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BILINEAR INTEGRATION AND APPLICATIONS TO
OPERATOR AND SCATTERING THEORY

BRIAN JEFFERIES

ABSTRACT. We show how to integrate operator valued
functions with respect to a spectral or orthogonally scattered
measure. Such measures typically have a variation which has
either the value zero or infinity on any set and cannot there-
fore be treated by the approaches of Bartle or Dobrakov.
Bilinear integrals of this type arise from trace class operators
between Banach function spaces and in the connection be-
tween stationary-state scattering theory and time-dependent
scattering theory in Hilbert space.

1. Introduction. In a fundamental work of mathematical physics
[1], Amrein, Georgescu and Jauch establish the connection between
stationary-state scattering theory and time-dependent scattering the-
ory by appealing to an interchange in the order of certain operator
valued integrals. The study of bilinear integration originated with the
work of Bartle [2], but in the foundational paper [1] on the connection
between the two approaches to quantum scattering, the integrals were
defined as a type of operator valued Riemann integral because they do
not fit into Bartle’s scheme as described in [6, Chapter II], or even
more sophisticated later approaches to bilinear integration [7, 8]. The
essential difficulty may be described as follows.

Suppose that (H, (· | ·)) is a Hilbert space and P : B(R) → L(H)
is the spectral measure associated with a selfadjoint operator A :
D(A) → H with domain D(A). By this, we mean that P has values in
the bounded selfadjoint projection operators and is σ-additive for the
strong operator topology of L(H), P (R) = Id, P (A ∩B) = P (A)P (B)
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for every A,B ∈ B(R) and the identity

(1.1) A =

∫
R
λ dP (λ)

is valid [19]. The unique spectral measure P satisfying (1.1) is concen-
trated on the spectrum σ(A) ⊆ R of the selfadjoint operator A, that
is, P (B) = 0 for every Borel subset B of R disjoint from σ(A). For
any vector h ∈ H and pairwise disjoint Borel subsets B1, B2, . . . of R
we have

∥P (∪∞
n=1Bn)h∥2H =

(
P (∪∞

n=1Bn)h
∣∣P (∪∞

n=1Bn)h
)

=
∞∑

n,m=1

(
P (Bn)h

∣∣P (Bm)h
)

=
∞∑

n,m=1

(
P (Bn ∩Bm)h

∣∣h)
=

∞∑
n=1

∥P (Bn)h∥2H.

Hence, the H-valued measure Ph : B 7→ P (B)h, B ∈ B(R), necessarily
has finite 2-variation.

On the other hand, the L2([0, 1])-valued measure m : B 7→ χ
B,

B ∈ B([0, 1]), has the property that

∞∑
n=1

∥m((1/(n+ 1), 1/n])∥2 =

∞∑
n=1

1√
n(n+ 1)

= ∞,

so that m has infinite variation in L2([0, 1]). It is not hard to see that
the variation V (m) : B(R) → [0,∞] of m defined by

V (m)(B) = sup
P∈Π(B)

∑
E∈P

∥m(E)∥2

has values that are either zero or infinity. Here Π(B) denotes the set
of all finite partitions of B into Borel sets.

The L2([0, 1])-valued measure m is equal to Q1 for the spectral
measure Q : B(R) → L(L2([0, 1])) such that Q(B) is the selfadjoint
projection operator h 7→ χ

B · h, h ∈ L2([0, 1]), for each B ∈ B(R)
and 1 is the constant function on the interval [0, 1] equal to 1. The
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spectral measure Q is the spectral measure of the position operator of
a quantum particle on a line. Any spectral measure P in a Hilbert
space H is unitarily equivalent to a spectral measure like Q, so like the
vector measure m, the variation V (Ph) will have values that are either
zero or infinity for h ∈ H, except in trivial cases.

In scattering theory [1], there is an operator valued function f :
R+ × R → L(H) and a selfadjoint spectral measure P : B(R) → L(H)
with respect to which it is necessary to establish the equality of the
integrals ∫ ∞

0

(∫
R
f(t, σ) d(Ph)(σ)

)
dt

and ∫
R

(∫ ∞

0

f(t, σ) dt

)
d(Ph)(σ)

for any vector h ∈ H. Denote the Lebesgue measure on R by λ. Using
Fubini’s strategy, our aim is to prove their equality with the integral∫

R+×R
f d(λ⊗ (Ph)).

The measure λ⊗(Ph) : C×B 7→ λ(C)(Ph)(B), B ∈ B(R), C ∈ Bf (R+)
(Borel subsets of R+ with finite Lebesgue measure) is H-valued and
the values of the operator valued function f : R+ × R → L(H) act on
the values of the H-valued measure λ ⊗ (Ph)–here lies the pervasive
difficulty, even in Hilbert space.

Now let us consider the abstract setting in which (Ω,S) is a mea-
surable space and X,Y Banach spaces. A σ-additive map m : S → X
is called an X-valued vector measure, that is, for all pairwise disjoint
sets Bn ∈ S, n = 1, 2, . . ., the sum

∑∞
n=1m(Bn) converges in the norm

of X and

m

( ∞∪
n=1

Bn

)
=

∞∑
n=1

m(Bn).

Given an operator valued function f : Ω → L(X,Y ), leaving measura-
bility conditions aside for the moment, we wish to consider the integral∫
Ω
f dm ∈ Y in generality sufficient to treat scattering theory.
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For an element y∗ ∈ Y ∗ of the space Y ∗ dual to Y , the X∗-valued
function y∗ ◦ f : Ω → X∗ is defined by

⟨x, (y∗ ◦ f)(ω)⟩ = ⟨f(ω)x, y∗⟩, x ∈ X, ω ∈ Ω.

It is reasonable to expect that the identity⟨∫
Ω

f dm, y∗
⟩

=

∫
Ω

⟨
y∗ ◦ f, dm

⟩
ought to hold for each y∗ ∈ Y ∗, in which the right-hand side is the
integral of the X∗-valued function y∗ ◦ f acting on the range of the X-
valued measure m. However, the total variation V (m)(Ω) of m satisfies
the equation

V (m)(Ω) = sup
∥s∥∞≤1

∫
Ω

⟨s, dm⟩

by the Hahn-Banach theorem. The supremum is taken over all X∗-
valued S-simple functions s =

∑n
k=1 x

∗
k
χ
Bk

with ∥x∗k∥ ≤ 1 and pairwise
disjoint Bk ∈ S for k = 1, . . . , n and n = 1, 2, . . ., where∫

Ω

⟨s, dm⟩ =
n∑
k=1

x∗k(m(Bk)).

As mentioned above, in the case that m = Ph for a spectral measure
P , the variation V (m) may have only the values 0 and ∞. Because
there may be so few sets on which m has finite variation, neither of the
approaches [2] nor [7] is applicable to m.

For spectral measures and their application to scattering theory, we
may instead adopt the features outlined in [13] concerning bilinear
integration in tensor products. In this approach, we may consider∫
Ω
f ⊗ dm ∈ L(X,Y )⊗̂τX for some suitable tensor product topology τ

for which the product map J : L(X,Y )⊗X → Y defined by

J

( n∑
j=1

Tj ⊗ xj

)
=

n∑
j=1

Tjxj

has a continuous extension Ĵ from some completion L(X,Y )⊗̂τX into
Y . Then we may define

(1.2)

∫
Ω

f dm := Ĵ

(∫
Ω

f ⊗ dm

)
.
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For an L(X,Y )-valued S-simple function f =
∑n
k=1 Tk

χ
Bk

, we have∫
Ω

f dm := Ĵ

(∫
Ω

f ⊗ dm

)
=

n∑
k=1

Tk(m(Bk)) ∈ Y.

The choice of the tensor product topology τ needs to be adapted to the
problem at hand. For example, the projective tensor product norm is
given by

∥u∥π = inf

{ n∑
j=1

∥Tj∥ · ∥xj∥ : u =

n∑
j=1

Tj ⊗ xj

}
.

Every element u ∈ L(X,Y )⊗̂πX has a representation

u =

∞∑
j=1

Tj ⊗ xj , Tj ∈ L(X,Y ), xj ∈ X, j = 1, 2, . . . ,

with
∞∑
j=1

∥Tj∥ · ∥xj∥ <∞

[22, III.7], so that Ĵu =
∑∞
j=1 Tjxj ∈ Y .

Now we look at a number of concrete examples in operator and
probability theory where the phenomenon under consideration arises.

Example 1.1. Let Y = R and X = L1([0, 1]). Lebesgue measure
on [0, 1] is denoted by λ. Let φ : [0, 1] × [0, 1] → R be a real valued
measurable function and m(B) = χ

B for every B ∈ B([0, 1]). We
suppose that, for almost every s ∈ [0, 1], the function t 7→ φ(s, t),
t ∈ [0, 1], is essentially bounded, that is, there exists Ms > 0 such that
|φ(s, t)| ≤Ms for almost every t ∈ [0, 1]. Moreover, if

Kφ = ess sup
t∈[0,1]

∫ 1

0

|φ(s, t)| ds <∞,

then the linear map Tφ : ψ 7→
∫ 1

0
φ(·, t)ψ(t) dt, ψ ∈ L1([0, 1]), is a

bounded linear operator on L1([0, 1]), because by the Fubini-Tonelli
theorem, we have

∥Tφψ∥1 ≤
∫ 1

0

∫ 1

0

|φ(s, t)||ψ(t)| dt ds
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=

∫ 1

0

(∫ 1

0

|φ(s, t)| ds
)
|ψ(t)| dt

≤ Kφ∥ψ∥1

for every ψ ∈ L1([0, 1]). According to [5, Theorem II.2.12], a weakly
compact linear map acting on L1([0, 1]) is representable. For example,
the identity map on L1([0, 1]) is not representable because it has the
distribution δ(s − t) as its kernel. The representability of operators
defined on Lp-spaces is discussed in detail in the papers [21].

Suppose that Kφ < ∞ and let Φφ : [0, 1] → L∞([0, 1]) be the
function defined by Φφ(s) = [φ(s, ·)] for almost all s ∈ [0, 1] (in [21], Φφ
is called the Halmos function associated with φ). We assume that Φφ(s)
is zero for those s ∈ [0, 1] where φ(s, ·) is not essentially bounded. Here
[ψ] denotes the collection all functions equal to the measurable function
ψ almost everywhere on [0, 1]. Because m : B([0, 1]) → L1([0, 1]) and

L∞([0, 1]) = L1([0, 1])∗, the bilinear integral
∫ 1

0
Φφ dm is a real number.

For any product A = B×C in [0, 1]2 = [0, 1]× [0, 1] of Borel subsets
B,C of [0, 1], the equality∫ 1

0

ΦχA
dm = ⟨χB, χC⟩ = λ(B ∩ C)

holds and, for any simple function s on [0, 1]2 based on product sets,
the equality ∫ 1

0

Φs dm =

∫ 1

0

s(t, t) dt

is valid. Because V (m) = λ, if Φφ is strongly λ-measurable in
the Banach space L∞([0, 1]), then there exist simple functions sn,
n = 1, 2, . . ., based on product sets such that Φsn → Φφ λ almost
everywhere in L∞([0, 1]) and with φ(t, t) = limn→∞ sn(t, t), almost
everywhere ∫ 1

0

Φφ dm = lim
n→∞

∫ 1

0

Φsn dm =

∫ 1

0

φ(t, t) dt.

The left hand side of the equation is defined in the manner of Bartle
[2], [6, Section 8] or Dobrakov [7]. The result applies to the case where
the integral kernel φ is continuous almost everywhere in [0, 1]2.
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Hence, a bounded linear operator Tφ : L1([0, 1]) → L1([0, 1]) with

integral kernel φ for which the bilinear integral
∫ 1

0
Φφ dm exists, may be

viewed as a generalized “trace class” operator on L1([0, 1]). If Lebesgue
measure on [0, 1] is replaced by counting measure on a finite index set
J ⊂ [0, 1], then ∫ 1

0

Φφ dm =
∑
j∈J

φ(j, j)

is just the trace of the matrix {φ(j, k)}j,k∈J .

In the simple case of the Volterra integral operator Tφ : L1([0, 1]) →
L1([0, 1]) with (Tφf)(s) =

∫ s
0
f(t) dt, f ∈ L1([0, 1]), 0 ≤ s ≤ t, the

integral kernel is given by

φ(s, t) =

{
1, if t ≤ s,
0, if t > s,

so that Φφ(s) = χ
[0,s]. The function Φφ is not essentially separably

valued in L∞([0, 1]), so it is not strongly λ-measurable in L∞([0, 1]) and∫ 1

0
Φφ dm cannot be defined in the sense of [2, 7]. Using Definition 2.2

below, the value
∫ 1

0
Φφ dm = 1

2 is obtained in [11].

Linear operators lying in the image of the projective tensor product
L1([0, 1])⊗̂πL∞([0, 1]) in L(L1([0, 1])) are called nuclear operators on
L1([0, 1]) in the terminology of Grothendieck [22, III.7]. Such operators
are represented as Tφ with φ given by

[φ] =
∞∑
j=1

ψj ⊗ ϕj ,

and

∞∑
j=1

∥ψj∥1∥ϕj∥∞ <∞.

Then Φφ is m-integrable, and

tr (Tφ) =
∞∑
j=1

⟨ψj , ϕj⟩ =
∫ 1

0

Φφ dm =

∫ 1

0

φ(t, t) dt.
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Note that, if Φφ̃ is strongly λ-measurable in L∞([0, 1]) and φ̃ = φ
almost everywhere on [0, 1]2, then Φφ̃ = Φφ almost everywhere by

Fubini’s theorem and
∫ 1

0
φ̃(t, t) dt =

∫ 1

0
φ(t, t) dt, although the diagonal

{(t, t) : t ∈ [0, 1]} is a set of measure zero in [0, 1]2.

In the next example, we must deal with the situation in which the
vector measure m has infinite variation.

Example 1.2. Let Y = R, 1 < p < ∞ and X = Lp([0, 1]). Let
φ : [0, 1]×[0, 1] → R be a measurable function andm(B) = χ

B for every
B ∈ B([0, 1]). We suppose that, for almost every s ∈ [0, 1], the function
t 7→ φ(s, t), t ∈ [0, 1], is an element of Lq([0, 1]) for 1/p+1/q = 1, that
is, there exists an Ms > 0 such that∫ 1

0

|φ(s, t)|q dt ≤Mq
s

for almost every s ∈ [0, 1]. Suppose that

Tφ : ψ 7−→
∫ 1

0

φ(·, t)ψ(t) dt,

ψ ∈ Lp([0, 1]), is a bounded linear operator on Lp([0, 1]) and Φφ(s) =
[φ(s, ·)] as above.

If the bilinear integral ∫ 1

0

Φφ dm

existed, we would still expect Tφ to be a type of “trace class” operator,
see [17]. Recall that a bounded linear operator T on a separable Hilbert
spaceH is called trace class if, for any (some) orthonormal basis ⟨ej⟩j∈N
of H, we have

∞∑
j=1

|(Tej , ej)| <∞.

If T is a selfadjoint trace class operator, then T is compact and the set

σ(T ) = {tj : j = 1, 2, . . .}
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of real eigenvalues of T satisfies∑
j∈N

|tj | <∞,

and
tr (T ) =

∑
j∈N

tj

is the trace of T . For example, in the case p = 2, the equality

(1.3) tr(Tφ) =
∞∑
j=1

(Tφψj , ψj) =

∫ 1

0

Φφ dm =

∫ 1

0

φ(t, t) dt

should hold for any orthonormal basis ψ1, ψ2, . . . of L
2([0, 1]) whenever∫ 1

0

Φφ dm

exists.

Unfortunately, for every 1 < p < ∞, the variation V (m) of the Lp-
valued measure m only has values 0 and ∞, so neither of the bilinear
integrals described in [2] nor [7] is applicable in the present context.

According to a result of Grothendieck, the image of the projective
tensor product L2([0, 1])⊗̂πL2([0, 1]) in L(L2([0, 1])) coincides with the
space of trace class operators [22, III.7]. The more familiar example of
the image of the Hilbert space tensor product L2([0, 1])⊗̂2L

2([0, 1]) in
L(L2([0, 1])) coincides with the space of Hilbert-Schmidt operators Tφ
with ∫ 1

0

∫ 1

0

|φ(s, t)|2 ds dt <∞.

In [13, Proposition 4.2], it was shown that the bilinear integral∫ 1

0

Φφ ⊗ dm

converges in L2([0, 1])⊗̂πL2([0, 1]) if and only if Tφ is a trace class
operator on L2([0, 1]). It follows that equation (1.3) is valid for p = 2,
provided that we interpret the bilinear integral∫ 1

0

Φφ dm
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as

J

(∫ 1

0

Φφ ⊗ dm

)
for the product map J : L2([0, 1])⊗̂πL2([0, 1]) → C defined by

J [u] =
∞∑
j=1

(ψj |ϕj),

for [u] =
∑∞
j=1 ψj ⊗ ϕj and

∑∞
j=1 ∥ψj∥2∥ϕj∥2 < ∞. For any function

v equal to
∑∞
j=1 ψj ⊗ ϕj wherever the sum converges, it follows that

∫ 1

0

|v(t, t)| dt ≤
∞∑
j=1

∫ 1

0

|ψj(t)ϕj(t)| dt ≤
∞∑
j=1

∥ψj∥2∥ϕj∥2

by the Cauchy-Schwarz inequality and the trace of Tφ is well defined.

The next example arises from the theory of stochastic processes
but exhibits features similar to integration with respect to spectral
measures.

Example 1.3. Let λ denote Lebesgue measure on [0, 1]. Suppose that
(Ω,S,P) is a probability measure space and m : B([0, 1]) → L2(P) is a
Gaussian random measure with mean zero and variance λ. By this, we
mean that m is a vector measure such that, for every finite collection
B1, . . . , Bn, n = 1, 2, . . ., of pairwise disjoint Borel subsets of [0, 1], the
random variables m(B1), . . . ,m(Bn) are independent, and for every
B ∈ B([0, 1]), the element m(B) of L2(P) is a real Gaussian random
variable with mean zero and variance E(m(B)2) = λ(B). Then, for all
pairwise disjoint Borel subsets B1, B2, . . . of [0, 1], we have

∞∑
j=1

∥m(Bj)∥22 =
∞∑
j=1

λ(Bj) = λ

( ∞∪
j=1

Bj

)
,

so that m has finite 2-variation. Because ∥m(B)∥2 =
√
λ(B) for every

B ∈ B([0, 1]), the variation V (m) ofm only has values zero and infinity.
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If X : [0, 1] × Ω → E is an adapted process with values in a UMD
Banach space E, then there exists c > 0 such that

c−1

∥∥∥∥ ∫ 1

0

X dm

∥∥∥∥
L2(P,E)

≤
∥∥∥∥ ∫ 1

0

X ⊗ dm

∥∥∥∥
L2(P⊗P,E)

≤ c

∥∥∥∥ ∫ 1

0

X dm

∥∥∥∥
L2(P,E)

.

When the stochastic integral ∫ 1

0

X dm

exists in L2(P, E), then it may be represented as∫ 1

0

X dm = Ĵ

∫ 1

0

X ⊗ dm,

where J : L0(P, E)⊗ L0(P) → L0(P, E) is the product map(
J(f ⊗ g)

)
(ω) = f(ω)g(ω), f ∈ L0(P, E),

g ∈ L0(P), ω ∈ Ω,

defined on the space L0(P, E) of strongly P-measurable E-valued func-
tions with the topology of convergence in probability in E. By restrict-
ing J to the linear space

X =

{∫ 1

0

X ⊗ dm : X is simple and adapted

}
,

and taking its continuous extension from the closure XL2(P⊗P,E)
of X

in L2(P ⊗ P, E) into L2(P, E), we obtain the continuous linear map Ĵ
above, see [10] for the details.

The examples show that the bilinear integral (1.2) arises naturally
in operator theory on Hilbert space. We shall first consider the
situation for general Banach spaces in Section 2. In Theorem 2.3,
we obtain an analogue of Fubini’s theorem for bilinear integrals by
a simple application of the scalar case. Trace class operators on a
Banach function space are considered in Example 1.2. The bilinear
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trace features in the proof of the Cwikel-Lieb-Rosenblum inequality for
dominated semigroups in quantum physics [12].

A toy example of quantum scattering theory from [10, Section 4] is
considered in Example 2.5, where only approximation in the uniform
operator norm is needed. The example shows the need for a deeper
analysis in order to treat unbounded selfadjoint operators.

In Section 3, some results concerning different notions of measura-
bility of operator valued functions are gathered. Measurability in the
strong operator topology arises most in applications, but it is not a
metrizable topology. The strong operator analogue of Pettis’s measur-
ability theorem [5, Theorem II.1.2] is given in Theorem 3.5. It does
not seem to be in the literature.

Stationary-state and time-dependent approaches to quantum scat-
tering are related by the application of a type of Fubini theorem for
bilinear integrals in Hilbert space. The auxiliary Banach space E is
constructed in Section 4, and Theorem 4.5 gives a general result on the
interchange of integrals relevant to scattering theory, improving on the
results of [9]. The proof of integrability in E requires certain technical
facts concerning projective tensor products due to Grothendieck [22,
Section III.6].

2. Bilinear integration. Let X,Y be Banach spaces. A locally
convex space E is said to be bilinear admissible for X,Y if

(a) E contains the vector space L(X,Y )⊗X as a dense subspace,
(b) the composition map J : L(X,Y )×X → Y defined by

J(T, x) = Tx, T ∈ L(X,Y ), x ∈ X,

has a continuous linear extension from L(X,Y ) ⊗ X to E, also
denoted by J .

(c) For x ∈ X, x∗ ∈ X∗ and y∗ ∈ Y ∗, the linear functional defined by

x⊗ y∗ ⊗ x∗ : T ⊗ u 7−→ ⟨Tx, y∗⟩⟨u, x∗⟩,
T ∈ L(X,Y ), u ∈ X,

is continuous on L(X,Y )⊗X for the relative topology of E.
(d) The family of all linear functionals x⊗ y∗ ⊗ x∗ for x ∈ X, x∗ ∈ X∗

and y∗ ∈ Y ∗ separates points of E.
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If Y = X, then we merely say E is bilinear admissible for X. If τ is a
completely separating tensor product topology [13] on L(X,Y ) ⊗ X,
then we may take E = L(X,Y )⊗̂τX, the completion of the linear
space L(X,Y ) ⊗ X in the locally convex topology τ . Sometimes the
quasicompletion [15, subsection 23.1] is taken.

Remark 2.1. If the Banach space X has the approximation property
[22, Section III.9], then X ⊗ X∗ separates points of the projective
tensor product X∗⊗̂πX [16, subsection 43.2 (12)], and this is precisely
the property needed to define the trace of a nuclear operator on X [17].
In Example 1.2, the separation property is what we need to define the
generalized trace ∫ 1

0

Φφ dm

when X is a Banach function space such as Lp([0, 1]), 1 ≤ p <∞.

Definition 2.2. Suppose that the locally convex space E is bilinear
admissible for the Banach spaces X and Y . Let (Ω,S) be a measurable
space. A function f : Ω → L(X,Y ) is said to be m-integrable in E for
a vector measure m : S → X, if for each x ∈ X, x∗ ∈ X∗, y∗ ∈ Y ∗, the
scalar function ⟨fx, y∗⟩ is integrable with respect to the scalar measure
⟨m,x∗⟩ and, for each S ∈ S, there exists an element (f ⊗m)(S) of E
such that

(2.1) ⟨(f ⊗m)(S), x⊗ y∗ ⊗ x∗⟩ =
∫
S

⟨fx, y∗⟩ d⟨m,x∗⟩

for every x ∈ X, x∗ ∈ X∗ and y∗ ∈ Y ∗.

If f is m-integrable in E, then fm(S) ∈ Y is defined for each S ∈ S
by

fm(S) = J
(
(f ⊗m)(S)

)
.

We also denote fm(S) by ∫
S

f dm

or ∫
S

f(ω) dm(ω).



202 BRIAN JEFFERIES

In the case where X is the set of scalars, fm is the indefinite (Pettis)
integral of a Y -valued function with respect to a scalar measure m.
We shall use the term Bochner integral to distinguish the stronger
integration process when f is approximated in the norm of Y , see
Section 3.

Because the linear space X ⊗ Y ∗ ⊗ X∗ separates points of E, the
vector (f ⊗ m)(S) ∈ E is well defined for each S ∈ S. The same
definition is adopted if S is generated by the δ-ring S0 and m : S0 → X
is a vector measure on S0. Definition 2.2 facilitates a simple version of
Fubini’s theorem in the operator context.

Theorem 2.3. Suppose that the locally convex space E is bilinear
admissible for the Banach spaces X and Y . Let (Ω,S) be a measurable
space and (Γ, E , µ) a σ-finite measure space, and m : S → X a vector
measure.

Suppose that f : Ω× Γ → L(X,Y ) is m⊗ µ-integrable in E. If

(i) for m-almost all ω ∈ Ω, the L(X,Y )-valued function f(ω, ·) is
µ-integrable, and

(ii) for µ-almost all γ ∈ Γ, the L(X,Y )-valued function f(·, γ) is m-
integrable in E,

then the function

ω 7−→
∫
Γ

f(ω, γ) dµ(γ)

is m-integrable in E, the function

γ 7−→
∫
Ω

f(ω, γ) dm(ω)

is integrable in L(X,Y ) with respect to µ, and the equalities∫
Ω×Γ

f d(m⊗ µ) =

∫
Ω

(∫
Γ

f(ω, γ) dµ(γ)

)
dm(ω)

=

∫
Γ

(∫
Ω

f(ω, γ) dm(ω)

)
dµ(γ).

hold.
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Proof. Let

Φ(ω) =

∫
Γ

f(ω, γ) dµ(γ)

for all ω ∈ Ω for which f(ω, ·) is µ-integrable and Φ(ω) = 0 otherwise.
For each x ∈ X, y∗ ∈ Y ∗, x∗ ∈ X∗ and S ∈ S, we have

⟨Φ(ω)x, y∗⟩ =
∫
Γ

⟨f(ω, γ)x, y∗⟩ dµ(γ),

so that∫
S

⟨Φ(ω)x, y∗⟩ d⟨m,x∗⟩ =
∫
S

(∫
Γ

⟨f(ω, γ)x, y∗⟩ dµ(γ)
)
d⟨m,x∗⟩

=
⟨(
f ⊗ (m⊗ µ)

)
(S × Γ), x⊗ y∗ ⊗ x∗

⟩
by the scalar version of Fubini’s theorem. It follows that Φ is m-
integrable in E and∫

S

Φ(ω)⊗ dm(ω) = f ⊗ (m⊗ µ)
)
(S × Γ);

hence,∫
Ω

Φ(ω) dm(ω) = J
(
f ⊗ (m⊗ µ)

)
(Ω× Γ)

)
=

∫
Ω×Γ

f d(m⊗ µ).

A similar appeal to the scalar version of Fubini’s theorem applies to
the other iterated integral. �

Because we are dealing with vector valued integrals, the existence
of integrals (i) and (ii) almost everywhere is not ensured by the
integrability of f with respect to the product measure m⊗ µ.

Example 2.4. Let (Ω,S, µ) be a finite measure space. The space of
all µ-equivalence classes of S-measurable scalar functions is denoted by
L0(µ). It is equipped with the topology of convergence in µ-measure
and vector operations pointwise µ-almost everywhere. Any Banach
space X that is a subspace of L0(µ) with the properties that

(i) X is an order ideal of L0(µ), that is, if g ∈ X, f ∈ L0(µ) and
|f | ≤ |g| µ almost everywhere, then f ∈ X, and

(ii) if f, g ∈ X and |f | ≤ |g| µ almost everywhere, then ∥f∥X ≤ ∥g∥X ,
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is called a Banach function space (based on (Ω,S, µ)). We suppose that
X contains constant functions and m : S 7→ χ

S , S ∈ S, is σ-additive
in X, for example, X is σ-order continuous, see [18, Corollary 3.6]. If
X is reflexive and µ is non-atomic, then it follows from [18, Corollary
3.23] that the values of the variation V (m) of m are either zero or
infinity.

Suppose that φ : Ω × Ω → C is a jointly measurable function and
Tφ : X → X is a bounded linear operator such that

Tφf =

∫
Ω

φ(·, t)f(t) dµ(t)

for a dense set of f ∈ X. Suppose also that Φφ(s) = [φ(s, ·)] ∈ X∗ for
µ-almost all s ∈ Ω, that is, there exists Ks > 0 such that∣∣∣∣ ∫

Ω

φ(s, t)f(t) dµ(t)

∣∣∣∣ ≤ Ks∥f∥X , f ∈ X.

A bounded operator Tφ for which there exists a bilinear (X,C∗)-
admissible space E such that Φφ is m-integrable in E, is a type of
generalized trace class operator and∫

Ω

Φφ dm = J

∫
Ω

Φφ ⊗ dm

is the trace of Tφ. For example, if X has the approximation property

[22, Section III.9] and E = X∗⊗̂πX, then Tφ is a nuclear operator and∫
Ω

Φφ dm

is actually the trace of Tφ [17]. There are closed subspaces of ℓp,
1 ≤ p < ∞, p ̸= 2, without the approximation property. Other
examples of E-traces are given in [11].

As mentioned in Example 1.1, the value∫ 1

0

Φφ dm =
1

2

is obtained in [11] for the Volterra integral operator Tφ on L2([0, 1])
with a careful choice of the auxiliary space E. The Volterra integral
operator is Hilbert-Schmidt but not trace class on L2([0, 1]). The
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bilinear integral ∫ 1

0

Φφ dm

is a type of singular integral because the diagonal {(t, t) : t ∈ [0, 1]}
has measure zero in [0, 1]2, so that the integral∫ 1

0

φ(t, t) dt

is not well defined for a general integral kernel φ associated with the
operator Tφ. The auxiliary space E determines the averaging process
of φ around the diagonal, and the density of the measure

A 7−→
∫
A

Φφ dm, A ∈ B([0, 1]),

with respect to Lebesgue measure represents the average t 7→ φ̃(t, t) of
φ around the diagonal.

The second basic example from [10, Section 4] is relevant to the
connection between stationary-state and time-dependent scattering
theory [1] where H0 represents the free Hamiltonian operator and
V represents an interaction potential. Attention is first restricted to
bounded operators.

Example 2.5. Let (H, (· | ·)) be a separable Hilbert space. Suppose
H0 and V are bounded selfadjoint operators. Then H = H0 +V is also
a bounded selfadjoint operator, and the function fϵ : R+ × R → L(H)
defined for ϵ > 0 by

fϵ(t, σ) = eitHV e−i(σ−iϵ)t

for t ≥ 0 and σ ∈ R is uniformly bounded in L(H). Let P be
the spectral measure associated with the selfadjoint operator H0 and
h ∈ H. Lebesgue measure on R+ is denoted by λ. We would like to
verify the identities

∫
R+×R

fϵ(t, σ)d(λ⊗ (Ph))(t, σ) =

∫ ∞

0

e−ϵteitHV e−itH0h dt

(2.2)
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=

∫
R

(∫ ∞

0

e−ϵteitHV e−itσ dt

)
d(Ph)(σ)(2.3)

that help to establish the connection between stationary-state and
time-dependent scattering theory in the case of unbounded selfadjoint
operators H0 and V [1]. The H-valued measure λ ⊗ (Ph) : S → H is
given by

λ⊗ (Ph)(A×B) = λ(A)(Ph)(B), A ∈ Bf (R+), B ∈ B(R).

Here Bf (R+) is the collection of Borel subsets of R+ with finite
Lebesgue measure and S is the δ-ring generated by the collection
{A × B : A ∈ Bf (R+), B ∈ B(R)} of product sets in R+ × R. We
check that the projective tensor product

E = L(H)⊗̂πH

of H and L(H) with the uniform operator norm is bilinear admissible
for H and fϵ is (λ ⊗ (Ph))-integrable in E, with the appropriate
modification for integration with respect to a vector measure defined on
a δ-ring. Because a Hilbert space H necessarily has the approximation
property [22, Section III.9], H ⊗ H ⊗ H separates points of E [16,
subsection 43.2 (12)].

Let B(t) = {σ : (t, σ) ∈ B} be the section at t ≥ 0 of the Borel
subset B of R+ × R. We check that the function

ΦBϵ : t 7−→ e−ϵt
(
eitHV

)
⊗
(
e−itH0P (B(t))h

)
, t ≥ 0,

is Bochner integrable in E. The function t 7→ P (B(t))h, t ≥ 0, is
strongly measurable so by Lusin’s theorem on each interval [0, T ], there
exists a Borel set Σ of arbitrarily large measure on which it is continuous
in H. Then ΦBϵ is continuous in E on Σ because H and H0 are assumed
to be bounded selfadjoint operators so that the unitary groups eitH

and e−itH0 , t ∈ R, are continuous for the uniform operator topology.
Consequently, ΦBϵ is strongly measurable in E. Because∫ ∞

0

∥ΦBϵ ∥E dt ≤
∫ ∞

0

e−ϵt
∥∥eitHV ∥∥ ·

∥∥e−itH0P (B(t))h
∣∣ dt

≤ ∥V ∥∥h∥
ϵ

,
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it follows that Φϵ is Bochner integrable in E. For every u, v, w ∈ H, we
have⟨∫ ∞

0

ΦBϵ dt, u⊗ v ⊗ w

⟩
=

∫ ∞

0

e−ϵt
(
eitHV u

∣∣v)(e−itH0P (B(t))h
∣∣w) dt

=

∫
B

⟨fϵ(t, σ), u⊗ v⟩ d
(
λ⊗

(
(Ph)

∣∣w)) (t, σ).
According to Definition 2.2, the function fϵ is (λ⊗ (Ph))-integrable in
E and, for every Borel subset B of R+ × R, we have∫

B

fϵ d(λ⊗ (Ph)) =

∫ ∞

0

ΦBϵ dt.

Furthermore, for each t ≥ 0, the L(H)-valued function fϵ(t, ·) is (Ph)-
integrable in E the vector measure Ph and, for each B ∈ B(R), we
have ∫

B

fϵ(t, σ)⊗ d(Ph) = e−ϵteitHV ⊗ e−itH0P (B)h ∈ E,

so that ∫
R
fϵ(t, σ) d(Ph)(σ) = J

∫
R
fϵ(t, σ)⊗ d(Ph)

= e−ϵteitHV e−itH0h.

For each σ ∈ R, the function fϵ(·, σ) is Bochner integrable for the
uniform norm of L(H) and the L(H)-valued function

σ 7−→
∫ ∞

0

fϵ(t, σ) dt, σ ∈ R,

is (Ph)-integrable in E. For every Borel subset C of R, we have∫
C

(∫ ∞

0

fϵ(t, σ) dt

)
d(Ph) = J

∫ ∞

0

ΦR+×C
ϵ dt.

The scalar version of Fubini’s theorem and the assumption that H ⊗
H ⊗ H separates points of the bilinear admissible space E ensure the
identity∫

R

(∫ ∞

0

fϵ(t, σ) dt

)
d(Ph) =

∫ ∞

0

(∫
R
fϵ(t, σ) d(Ph)

)
dt

relevant to scattering theory.
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We can still make sense of Example 2.5 if H0 and V are unbounded
operators, but it is clear that the auxiliary space E = L(H)⊗̂πH will
no longer suffice, because the unitary groups eitH and e−itH0 , t ∈ R,
are only continuous for the strong operator topology–it is too much
to expect that the function ΦBϵ defined in the example above will
be Bochner integrable in the Banach space L(H)⊗̂πH. We first need
to consider the approximation of L(H)-valued functions in the strong
operator topology.

3. Measurability for operator valued functions. If the linear
map H0 : D(H0) → H is an unbounded selfadjoint operator with
domain D(H0) in a separable Hilbert space H, then the unitary group
e−itH0 , t ∈ R, is only continuous for the strong operator topology,
so we have to approximate operator valued functions formed from
t 7→ e−itH0 in the strong operator topology rather than the uniform
operator topology.

The space Ls(H) of linear operators on H with the strong operator
topology, or the topology of simple convergence, is a locally convex
Hausdorff space whose topology is given by the fundamental family of
seminorms ph : T 7→ ∥Th∥H, T ∈ L(H), for h ∈ H. Measurability in
such locally convex spaces can be treated by the methods of Saab [20]
and Chi [4]. We shall spell out the arguments explicitly in the context
of L(X,Y ) with X and Y Banach spaces and X is separable. Then
bounded absolutely convex subsets of Ls(X,Y ) are metrizable in the
relative strong operator topology.

Let (Ω,S, µ) be a σ-finite measure space. An S-measurable function
is called simple if it has finitely many values. A function f : Ω → E
with values in a Banach space E is said to be strongly µ-measurable if
it is the limit µ-almost everywhere of E-valued S-simple functions.

A strongly µ-measurable function f : Ω → E is Bochner µ-integrable
in E if and only if ∫

Ω

∥f(ω)∥E dµ(ω) <∞.

Equivalently, there exist E-valued S-simple functions sj , j = 1, 2, . . .,
converging to f µ almost everywhere such that∫

Ω

∥sj − sk∥E dµ −→ 0 as j, k → ∞.



BILINEAR INTEGRATION 209

Then ∫
B

f dµ = lim
n→∞

∫
B

sn dµ

for each B ∈ S. In particular, f is Pettis µ-integrable, and the integrals
agree [5, Definition II.3.2]. The space L1(µ,E) of equivalence classes
[f ] of E-valued Bochner µ-integrable functions is a Banach space with
the norm

∥[f ]∥1 =

∫
Ω

∥f∥ dµ.

Definition 3.1. Let (Ω,S, µ) be a σ-finite measure space and X,Y
Banach spaces. The linear space of all bounded linear operators from
X to Y with the topology of strong convergence is written as Ls(X,Y ).

(a) A function f : Ω → L(X,Y ) is said to be scalarly µ-measurable
in L(X,Y ) if and only if, for every x ∈ X, y∗ ∈ Y ∗, the scalar
function ⟨fx, y∗⟩ : ω 7→ ⟨fx, y∗⟩, ω ∈ Ω, is µ-measurable.

(b) A function f : Ω → L(X,Y ) is said to be strongly µ-measurable
in Ls(X,Y ) if and only if there exist L(X,Y )-valued S-simple
functions sj , j = 1, 2, . . ., converging to f µ almost everywhere
in the strong operator topology of L(X,Y ).

(c) A function f : Ω → L(X,Y ) is said to be uniformly µ-measurable
in L(X,Y ) if and only if there exist L(X,Y )-valued S-simple
functions sj , j = 1, 2, . . ., converging to f µ almost everywhere
in the uniform operator topology on L(X,Y ).

In Example 2.5, we dealt with operator valued functions which are
λ-measurable in the uniform operator norm of L(X,Y ) with respect to
Lebesgue measure λ on R+. In practical applications, such measura-
bility is too much to expect. Additional information about spaces of
operator valued functions may be found in [3].

Example 3.2. In general, the notions (a), (b) and (c) of measur-
ability of an operator valued function f : Ω → L(X,Y ) need to
be distinguished from the requirement that the X-valued function
fx : ω 7→ f(ω)x, ω ∈ Ω, is strongly measurable for each x ∈ X. For
example, if δs denotes the evaluation map at s ∈ [0, 1] on X = ℓ2([0, 1]),
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and we let Y = C and f(t) = δt for t ∈ [0, 1], then∫ 1

0

|f(t)x| dt =
∫ 1

0

|x(t)| dt = 0

for every x ∈ ℓ2([0, 1]), because x(t) = 0 for only countably many
t ∈ [0, 1], so fx : [0, 1] → C is equal to zero almost everywhere and is
certainly measurable.

If f were measurable in either of the senses (b) or (c), then, with
respect to Lebesgue measure λ on [0, 1], we would have λ◦f−1({0}) = 1
by Theorem 3.7, which is certainly not the case.

The following lemma appeals to an old argument due to Dunford [5,
Lemma II.3.1].

Lemma 3.3. Let (Ω,S, µ) be a σ-finite measure space and X,Y Ba-
nach spaces. Suppose that the operator valued function f : Ω →
L(X,Y ) has the property that fx is strongly µ-measurable in Y and∫

Ω

∥f(ω)x∥Y dµ(ω) <∞, for each x ∈ X.

Then, for each µ-measurable subset B of Ω, the Y -valued map

x 7−→
∫
B

f(ω)x dµ(ω), x ∈ X,

is a bounded linear operator on X denoted by∫
B

f dµ.

Proof. The linear map L : X → L1(µ, Y ) defined by Lx = fx,
x ∈ X, has the property that, if xn → x and Lxn → g in L1(µ, Y )
as n → ∞, then Lxnk

→ g almost everywhere as k → ∞ for some
subsequence {xnk

}∞k=1 of {xn}∞n=1. Because f(t)xnk
→ f(t)x as k → ∞

for each t ∈ [0, 1], it follows that g = fx = Lx, so that L is a closed
linear map on the Banach space X. By the closed graph theorem, L is
a continuous linear map and
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∥∥∥∥ ∫
B

f(ω)x dµ(ω)

∥∥∥∥ ≤
∫
Ω

∥f(ω)x∥Y dµ(ω) = ∥Lx∥ ≤ ∥L∥L(X,L1(µ,Y ))∥x∥

for every x ∈ X. �

It is worthwhile noting when an operator valued function is approx-
imable by operator valued simple functions.

Proposition 3.4. Let (Ω,S, µ) be a σ-finite measure space and X,Y
Banach spaces. Suppose that the operator valued function f : Ω →
L(X,Y ) has the property that fx is strongly µ-measurable in Y , the
σ-algebra generated by {fx : x ∈ X } is countably generated and∫

Ω

∥f(ω)x∥Y dµ(ω) <∞, for each x ∈ X.

Then there exist L(X,Y )-valued S-simple functions sn, n = 1, 2, . . .,
such that for each x ∈ X, we have snx→ fx µ almost everywhere and∫

Ω

∥f(ω)x− sn(ω)x∥Y dµ(ω) → 0 as n→ ∞.

Proof. Let Ωn ∈ S be sets for which 0 < µ(Ωn) <∞ and Ω\∪∞
n=1Ωn

is µ-null. Because σ({fx : x ∈ X }) is countably generated, for each
n = 1, 2, . . ., there exist pairwise disjoint subsets An,j ∈ S, j = 1, 2, . . .
of Ωn, such that

σ({fx : x ∈ X }) ∩ Ωn = σ({An,j : j = 1, 2, . . . }).

Let Fn,k be the algebra of all unions of set An,j , j = 1, . . . , k. Then
Fn,k, k = 1, 2, . . ., is an increasing family of finitely generated algebras
of subsets of Ωn such that

∞∨
k=1

Fn,k = σ({fx : x ∈ X }) ∩ Ωn.

For each x ∈ X and n, k = 1, 2, . . ., the conditional expectation
E(fx|Fn,k) with respect to the probability measure µ(Ωn)

−1µ on S∩Ωn
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is the µ-equivalence class of the S-simple function given by

E(fx|Fn,k) =
∑

F∈Fn,k

∫
F
fx dµ

µ(Ωn ∩ F )
χ
F .

By the Martingale convergence theorem for vector valued functions [5,
Theorem V.2.9], for each n = 1, 2, . . ., the simple functions E(fx|Fn,k)
converge fx in Y µ almost everywhere on Ωn as k → ∞ and∫

Ωn

∥fx− E(fx|Fn,k)∥Y dµ→ 0 as k → ∞.

According to Lemma 3.3, we may define the L(X,Y )-valued S-
simple function E(f |Fn,k) by the formula

E(f |Fn,k) =
∑

F∈Fn,k

∫
F
f dµ

µ(Ωn ∩ F )
χ
F .

Then sn =
∑n
k=1 E(f |Fn,k), n = 1, 2, . . ., are the required L(X,Y )-

valued simple functions. �

Next we have a version of Pettis’s measurability theorem [5, Theo-
rem II.1.2] for operator valued functions.

Theorem 3.5. Let (Ω,S, µ) be a σ-finite measure space and X,Y
Banach spaces with X separable. Let D be a countable subset of X
whose linear span is dense in X. A function f : Ω → L(X,Y ) is
strongly µ-measurable in Ls(X,Y ) if and only if

(i) fx is µ-essentially separably valued in Y for each x ∈ D, that is,
(fx)(Ω \ Nx) is a norm separable subset of X for some null set
Nx, x ∈ D, and

(ii) f is scalarly µ-measurable in L(X,Y ).

Proof. If f : Ω → L(X,Y ) is strongly µ-measurable in Ls(X,Y ),
then properties (i) and (ii) follow by applying the proof of [5, Theorem
II.1.2] to the Y -valued function fx for each x ∈ X.

Now suppose that conditions (i) and (ii) hold. By Pettis’s measur-
ability theorem in Banach spaces [5, Theorem II.1.2], fx is strongly
µ-measurable in Y for each x ∈ X. Because X is separable, there ex-
ists a countable dense subset U of the closed unit ball of X. Then



BILINEAR INTEGRATION 213

∥f(ω)∥L(X,Y ) = supx∈U ∥f(ω)x∥ for each ω ∈ Ω. It follows that
∥f∥L(X,Y ) is a finite S-measurable function and, up to a µ-null set, we
can divide Ω into a countable family of sets Γ on which ∥f∥L(X,Y ) ≤ c
for some c > 0 and 0 < µ(Γ) <∞.

By Proposition 3.4, there exist L(X,Y )-valued S-simple functions
sn, n = 1, 2, . . . such that for each x ∈ X, we have snx→ fx µ almost
everywhere on Γ as n→ ∞ and∫

Γ

∥f(ω)x− sn(ω)x∥Y dµ(ω) → 0.

The set

Γ0 = ∪x∈D{ω ∈ Γ : sn(ω)x→ f(ω)x as n→ ∞}

is a set of full measure and, because f is uniformly bounded on Γ in the
uniform norm of L(X,Y ), it follows that sn(ω) → f(ω) in Ls(X,Y )
as n → ∞ for every ω ∈ Γ0. We construct L(X,Y )-valued S-simple
functions converging to f µ almost everywhere by piecing together these
simple functions. Hence, f : Ω → L(X,Y ) is strongly µ-measurable in
Ls(X,Y ). �

Corollary 3.6. Let (Ω,S, µ) be a σ-finite measure space and X,Y
Banach spaces with X separable. A function f : Ω → L(X,Y ) is
strongly µ-measurable in Ls(X,Y ) if and only if fx is strongly µ-
measurable in Y for each x ∈ X.

Example 3.2 shows that the assumption that X is separable cannot
be omitted, even if Y = R.

Let T be a Hausdorff topological space and (Ω,S, µ) a σ-finite
measure space. A function f : Ω → T is called Borel µ-measurable
if, for every open subset U of T , the set f−1(U) belongs to the
µ-completion of S, that is, there exists a µ-null set N such that
f−1(U) = S∆N for S ∈ S.

For Banach spaces X,Y , the space of bounded linear operators
u : X → Y endowed with a locally convex topology τ is written as
Lτ (X,Y ). The strong operator topology s is given by the family of
seminorms u 7→ ∥ux∥Y , u ∈ L(X,Y ) for all x ∈ X.
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The topology κ of precompact convergence on L(X,Y ) has a neigh-
borhood base of zero consisting of sets {u ∈ L(X,Y ) : u(K) ⊂ U} for
all relatively compact subsets K of X and all open neighborhoods U
of zero in Y .

The weak topology σ is given by the family of seminorms u 7→
|⟨ux, y∗⟩|, u ∈ L(X,Y ) for all x ∈ X, y∗ ∈ Y ∗.

Theorem 3.7. Let (Ω,S, µ) be a finite measure space and X,Y Banach
spaces with X separable. The following conditions are equivalent for a
function f : Ω → L(X,Y ).

(i) f is strongly µ-measurable in Ls(X,Y ).
(ii) f is Borel µ-measurable in Ls(X,Y ) and µ ◦ f−1 is a radon

measure on Ls(X,Y ).
(iii) f is Borel µ-measurable in Lκ(X,Y ) and µ ◦ f−1 is a radon

measure on Lκ(X,Y ).
(iv) f is Borel µ-measurable in Lσ(X,Y ) and µ ◦ f−1 is a radon

measure on Lσ(X,Y ).

Proof. Suppose first that (i) holds. Then f is Borel µ-measurable
for each of the spaces Ls(X,Y ), Lκ(X,Y ), Lσ(X,Y ). To see this,
observe that f is the limit µ almost everywhere S-simple functions sn,
n = 1, 2, . . ., exist. Because finite subsets are closed sets in each of the
topologies, every simple function sn, n = 1, 2, . . ., is Borel measurable in
each of the topologies, and f is the pointwise limit µ-almost everywhere
in Ω.

We may replace Y by the closed linear span Z of
∪
{f(Ω \ Nx) :

x ∈ D} for a countable dense subset D of X and null sets Nx ⊂ Ω for
which the subset f(Ω \ Nx) is separable in Y for x ∈ D. Then Z is a
separable closed subspace Y , and f has values in L(X,Z) off the µ-null
set

∪
x∈DNx, so we suppose that Y is itself separable.

On each set Γc = {∥f∥L(X,Y ) ≤ c }, c > 0, the topologies s and κ
coincide with pointwise convergence in Y on the countable set D by
the Banach-Steinhaus Theorem. Then the measure (χΓc · µ) ◦ f−1 is
a finite Borel measure on a complete separable metric space (a Polish
space) {∥u∥L(X,Y ) ≤ c} for each of the topologies s and κ, so conditions
(ii), (iii) and (iv) hold [23], because the topology σ is weaker (coarser)
than either s or κ.
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Now suppose that (iv) holds. Appealing to Theorem 3.5, to prove
(i), it suffices to establish that fx has µ-essentially separable range for
each x ∈ X. The evaluation map δxu = ux, u ∈ L(X,Y ), is continuous
for the weak topology σ into (Y, σ(Y, Y ∗)) for each x ∈ X, so

(µ ◦ f−1) ◦ δ−1
x = µ ◦ (fx)−1

is a Radon measure for the weak topology σ(Y, Y ∗) of Y . The weak
and norm topologies of the Banach space Y are Radon-equivalent [23],
so µ ◦ (fx)−1 is a Radon measure on Y . Its support is contained in
the countable union of compact sets, which is norm separable in Y ,
so fx has µ-essentially separable range and condition (i) follows from
Theorem 3.5. �

Again, Example 3.2 shows that the assumption that X is separable
cannot be omitted, even if Y = R.

Remark 3.8.

(i) On each set Γc = {∥f∥L(X,Y ) ≤ c}, convergence for the strong
operator topology in {u : ∥u∥L(X,Y ) ≤ c} is determined by the
metric

(u, v) 7−→
∞∑
j=1

2−j∥uxj − vxj∥Y , u, v ∈ L(X,Y ),

for some enumeration {xj : j = 1, 2, . . .} of a countable dense
subset U of the closed unit ball ofX. If f is strongly µ-measurable
in Ls(X,Y ), then we can use this metric to obtain a version of
Lusin’s theorem (if µ is a finite Radon measure) and Egorov’s
convergence theorem in Ls(X,Y ) or Lκ(X,Y ), if µ is a finite
measure. In a more general context, this idea appeared in [20].

(ii) Suppose that U is a countable dense subset of the close unit ball
of the Banach space X. For each x ∈ U ,

ϵµ({∥fx∥ > ϵ}) ≤
∫
Ω

∥fx∥Y dµ <∞,

and

µ({∥f∥ > 0}) ⊆
∪
x∈U

µ({ω ∈ Ω : ∥f(ω)x∥ > 0}).
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It follows that for any measure space (Ω,S, µ), the set {∥f∥ > 0}
is σ-finite if ∫

Ω

∥fx∥Y dµ <∞

for every x ∈ X, provided that X is separable, so in this case, the
preceding arguments are valid for an arbitrary measure space.

4. Bilinear integrals in scattering theory. In this section we
return to the situation considered in Example 2.5 but with the more
physically realistic case of unbounded selfadjoint operators.

Let (H, (· | ·)) be a separable Hilbert space. Suppose H0 : D(H0) →
H and V : D(V ) → H are selfadjoint operators with respective dense
domains D(H0) ⊂ D(V ). We suppose that H = H0 + V is also a
selfadjoint operator on D(H0). For example, this is the situation for
the free Hamiltonian H0 = −~2/(2m)∆ of a particle moving in R3

subject to a Coulomb potential V (x) = c/|x|, x ∈ R3 \ {0}, c ̸= 0.

The function fϵ : R+ × R → L(D(H0),H) given by

fϵ(t, σ) = eitHV e−i(σ−iϵ)t

for t ≥ 0 and σ ∈ R is defined on D(H0). Let P0 be the spectral
measure associated with the selfadjoint operator H0 and h ∈ D(H0).
As above, the Lebesgue measure on R+ is denoted by λ. The spectral
measure P0 commutes with the selfadjoint operator H0 in the sense
that, for each Borel subset B of R, the inclusion P0(B)D(H0) ⊂ D(H0)
is valid and H0P0(B)h = P0(B)H0h for every h ∈ D(H0). We give
D(H0) the graph norm

h 7−→
(
∥h∥2H + ∥H0h∥2H

)1/2
, h ∈ D(H0),

under which it is itself a Hilbert space.

Now we seek a suitable space E, bilinear admissible for D(H0), H,
for which fϵ is (λ ⊗ (Ph))-integrable in E with respect to the D(H0)-
valued measure λ⊗ (Ph).

Let X,Y be Banach spaces. For y∗ ∈ Y ∗, we have∣∣∣∣⟨ n∑
j=1

Tjxj , y
∗
⟩∣∣∣∣ = ∣∣∣∣⟨ n∑

j=1

xj , T
∗
j y

∗
⟩∣∣∣∣ ≤ n∑

j=1

∥xj∥X .∥T ∗
j y

∗∥X∗ ,
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for all Tj ∈ L(X,Y ) and xj ∈ X, j = 1, . . . , n and all n = 1, 2, . . . .
Hence, if we let

∥u∥τ = sup
∥y∗∥≤1

inf

{ n∑
j=1

∥xj∥X .∥T ∗
j y

∗∥X∗ : u =
n∑
j=1

Tj ⊗ xj

}
over all representations u =

∑n
j=1 Tj ⊗ xj , n = 1, 2 . . ., of u ∈

L(X,Y )⊗X, then the inequality ∥Ju∥Y ≤ ∥u∥τ holds for the product
map Ju =

∑n
j=1 Tjxj by the Hahn-Banach theorem. The completion of

the linear space L(X,Y )⊗̂τX with respect to the norm ∥ · ∥τ is written
as L(X,Y )⊗̂τX.

Lemma 4.1. For each u =
∑n
j=1 Tj ⊗ xj ∈ L(X,Y ) ⊗ X, let Tu =∑n

j=1 xj⊗T ∗
j ∈ L(Y ∗, X⊗̂πX∗)) denote the linear map y∗ 7→

∑n
j=1 xj⊗

(T ∗
j y

∗), y∗ ∈ Y ∗.

Then the linear mapping k : u 7→ Tu, u ∈ L(X,Y ) ⊗ X, is the
restriction to L(X,Y )⊗X of an isometry of L(X,Y )⊗̂τX onto a closed
linear subspace of L(Y ∗, X⊗̂πX∗)) in the uniform norm.

Proof. For u ∈ L(X,Y )⊗X, we have ∥u∥τ = ∥Tu∥L(Y ∗,X⊗̂πX∗). �

Lemma 4.2. Let X,Y be Banach spaces with Y ∗ norm separable. If
B is a bounded, absolutely convex subset of L(X,Y )⊗X with τ -closure
B, then kB is a closed subset of Ls(Y ∗, X⊗̂πX∗)).

Proof. Every element v of the closure of kB in Ls(Y ∗, X⊗̂πX∗))
can be represented as v =

∑∞
j=1 λjxj ⊗ T ∗

j in Ls(Y ∗, X⊗̂πX∗)), where∑∞
j=1 |λj | < ∞, the finite sum

∑n
j=1 λjxj ⊗ T ∗

j belongs to B for each

n = 1, 2, . . ., and T ∗
j → 0 in Ls(Y ∗, X∗), xj → 0 in X as j → ∞.

To see this, we note that Y ∗ is separable, so the relative topology of
Ls(Y ∗, X⊗̂πX∗)) on kB coincides with the relative topology of X⊗̂πF ,
where F is the metrizable locally convex space L(Y ∗, X∗) endowed with
the topology of pointwise convergence on a countable dense subset of
the unit ball of Y ∗ [16, (1) page 138]. Then, the given representation
for v follows from a result of Grothendieck [22, Theorem III.6.4] applied
to X⊗̂πF .
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Because∥∥∥∥ ∞∑
j=n

λjTj ⊗ xj

∥∥∥∥
τ

≤ sup
∥y∗∥≤1

∞∑
j=n

|λj |∥xj∥X∥T ∗
j y

∗∥X∗

≤ sup
j
{∥xj∥X∥Tj∥L(X,Y )}

∞∑
j=n

|λj | −→ 0,

as n→ ∞, it follows that v ∈ kB, hence kB is closed in Ls(Y ∗, X⊗̂πX∗)).
�

A Banach space X has the approximation property if X∗⊗X is dense
in Lκ(X). Each element

∑n
j=1 x

∗
j ⊗xj of X∗⊗X defines the finite rank

operator

x 7−→
n∑
j=1

⟨x, x∗j ⟩xj , x ∈ X.

Lemma 4.3. The Banach space E = L(X,Y )⊗̂τX is bilinear admis-
sible for the Banach spaces X and Y , provided that X has the approx-
imation property.

Proof. Properties (a)–(c) of bilinear admissability clearly hold, so
it remains to establish property (d). The family of all linear maps
x⊗ y∗ ⊗ x∗ : T ⊗ x 7→ ⟨Tx, y∗⟩⟨x, x∗⟩ for x ∈ X, x∗ ∈ X∗ and y∗ ∈ Y ∗

separates points of E.

Let Be((X ⊗ Y ∗)s, X
∗
s ) denote the linear space of all separately

continuous bilinear forms on (X⊗Y ∗)×X∗ for the topologies of simple
convergence σ(X⊗Y ∗,L(X,Y )) and σ(X∗, X). It is equipped with the
topology e of bi-equicontinuous convergence [16, page 167]. Because
X has the approximation property, the canonical linear map

ψ : Ls(Y ∗, X∗)⊗̂πX → Be((X ⊗ Y ∗)s, X
∗
s )

is one-to-one [16, subsection 43.2 (12)].

The topology τ has a fundamental system of neighborhoods of zero
closed for the weaker topology of Ls(Y ∗, X∗)⊗̂πX, so E embeds in
Be((X⊗Y ∗)s, X

∗
s ) too [16, subsection 18.4 (4)]. Because (X⊗Y ∗)×X∗

separates the space Be((X⊗Y ∗)s, X
∗
s ) of bilinear forms, it follows that

X ⊗ Y ∗ ⊗X∗ separates points of E. �
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Remark 4.4. The approximation property for X is needed to make
sense of the integral ∫

Ω

f dm

of an L(X,Y )-valued function f with respect to an X-valued measure
m. Similarly, the approximation property is needed to define the trace
of a nuclear operator on X in the case Y = C. All Banach spaces of
practical interest, including Hilbert spaces, possess the approximation
property, see [17].

The following result improves [9, Theorem 4.4] in the sense that we
obtain a stronger form of integrability in the conclusion (c) below.

Theorem 4.5. Let (H, (· | ·)) be a separable Hilbert space and A :
D(A) → H a selfadjoint operator with spectral measure PA. Let
E = L(D(A),H)⊗̂τD(A) where the Hilbert space D(A) is endowed with
the graph norm.

Let (Γ, E , µ) be a σ-finite measure space. Suppose that the measurable
function u : R× Γ → C has the property that, for every h ∈ D(A), the
function u(·, γ) is PAh-integrable in D(A).

Let f : Γ → L(D(A),H) be a strongly µ-measurable in Ls(D(A)H)
function for which there exist positive µ-measurable functions α, β, v,
on Γ, with the following properties:

(i) |u(σ, γ)| ≤ v(γ) for every σ ∈ R and γ ∈ Γ,
(ii) ∥f(γ)h∥ ≤ α(γ)∥Ah∥+ β(γ)∥h∥ for every h ∈ D(A), γ ∈ Γ, and
(iii)

∫
Γ
v(γ)(α(γ) + β(γ)) dµ(γ) <∞.

Then, for each h ∈ D(A),

(a) the function

γ 7−→ f(γ)

∫
S

u(σ, γ) d(PAh)(σ), γ ∈ Γ,

is Bochner µ-integrable in H for each S ∈ B(R),
(b) the function

γ 7−→ u(σ, γ)f(γ)g, γ ∈ Γ,

is Bochner µ-integrable in H for each σ ∈ R and g ∈ D(A), and



220 BRIAN JEFFERIES

(c) the L(D(A),H)-valued function

σ 7−→
∫
T

u(σ, γ)f(γ) dµ(γ), σ ∈ R,

is strongly measurable in L(D(A),H) and (PAh)-integrable in E
with respect to the D(A)-valued measure PAh, for each set T ∈ E.

Moreover, the equality

(4.1)

∫
S

(∫
T

u(σ, γ)f(γ) dµ(γ)

)
d(PAh)(σ)

=

∫
T

f(γ)

(∫
S

u(σ, γ) d(PAh)(σ)

)
dµ(γ)

holds for every S ∈ B(R) and T ∈ E.

Proof. Property (a) follows from the strong µ-measurability of f in
L(D(A),H) and the norm estimates∫

Γ

∥∥∥∥f(γ) ∫
S

u(σ, γ) d(PAh)(σ)

∥∥∥∥ dµ(γ)
≤

∫
Γ

α(γ)

∥∥∥∥A∫
S

u(σ, γ) d(PAh)(σ)

∥∥∥∥ dµ(γ)
+

∫
Γ

β(γ)

∥∥∥∥ ∫
S

u(σ, γ) d(PAh)(σ)

∥∥∥∥ dµ(γ)
≤ ∥PAh∥sv(D(A))

∫
Γ

v(γ)(α(γ) + β(γ)) dµ(γ)

<∞.

Here ∥PAh∥sv(D(A)) is the semivariation norm [5, page 2] of the D(A)-
valued measure PAh. The estimates (i)–(iii) also give property (b).

Now let B be an element of the σ-algebra B(R)⊗ E . We check that
the L(D(A),H)⊗D(A)-valued function

(4.2) ΦB : γ 7−→ f(γ)⊗
∫
B(γ)

u(σ, γ) d(PAh)(σ), γ ∈ Γ,
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is integrable to the Banach space E = L(D(A),H)⊗̂τD(A) and
(4.3)∥∥∥∥ ∫

Γ

ΦB(γ) dµ(γ)

∥∥∥∥
τ

≤ ∥PAh∥sv(D(A))

∫
Γ

v(γ)(α(γ) + β(γ)) dµ(γ).

Firstly, the inequality∫
Γ

v(γ)∥f(γ)∗∥L(H,D(A)) dµ(γ) =

∫
Γ

v(γ)∥f(γ)∥L(D(A),H) dµ(γ)

= sup
∥ψ∥∞≤1

∫
Γ

v(γ)∥f(γ)ψ(γ)∥H dµ(γ)

≤
∫
Γ

v(γ)(α(γ) + β(γ)) dµ(γ)

follows from assumption (ii), where the supremum is taken over D(A)-
valued E-simple functions ψ. It follows that∫

Γ

∥ΦB(γ)∥τ dµ(γ) ≤ ∥PAh∥sv(D(A))

∫
Γ

v(γ)(α(γ) + β(γ)) dµ(γ).

We are not assuming that f is strongly µ-measurable for the uniform
norm of L(D(A),H), so some caution is needed.

Now k◦ΦB : Γ → L(D(A),H⊗H) defines a linear map LB : D(A) →
L1(µ,H⊗H) by

LBg = [k ◦ ΦBg], g ∈ D(A).

The bounded linear operator LB is the limit in L(D(A), L1(µ,H⊗̂πH))
of (Pn⊗I)LB , n = 1, 2, . . ., for conditioning operators Pn : L1(µ,H) →
L1(µ,H), n = 1, 2, . . ., on finitely generated σ-algebras, as in the proof
of Proposition 3.4. Then (Pn ⊗ I)LB = [k ◦ ΦB,n] for

ΦB,n : γ 7−→ (Pnf)(γ)⊗
∫
B(γ)

u(σ, γ) d(PAh)(σ), γ ∈ Γ,

and Pnf is an L(D(A),H)-valued E-simple function for each n =
1, 2, . . ., so ΦB,n has values in Ls(D(A),H)⊗D(A). Moreover,

∥(Pn ⊗ I)LB∥L(D(A),L1(µ,H⊗̂πH)) ≤
∫
Γ

∥ΦB∥τ dµ,∫
B

(Pn ⊗ I)LB dµ ∈ L(D(A),H)⊗D(A)
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for each n = 1, 2 . . ., and

(4.4) lim
n→∞

∫
C

(Pn ⊗ I)LB dµ =

∫
C

LB dµ

in Ls(D(A),H⊗̂πH) for each C ∈ E .
We want to show that for each C ∈ E , the linear map

g 7−→
∫
C

LBg dµ, g ∈ D(A),

belongs to the uniform closure kE of k(L(D(A),H) ⊗ D(A)) in the
space L(D(A),H⊗̂πH) of linear operators. An appeal to Lemma 4.2
and equation (4.4) shows that this is true on any set Γn = {∥ΦB∥τ ≤ n}
and, because the vector measure LBµ : E → Ls(D(A),H⊗̂πH) has
finite variation

V (LBµ)(Γ) =

∫
Γ

∥ΦB(γ)∥τ dµ(γ)

in the uniform operator norm of L(D(A),H⊗̂πH), we have LBµ : E →
kE. The equality LBµ = k ◦ (ΦB.µ) ensures that ΦB is µ-integrable in
E.

Because the Banach space E is bilinear admissible for D(A),H, the
integral ∫

B

(
u(σ, γ)f(γ)

)
⊗ d

(
(PAh)⊗ µ

)
(σ, γ) ∈ E

is uniquely defined by the scalar equation(∫
B

(
u(σ, γ)f(γ)

)
⊗ d

(
(PAh)⊗ µ)

)
(σ, γ)

∣∣u⊗ v ⊗ w

)
=

∫
B

(
u(σ, γ)(f(γ)u|v)

)
d((PAh|w)⊗ µ)(σ, γ)=

(∫
Γ

ΦB dµ
∣∣u⊗ v ⊗ w

)
for eachB ∈ B(R)⊗E , u,w ∈ D(A) and v ∈ H. Moreover, statement (c)
holds, and∫

S

(∫
T

u(σ, γ)f(γ) dµ(γ)

)
⊗ d(PAh)(σ)

=

∫
S×T

(
u(σ, γ)f(γ)

)
⊗ d

(
(PAh)⊗ µ

)
(σ, γ),
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for all S ∈ B(R) and T ∈ E . The equality (4.1) of the iterated integrals
follows from the scalar version of Fubini’s theorem and the bilinear
admissability of E. �

Corollary 4.6. Let (H, (· | ·)) be a separable Hilbert space and H0 :
D(H0) → H be a selfadjoint operator with spectral measure P0. Let
E = L(D(H0),H)⊗̂τD(H0) where the Hilbert space D(H0) is endowed
with the graph norm.

Suppose that V : D(V ) → H is a selfadjoint operator with dense
domain D(H0) ⊂ D(V ). We suppose that H = H0 + V is also a
selfadjoint operator on D(H0), ϵ > 0 and the function fϵ : R+ × R →
L(D(H0),H) is given by

fϵ(t, σ) = eitHV e−i(σ−iϵ)t, t ∈ R+, σ ∈ R.

Then for each h ∈ D(H0),

(a) the function t 7→ e−ϵteitHV e−iH0tg, t ∈ R+, is Bochner integrable
in H for each g ∈ D(H0),

(b) the function t 7→ fϵ(t, σ)g, t ∈ R+, is Bochner µ-integrable in H
for each σ ∈ R and g ∈ D(H0), and

(c) the L(D(H0),H)-valued function

σ 7−→
∫
T

fϵ(t, σ) dt, σ ∈ R,

is strongly measurable in L(D(H0),H) and (P0h)-integrable in E
with respect to the D(H0)-valued measure P0h, for each set T ∈
B(R+).

Moreover, the equality

(4.5)

∫
S

(∫
T

fϵ(t, σ) dt

)
d(P0h)(σ) =

∫
T

e−ϵteitHV e−iH0tP0(S)h dt

holds for every S ∈ B(R) and T ∈ B(R+).

Proof. Statements (a) and (b) follow directly from the facts that
e−itH and e−itH0 are continuous unitary semigroups on H and D(H0).
The selfadjoint operator V is closed and has domain containing D(H0).
By the closed graph theorem it is bounded in the graph norm of the
Hilbert space D(H0). Conditions (i)–(iii) of Theorem 4.5 are satisfied
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for the function u(t, σ) = e−ϵte−iσt and

f : t 7−→ eitHV, t ∈ R+, σ ∈ R,

where we take v(t) = e−ϵt, t ∈ R+, and α, β are constants. �
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