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ON THE HOMFLY POLYNOMIAL OF 4-PLAT
PRESENTATIONS OF KNOTS

BO-HYUN KWON

ABSTRACT. In this paper, a method is given for cal-
culating the HOMFLY polynomials of two bridge knots by
using a representation of the braid group B4 into a group of
3 × 3 matrices. Also, examples will be given of a 2-bridge
knot and a 3-bridge knot that have the same Jones polyno-
mial, but different HOMFLY polynomials.

1. Introduction. In 1985, Hoste et al. [3] discovered the HOMFLY
polynomial which is a 2-variable oriented link polynomial PL(a,m) mo-
tivated by the Jones polynomial. Also, Prztycki and Traczyk [8] inde-
pendently had done some work related to the HOMFLY polynomial.
The calculation of the HOMFLY polynomial is based on the HOMFLY
skein relations as follows.

(1) P (L) is an isotopy invariant.
(2) P (unknot) = 1.
(3) a · P (L+) + a−1 · P (L−) +m · P (L0) = 0.

L LL _
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Figure 1

Lickorish and Millett [7] and Kanenobu and Sumi [5] gave a formula
to calculate the HOMFLY polynomials of 2-bridge knots by using a
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representation of the continued fraction of a rational knot into a group
of 2× 2 matrices. (See [7, Proposition 14].)

In this paper, the HOMFLY blacket polynomial and the plat pre-
sentation of knots are used to calculate the HOMFLY polynomials of
rational knots by using a representation of the braid group B4 into a
group of 3×3 matrices. Also, we can extend the method for evaluating
the HOMFLY polynomials of 2n-plat presentations of knots.

Now, we define the plat presentation of a knot and a rational tangle.
Let S2 be a sphere smoothly embedded in S3, and let K be a link
transverse to S2. The complement in S3 of S2 consists of two open balls,
B1 and B2. We assume that S2 is an xz-plane ∪{∞}. Now, consider
the projection of K onto the flat xy-plane. Then, the projection onto
the xy-plane of S2 is the x-axis and B1 projects to the upper half plane
and B2 projects to the lower half plane. The projection gives us a link
diagram where we make note of over and undercrossings. The diagram
of the link K is called a plat on 2n-strings, denoted by p2n(w), if it is
the union of a 2n-braid w and 2n unlinked and unknotted arcs which
connect pairs of consecutive strings of the braid at the top and at the
bottom endpoints and S2 meets the top of the 2n-braid. (See the first
and second diagrams of Figure 2.) Any link K in S3 admits a plat
presentation, that is, K is ambient isotopic to a plat ([2, Theorem
5.1]). The bridge (plat) number b(K) of K is the smallest possible
number n such that there exists a plat presentation of K on 2n strings.

We know that the braid group B4 is generated by σ1, σ2, σ3 which are
twisting of two adjacent strings. For example, w = σ−2

2 σ2
1σ

−1
2 σ2

3σ
−1
2 is

the word for the 4 braid of the first diagram of Figure 2.

B1

B2

S2

B1

S2

B2

w

p  (   )w
4

Figure 2
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Then we say that a plat presentation is standard if the 4-braid w of
p4(w) involves only σ2 and σ3.

A 2-tangle is the disjoint union of 2 properly embedded arcs in
a 3-ball B3. Then we say that a 2-tangle T = (B3, α1 ∪ α2) is
rational if there exists a homeomorphism of pairs H : (B3, α1 ∪ α2) →
(D2 × I, {p1, p2}× I), where pi are distinct points in D2 and I = [0, 1].
We have the two 2-tangles T1 = (B1,K ∩ B1) and T2 = (B2,K ∩ B2).
We note that T1 and T2 are rational if K has a plat presentation. Let
Tw be the rational 2-tangle in B2 if K has a plat presentation.

Now, we define a plat presentation for rational 2-tangles p4(w)∩B2

(refer to [4]) denoted by q4(w) if it is the union of a 4-braid w and 2
unlinked and unknotted arcs which connect pairs of strings of the braid
at the bottom endpoints with the same pattern as in a plat presentation
for a knot and ∂B2 meets the top of the 4-braid.

We note that q4(w) is a rational 2-tangle in B2. (See [6].)

We say that q4(w) = p4(w) is the plat closure of q4(w).

The tangle diagrams with the circles in Figure 3 give the diagrams
of trivial rational 2-tangles as in [1, 3, 4, 8].

NW NE

SW SE

B3

NWSW NE SE

B

B 1

2

NW NE

SW SE

B3

NWSW NE SE

B

B 1

2

Figure 3

We note that q4(w) is alternating if and only if q4(w) is alternating.

A tangle T is reduced alternating if T is alternating and T does not
have a self-crossing which can be removed by a Type I Reidemeister
move.

Theorem 1.1 ([6]). If K is a 2-bridge knot, then there exists a word
w in B4 so that the plat presentation p4(w) is reduced alternating,
standard and represents a knot isotopic to K.
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By Theorem 1.1, any 2-bridge knot K can be represented by a
word w as a plat which involves only σ2 and σ−1

3 (or σ−1
2 and σ3),

i.e., w = σϵ1
2 σ−ϵ2

3 · · ·σϵ2n−1

2 for some positive (negative) integers ϵi for
1 ≤ i ≤ 2n−1. We notice that if w = σϵ1

2 σ−ϵ2
3 · · ·σ−ϵ2n

3 for some positive
(negative) integer ϵ2n, then it is not a reduced alternating form, i.e.,
we can twist the right unlinked and unknotted bottom arc to reduce
some crossings to have fewer crossings for K. So, in order to have a
reduced alternating form, w needs to start from σ±1

2 and end at σ±1
2 .

In Section 2, we introduce the HOMFLY polynomial of rational 2-
tangles and give a formula to calculate the HOMFLY polynomial of
4-plat presentations of knots.

In Section 3, we give a method for finding the orientation of each
crossing of a knot from a given orientation of the knot.

Then, we give some examples of knots for which we calculate the
HOMFLY polynomials and give specific examples of a 2-bridge knot
and a 3-bridge knot that have the same Jones polynomial but different
HOMFLY polynomials, presented in Section 4.

2. HOMFLY bracket polynomial of rational 2-tangles and
the main theorem. Let K be a 2-bridge knot. By Theorem 1.1,
there exists a plat presentation p4(w) which is reduced alternating,
standard and represents a knot isotopic to K.

For a given orientation of K, we will give an induced orientation to
the rational 2-tangle Tw = K∩B2 such that Tw has the same orientation

with the oriented knot
−→
K in B2. Let

−−−→
q4(w) be the plat presentation of

Tw with the induced orientation.

Now, we define the HOMFLY polynomial of an oriented plat pre-

sentation of rational 2-tangle
−−−→
q4(w) in B2 as P (

−→
Tw) = f(a,m)⟨T0⟩ +

g(a,m)⟨T∞⟩+ h(a,m)⟨Tx⟩, where the coefficients f(a,m), g(a,m) and
h(a,m) are polynomials in a, a−1 and m that are obtained by starting

with
−→
Tw and using the skein relations repeatedly until only the three

tangles in the expression are given for Tw.

Let n be the number of crossings of w.

We note that if we switch one of the alternative crossings of w (n > 1)
from positive (negative) to negative (positive) to have K ′, then we have
the plat presentation p4(w

′) for K ′ so that w′ is a reduced alternating,
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T T T0 x

Figure 4

standard and w′ has lower crossings than w ([6]). So, by the skein
relations, we can reduce the number of crossings of w. However, if we
have an oriented rational 2-tangle with n = 1, then we cannot reduce
the number of crossing by the skein relations. This is the reason that
we need Tx.

We remark that polynomials f(a,m), g(a,m) and h(a,m) are invari-

ant under isotopy of
−−−→
q4(w).

Also, we note that, even if we apply the skein relationship to one of
the crossings of q4(w), the orientations of the rest of crossings will be
preserved, i.e., all the rest of the crossings keep the directions for the
given orientation while we are applying the skein relationship to one of

the crossings of
−−−→
q4(w) to calculate the HOMFLY polynomial of q4(w).

Let A = ⟨T0⟩, B = ⟨T∞⟩ and C = ⟨Tx⟩. Recall that K is alternating
and standard. Since p4(w) is standard, we consider B3 instead of B4.
Then let σ1 and σ2 be the two generators of B3. We want to emphasize
here that we are changing from σ2 and σ3 to σ1 and σ2.

Suppose that w = σα1
1 σ−α2

2 · · ·σα2n−1

1 for positive integers αi (1 ≤
i ≤ 2n−1). Then, we will give an orientation to w which is induced by
−→
K . So, σ1 and σ−1

2 have four different cases σj1 and σ−1
j2 for j = 1, 2

as in Figure 5.

Actually, there are two possible directions for the orientation of−→
K . However, the skein relation does not depend on the choice of
the direction. Now, we consider the sub-directions which are induced

by the orientation of
−→
K as in Figure 5. We note that there are the

other corresponding eight cases which are obtained from the given cases
by taking the opposite arrows. However, we will not distinguish the
corresponding cases since they play the same role as the corresponding
cases when we construct 3×3 matrices for calculation of the HOMFLY
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σ σ11 12

σ σ21 22
σ σ21 22

σ σ11 12

−1 −1

−1−1

Figure 5

polynomial.

So, by considering the orientation, we can describe w as σα1

1 k1
σ−α2

2 k2
· · ·

σ
α2n−1

1 k2n−1
instead of w = σα1

1 σ−α2
2 · · ·σα2n−1

1 , where ki ∈ {1, 2}.

Let

A1
1 =

 1 0 0
0 0 −a−2

0 1 −a−1m

 , A1
2 =

 1 0 −am
0 0 −a2

0 1 0

 ,

and

B−1
1 =

 0 0 −a2

0 1 0
1 0 −am

 , B−1
2 =

 0 0 −a−2

0 1 −a−1m
1 0 0

 .

Let
M = (A1

k1
)α1(B−1

k2
)α2 · · · (A1

k2n−1
)α2n−1 .

Then we have the main theorem to calculate the HOMFLY polynomial
of K as follows.

Theorem 2.1. Suppose that q4(w) is a plat presentation of a ra-
tional 2-tangle Tw which is alternating and standard so that w =
σϵ1
1 σ−ϵ2

2 · · ·σϵ2n−1

1 for some positive integers ϵi (1 ≤ i ≤ 2n− 1). Then
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P (Tw) = f(a,m)A+ g(a,m)B + h(a,m)C, where f(a,m), g(a,m) and
h(a,m) are obtained from

[f(a,m) g(a,m) h(a,m)] = [0 1 0]M t,

i.e., the second column of M . Moreover,

P (K) = f(a,m)− g(a,m)
(a+ a−1)

m
+ h(a,m).

Proof. By Theorem 1.1, for a two bridge knot K, there exists a word
w in B4 so that the plat presentation p4(w) is alternating, standard and
represents a link isotopic to K.

Then, by the argument above, we have

P (Tw) = f(a,m)A+ g(a,m)B + h(a,m)C

for some 2-variable polynomials f(a,m), g(a,m) and h(a,m).

Since w is standard, we consider two generators σ1 and σ2 for B3 as
mentioned before.

Let T ′
1 and T ′′

1 be the rational two tangles which are obtained from
Tw by adding σ∓1

1 or σ±1
2 , respectively, to cancel the first σ±1

i in w. So,
we have a new word v of smaller length than w so that w = σ±

i v for
the rational 2-tangles T ′

1 and T ′′
1 . Without loss of generality, we will

consider the cases that w = σ−1
1 v or w = σ2v.

First, we consider the case that w = σ−1
1 v. Then, we have that

P (T ′
1) = f ′(a,m)A+ g′(a,m)B+h′(a,m)C for some 2-variable polyno-

mials f ′(a,m), g′(a,m) and h′(a,m).

Also, by Figure 6, we know that

P (T ′
1) = f(a,m)A+ g(a,m)⟨Tx′⟩+ h(a,m)B,

where Tx′ is the tangle which has a plat presentation q4(w) with
w = σ−1

1 .

By Figure 6, we also know that

P (Tx′) = −a2C − amB

or
P (Tx′) = −a−2C − a−1mA.



250 BO-HYUN KWON

f(a,m) g(a,m) h(a,m)

f(a,m) g(a,m) h(a,m)

− a m− a2

− a  m−1−2

− a

Figure 6

Therefore,

P (T ′
1) = f(a,m)A+ g(a,m)⟨Tx′⟩+ h(a,m)B

= f(a,m)A+ g(a,m)(−a2C − amB) + h(a,m)B
= f(a,m)A+ (h(a,m)− amg(a,m))B − a2g(a,m)C

or

P (T ′
1) = f(a,m)A+ g(a,m)⟨Tx′⟩+ h(a,m)B

= f(a,m)A+ g(a,m)(−a−2C − a−1mA) + h(a,m)B
= (f(a,m)− a−1mg(a,m))A+ h(a,m)B − a−2g(a,m)C.

Therefore, the following gives the operations. 1 0 0
0 −am 1
0 −a2 0

 f(a,m)
g(a,m)
h(a,m)

 =

 f ′(a,m)
g′(a,m)
h′(a,m)

 ,

 1 −a−1m 0
0 0 1
0 −a−2 0

 f(a,m)
g(a,m)
h(a,m)

 =

 f ′(a,m)
g′(a,m)
h′(a,m)

 .
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f(a,m) g(a,m) h(a,m)

f(a,m) g(a,m) h(a,m)

− a−2
− a  m

−1

− a m2
− a

Figure 7

Now, we consider the case where w = σ2v. Then we have P (T ′′
1 ) =

f ′′(a,m)A+ g′′(a,m)B + h′′(a,m)C.

By Figure 7, we also know that P (Tx′) = −a−2C − a−1mA or
P (Tx′) = −a2C − amB. Therefore,

P (T ′
1) = f(a,m)⟨Tx′⟩+ g(a,m)B + h(a,m)C

= f(a,m)(−a−2C − a−1mA) + g(a,m)B + h(a,m)A
= (h(a,m)− a−1mf(a,m))A+ g(a,m)B − a−2f(a,m)C,

or

P (T ′
1) = f(a,m)⟨Tx′⟩+ g(a,m)B + h(a,m)C

= f(a,m)(−a2C − amB) + g(a,m)B + h(a,m)A
= h(a,m)A+ (g(a,m)− amf(a,m))B − a2f(a,m)C.
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Therefore, the following gives the operations. −a−1m 0 1
0 1 0

−a−2 0 0

 f(a,m)
g(a,m)
h(a,m)

 =

 f ′′(a,m)
g′′(a,m)
h′′(a,m)

 ,

 0 0 1
−am 1 0
−a2 0 0

 f(a,m)
g(a,m)
h(a,m)

 =

 f ′′(a,m)
g′′(a,m)
h′′(a,m)

 .

Now, let

A−1
1 =

 1 0 0
0 −am 1
0 −a2 0

 , A−1
2 =

 1 −a−1m 0
0 0 1
0 −a−2 0

 ,

and

B1
1 =

 −a−1m 0 1
0 1 0

−a−2 0 0

 , B1
2 =

 0 0 1
−am 1 0
−a2 0 0

 .

Now, recall that

A1
1 =

 1 0 0
0 0 −a−2

0 1 −a−1m

 , A1
2 =

 1 0 −am
0 0 −a2

0 1 0

 ,

and

B−1
1 =

 0 0 −a2

0 1 0
1 0 −am

 , B−1
2 =

 0 0 −a−2

0 1 −a−1m
1 0 0

 .

We note that each A±1
i is invertible and A1

i is actually the inverse of

A−1
i . Also, we note that each B±1

i is invertible and B1
i is actually the

inverse of B−1
i . Therefore,

A−1

 f(a,m)
g(a,m)
h(a,m)

 =

 0
1
0


since P (T0) = 0·A+1·B+0·C. This implies that (f(a,m) g(a,m) h(a,m)) =
(0 1 0)At.
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We remark that σ1 and σ−1
2 correspond to {A1

1, A
1
2} and {B−1

1 , B−1
2 },

depending on the given orientation of w.

Now, by attaching the three unlinked and unknotted arcs in B1, we
can calculate

P (K) = f(a,m) · 1 + g(a,m) ·
(
−a− a−1

m

)
+ h(a,m) · 1

by Figure 8. To see this, we need the fact that the HOMFLY polynomial
of a link L that is a split union of two links L1 and L2 is given by

P (L) =
−a− a−1

m
P (L1)P (L2).

So, we have

P (S1∪̇S1) = −
(
a+ a−1

m

)
for the disjoint union of two unknots.

Finally, we have

P (K) = f(a,m)− g(a,m)

(
a+ a−1

m

)
+ h(a,m). �

T T T0 x

Figure 8

We note that if we have a word w which involves only σ−1
1 and σ2,

then we can get a 3 × 3 matrix A which is a sequence composed of
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{A−1
1 , A−1

2 } and {B1
1 , B

1
2} which correspond to σ−1

1 and σ2 depending
on a given orientation of w.

We have the equality about the mirror image of K as follows.

PK(a,m) = PMirror Image (K)(a
−1,m).

3. A way to determine the ki for the orientation of a rational
three tangle T which has a knot T . First, assume that the
projection onto the xy-plane of a 2-bridge knot K has a standard
plat presentation p4(w) with w = σϵ1

1 σ−ϵ2
2 · · ·σϵ2n−1

1 for some positive
(negative) integers ϵi (1 ≤ i ≤ 2n − 1). Then we have the plat

presentation q4(w) of the tangle T = K ∩B2 so that q4(w) = p4(w).

Let P(σ±1
i ) be the 3 × 3 matrix obtained by interchanging the i

and i + 1 rows of I. Then P extends to a homomorphism from B3 to
GL3(Z).

For an element w of B3, let 1, 2, 3 be the upper endpoints of the
three strings for B3 from the left. Also, let 0 be the upper endpoint of
the left most string for B4.Let u = [1, 2, 3]. Then we assign the same
number to the other endpoint of the three strings. Finally we say that
the new ordered sequence of numbers w(u) is the permutation induced
by w.

Lemma 3.1. Suppose that w is an element of B3 so that w =
σϵ1
1 σ−ϵ2

2 · · ·σϵ2n−1

1 for some positive (negative) integers ϵi (1 ≤ i ≤
2n − 1). Then [1, 2, 3]P(w) is the permutation which is induced by
w.

Proof. This is proven by induction on m = |ϵ1|+ |ϵ2|+ · · ·+ |ϵ2n|. �

Now, let [pw(1), pw(2), pw(3)] = [1, 2, 3]P(w). Without loss of
generality, give the orientation (clockwise) to the trivial arc δ1 in B1

with ∂δ1 = {0, 1} from 1 to 0 along δ1. So, the initial point of δ1 is 1
and the terminal point of δ1 is 0 for the given orientation. Then, we
can give the orientation to the other trivial arcs δ2 in B1 as follows,
where ∂δ2 = {2, 3}.

Now, we consider p−1
w (3). Then we note that p−1

w (3) ̸= 1. If not,
then K is a link, not a knot.



ON THE HOMFLY POLYNOMIAL 255

Lemma 3.2. If p−1
w (3) = 3, then the trivial arc δ2 has the same

direction (clockwise) as δ1 for the orientation. If p−1
w (3) = 2, then

the trivial arc δ2 has the opposite direction (counter clockwise) as δ1
for the orientation.

Proof. If p−1
w (3) = 3, then pw(3) = 3. So, the direction of the

orientation at 3 is upward. Therefore, the δ2 has the same direction as
δ1.

If p−1
w (3) = 2, then pw(2) = 3. Therefore, the direction of the

orientation at 2 is upward. So, the δ2 has the opposite direction as
δ1. �

Recall the ordered sequence of numbers u = [1, 2, 3]. Now, we will
define a new sequence of numbers r = [r(1), r(2), r(3)]. For the given
orientation, we replace the original number for the initial point of δ2
by 1 as follows.

r = [r(1), r(2), r(3)]

so that r(1) = 1 and, for i > 1, r(i) = 1 if p−1
w (3) = i and r(i) = i if

p−1
w (3) ̸= i.

For the three strings of the braids w, we assign the number r(k) to
each string with the upper endpoint k for 1 ≤ k ≤ 3.

Now, let r0 = r. Let

ri = [ri(1), ri(2), ri(3)] = rP(σϵ1
1 σ−ϵ2

2 σϵ3
1 · · ·σ(−1)i−1ϵi

δ )

for 1 ≤ i ≤ 2n, where δ = 1 if i is odd and δ = 2 if i is even.

Let

ki =

{
1 if ri−1(2) = ri−1(3)
2 if ri−1(2) ̸= ri−1(3).

Theorem 3.3. Suppose that the projection of a knot K onto the xy-

plane has a plat presentation p4(w) with w = σϵ1
1 σ−ϵ2

2 · · ·σ−ϵ2n−1

1 for
some positive (negative) integers ϵi (1 ≤ i ≤ 2n− 1).

Then, given an orientation for K, we have w = σα1

1 k1
σ−α2

2 k2
· · ·σα2n−1

1 k2n−1

for ki which is defined above.

Proof. Without loss of generality, we give the orientation (clockwise)
to δ1 from 1 to 2 along δ1. Then the direction of the orientation at 1 is
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up and the direction at 2 is down. Then we know that the orientation
at i is up if r(i) = 1 and is down if r(i) = 2.

Fix a value i.

Case 1. Suppose that ri−1(2) = ri−1(3) = 1. Then the two

strings for the (
∑i−1

j=1 |ϵj | + 1)th crossing have the same direction of

the orientation since ri−1(2) = ri−1(3) = 1. So, the directions of the
orientation are upward. Then ki = 1. This is consistent with the ki
that is defined above.

Case 2. Suppose that ri−1(2) ̸= ri−1(3). Then the two strings for the

(
∑i−1

j=1 |ϵj | + 1)th crossing have different directions for the orientation

since ri−1(2) ̸= ri−1(3). Then ki = 2. This is consistent with the ki
that is defined above. �

4. The calculation of some examples. First, we will calculate
the HOMFLY polynomials of 31 (trefoil knot), 51 and 52.

31 51 52

Figure 9

(a) 31 is represented by w = σ12σ
−1
21 σ12. Then we have A = A1

2B
−1
1 A1

2.
So, [f(a,m) g(a,m) h(a,m)] = [−a2 + a2m2 a3m 0]. Therefore,

P (31) = −a2 + a2m2 − a3m
a+ a−1

m

= −a2 + a2m2 − a4 − a2

= −2a2 + a2m2 − a4.
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(b) 51 is represented by w = σ12σ
−3
21 σ12. Then we have A =

A1
2(B

−1
1 )3A1

2. So, [f(a,m) g(a,m) h(a,m)] = [a4 − 3a4m2 +
a4m4 a5m(−2+m2) 0]. Therefore, P (51) = −a6m2+2a6+a4m4−
4a4m2 + 3a4.

(c) 52 is represented by w = σ−1
11 σ

2
22σ

−2
11 . Then we have A =

A−1
1 (B1

2)
2A−2

1 . So, [f(a,m) g(a,m) h(a,m)] = [a3m − a3m3 −
a5m + a5m3 a4 − a4m2 + a6m2 0]. Therefore, P (52) = a6 − a2 +
a2m2 + a4 − a4m2.

Now, a set of knots K1 and K2 will be given that have the same
Jones polynomial but different HOMFLY polynomials.

Consider the two knots K1 = 89 and K2 = 41#41. First, we can
check that the Kauffman (Jones) polynomial of K1 and K2 are the
same as follows:

X89 = X41#41 = (a16 − a12 + a8 − a4 + 1)2/a16.

KK 21

Figure 10
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We note that 89 is represented by w = (σ−1
11 )

3(σ22)(σ
−1
12 )(σ21)

2(σ−1
12 ).

So,

[f(a,m) g(a,m) h(a,m)] = [0 (−m7a+ 4am5 − 5am3

+ a−1m5 − 2a−1m3 + a−1m

+ a4a−1m5 − 3a3m3 + 2a3m+ am)

(−m6a2 + 3a2m4 +m4 − 3a2m2 −m2 + a4m4 − 2a4m2 + a4)].

Therefore,

P (89) = −2a2m4 + 5a2m2 − 4m4

+ 6m2 − 2 + a4m2 − a4 − 3a2

+m6 − a−2m4 + 2a−2m2 − a−2.

However, 41 is represented by w = (σ−1
11 )(σ22)(σ

−1
12 )

2. So,

[f(a,m) g(a,m) h(a,m)] = [0 (−am3 + a−1m+ a3m) (−a2m2 + a4)].

Therefore, P (41) = m2 − a2 − 1− a−2. This implies that

P (41#41) = P (41) · P (41) = (m2 − a2 − 1− a−2)2.

We can check that P (89) ̸= P (41#41).

KK3 4

Figure 11
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Now, consider the two knots K3 and K4 = 41#83 as in Figure 11.
We can check that they have the same Kauffman (Jones) polynomial,
as follows:

XK3 = XK4 = (a16 − a12 + a8 − a4 + 1)(a32 − a28

+ 2a24 − 3a20 + 3a16 − 3a12 + 2a8 − a4 + 1)/a24.

Then K3 is represented by w = (σ−1
12 )

2(σ1
22)

4(σ−1
12 )

2(σ1
22)

3(σ−1
11 ). So,

[f(a,m) g(a,m) h(a,m)] = [(a10 − 2a8m2 + 2a6m2 +m4a6

− 2a4m4 + a2m4 + a2m2 −m2)/a2,

−m(a2 − 1)(a6 − a4m2 + a2m2 − 1)/a3, 0].

Therefore,

P (K3) = (a12 − 2a10m2 + a8m2 + a8m4 − 2m4a6

+ a4m4 + 2a4m2 − 2a2m2 + a10 − a6 + a6m2 − a4 + 1)/a4.

83 is represented by w = (σ−1
12 )

4(σ1
22)

3(σ−1
11 ). So,

[f(a,m) g(a,m) h(a,m)] = [(a6−a4m2+2a2m2−m2)/a2,m(a2−1)/a3, 0].

Therefore, P (83) = (a8 − a6m2 + 2a4m2 − a2m2 − a4 + 1)/a4.

Now, we know that

P (41#83) = (m2−a2−1−a−2)(a8−a6m2+2a4m2−a2m2−a4+1)/a4.

This implies that P (K3) ̸= P (K4) = P (41#83).
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