiplier sequence, i.e., −1 < α, β)

if and only if

0 ≤ B

A
≤ (α+ 1)(β + 1).

Proof. We note that

(3.4) A,A(α+ β + 2) and B have the same sign

and

(3.5) (A(α+ β + 2))2
(
1− β − α

α+ β + 2

)(
1 +

β − α

α+ β + 2

)
− 4AB ≥ 0

is equivalent to

�(3.6) 0 ≤ B

A
≤ (α+ 1)(β + 1).
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