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SLIT UNIVALENT HARMONIC MAPPINGS

ARMEN GRIGORYAN

ABSTRACT. In this paper we consider the class of
complex-valued harmonic univalent functions that map the
unit disc onto the complex plane, half-plane or a strip slit
along finitely many horizontal half-lines.

1. Introduction. Denote by H(∆) the linear topological space of
all complex harmonic mappings of the disc ∆ = {z ∈ C : |z| < 1}
into the complex plane C endowed with the topology of locally uniform
convergence, and let A(∆) be the linear subspace of H(∆) of all analytic
functions on ∆. If f ∈ H(∆) and functions F,G ∈ A(∆) are chosen so
that ReF = Re f , ReG = Im f , then f = h+ g, where h = (F + iG)/2
and g = (F − iG)/2. Thus,

H(∆) = {h + g : h, g ∈ A(∆), g(0) = 0}.

By a result of Lewy (see [11]), the function f ∈ H(∆) is locally
univalent if and only if its Jacobian

Jf (z) = |fz|2 − |fz|2 ̸= 0 on ∆.

We will consider only orientation preserving harmonic mappings, i.e.,
those f ∈ H(∆) with Jf (z) > 0 on ∆.

For a given simply connected domain D $ C with 0 ∈ D, denote
by SH(∆, D) the class of all functions f ∈ H(∆) which map ∆ onto D
univalently, f(0) = 0 < fz(0) and fz(0) > |fz(0)|, and let

S0
H(∆, D) = {f ∈ SH(∆, D) : fz(0) = 0}.

The class SH(∆, D) is very wide and, clearly, contains only one analytic
function called the conformal associate of the class. It appears that

the closure S0
H(∆, D) of the class S0

H(∆, D) consists of only univalent
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functions, see [9, Theorem 3]. However, in some cases when D is a
disc, a strip, a wedge, a half-plane and C \ (−∞, a] with a < 0 or
C \ ((−∞, a] ∪ [b,+∞)) with −∞ < a < 0 < b < +∞, collapsing

takes place, i.e., S0
H(∆, D) ̸= S0

H(∆, D) and f(∆) $ D for f ∈
S0
H(∆, D) \ S0

H(∆, D) although the radial limits f̂(eiθ) of f belong to
∂D for almost all real θ, see [2, 5, 8, 10, 12, 13]. Moreover, the set

SH(∆, D) \ SH(∆, D) may contain some nonunivalent members, and
this always happen when D is a bounded domain, see [9, Theorem 3].

This article contains results relating the classes SH(∆, D) and
S0
H(∆, D), where the boundary ∂D of the domain D is the union of

finitely many half-lines (slits). The case when D is the complex plane C
slit along one half-line has been studied in [12], two opposite half-lines
in [8, 13] (see also [3]), and the case of four horizontal slits symmetric
with respect to the real axis recently has been investigated by Dorff,
Nowak and Wo loszkiewicz [3]. In this paper, we consider a much more
general case–the domain D will be the plane C, a half-plane, or a strip,
each slit along finitely many horizontal half-lines.

Let
c > c1 > · · · > ck, d < d1 < . . . < ds,

and for any a1, . . . , ak ∈ R, b1, . . . , bs ∈ R, consider the following
domains with a finite number of horizontal slits directed to the left,
to the right or to both the directions:

Ωl((aj), (cj)) = Ω
\ k∪

j=1

{x + icj : x ≤ aj},(1.1)

Ωr((bm), (dm)) = Ω
\ s∪

m=1

{x + idm : x ≥ bm},(1.2)

and

(1.3) Ωl((aj), (cj)) ∩ Ωr((bm), (dm)),

whenever au < bv in any case when cu = dv, where Ω is one of the sets:
the complex plane C, the lower half-plane

(1.4) L = L(c) = {w ∈ C : Imw < c} if ds < c,
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the upper half-plane

(1.5) U = U(d) = {w ∈ C : Imw > d} if ck > d,

the strip

(1.6) S = S(c, d) = {w ∈ C : d < Imw < c} if ds < c, ck > d.

We will assume that all the sets (1.1)–(1.3) with Ω described above
contain the origin. For a short formulation, by (1.3) with k = 0 or
s = 0, we will mean (1.2) or (1.1), respectively.

In this way, we may consider 12 families of horizontally slit domains
that have their slits on the same levels and just the same direction.
Since f is a harmonic normalized homeomorphism together with the
functions

z 7−→ f(z) and z 7−→ −f(−z),

we may consider only six kinds of the classes SH(∆, D), namely, when
D is a member of the set families

(1.7) Cl(c1, . . . , ck), Ll(c1, . . . , ck), Sl(c1, . . . , ck),

consisting of all sets of the type (1.1) with Ω = C, Ω = L = L(c) and
Ω = S = S(c, d), respectively, and arbitrary a1, . . . , ak ∈ R, or

(1.8) C((cj), (dm)), L((cj), (dm)), and S((cj), (dm)),

consisting of all sets of the type (1.3) with Ω = C, Ω = L = L(c)
and Ω = S = S(c, d), respectively, and arbitrary a1, . . . , ak ∈ R,
b1, . . . , bs ∈ R, where, like before, au < bv whenever cu = dv.

Let us now consider the function

(1.9) ∆ ∋ z 7−→ k(z, F, q) = Re

∫ z

0

F ′(t)q(t) dt + i ImF (z)

for F, q ∈ A(∆), and let

(1.10) P = {p ∈ A(∆) : Re p(z) > 0 on ∆, p(0) = 1} ,

the known Carathéodory class. Clearly, if f = h + g ∈ H(∆) is
locally univalent, Reh(0) = 0 = g′(0) < |h′(0)|, then we have a simple
representation f = k(·, F, p) with a locally univalent F = h − g and
p = (h′ + g′)/(h′ − g′) ∈ P. Conversely, for every p ∈ P and a locally
univalent F ∈ A(∆) with ImF (0) = 0, the functions f = k(·, F, p) and
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more general
fλ, ν = k(·, F, λp + i ν)

with λ > 0 and ν ∈ R are harmonic locally univalent on ∆:

|(fλ, ν)z|2 − |(fλ, ν)z|2 = λ |F ′(z)|2 Re p(z) > 0,

fλ, ν(0) = 0 ̸= (1 + λ + i ν)F ′(0)/2 = (fλ, ν)z(0)

and
(fλ, ν)z(0) = (λ + i ν − 1)F ′(0)/2.

Let F ∈ A(∆), p ∈ P and λ > 0, ν ∈ R. The following important
fact, known as the “shear construction” method of producing univalent
harmonic mappings, comes from [2]: k(·, F, λp + i ν) is harmonic
univalent convex in the direction of the real axis if and only if F
is analytic univalent convex in the direction of the real axis. If, for
instance, the ranges of the above considered univalent functions are in
any of the set families (1.7)–(1.8), then they are convex in the direction
of the real axis.

In this paper, we prove two theorems.

Theorem 1.1. Let A be one of the set families (1.7)–(1.8), p ∈ P and
F ∈ A(∆) univalent with F (0) = 0 < F ′(0). Denote by pr(z) = p(rz)
for z ∈ ∆ and fr = k(·, F, pr), where r ∈ [0, 1]. If F (∆) ∈ A, then the
range fr(∆) ∈ A for all r ∈ [0, 1).

Under the assumptions and the notations of Theorem 1.1 in general
f1(∆) /∈ A (see for example [3, 8, 10, 12, 13]), it may happen that
fr(∆) ∈ A for all r ∈ [0, 1]. In the opposite direction of Theorem 1.1,
we prove

Theorem 1.2. Suppose A is any of the set families (1.7)–(1.8) with

{c1, . . . , ck} ∩ {d1 . . . , ds} = ∅,

D ∈ A and f ∈ S0
H(∆, D). Then there is a p ∈ P and a univalent

F ∈ A(∆) such that F (0) = 0 < F ′(0), F (∆) ∈ A and

(1.11) f(z) = k(z, F, p) for z ∈ ∆.
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The case {c1, . . . , ck} ∩ {d1 . . . , ds} ̸= ∅ of Theorem 1.2 remains
open. One can prove that, for any family A of the form (1.7)–(1.8)
and a univalent F ∈ H(∆) with F (0) = 0 < F ′(0) and F (∆) ∈ A, the
ranges k(∆, F, λp) belong to the same family A whenever λ > 0 and the
function p ∈ P is chosen that, for every η ∈ ∂∆ with F (η) = ∞, the
function p is analytic at η and Re p(η) > 0, see the proof of Theorem 1.1.

2. Auxiliary lemmas and remarks. In the next lemmas and
remarks we consider a slit domain D of the form (1.1) or (1.3) with Ω
being C, (1.4) or (1.6), under the assumption that 0 ∈ D and au < bv
whenever cu = dv. The unique F ∈ A(∆) which maps univalently
the disc ∆ onto D with F (0) = 0 < F ′(0) is given by the Schwarz-
Christoffel transformation (for the Schwarz-Christoffel mappings see,
e.g., [1, 4]). We start with the following technical lemma.

Lemma 2.1. Let P,Q,R, S ∈ C. If there exists a finite limit

lim
ε→0+

δ→0+

[
P ln

sin ε/2

sin δ/2
+ Q

(
cot

ε

2
+ cot

δ

2

)
+ R

(
csc2

ε

2
− csc2

δ

2

)]
= S,

then P = Q = R = S = 0.

Proof. Taking ε = δ → 0+, we get Q = 0 (because the limit is finite)
and S = 0. Next if δ = 2ε → 0+, then R = 0, and hence, finally
P = 0. �

In this paper, log means the principal branch of the logarithm.

Lemma 2.2. Let F ∈ A(∆) be univalent, F (0) = 0 < F ′(0) and
F (∆) = Cl((aj), (cj)) ∩ Cr((bm), (dm)) (see (1.3)). Then there are
the unique 2k + 2s points ηj = eiθj ∈ ∂∆, j = 1, . . . , 2k + 2s, where
θ1 < θ2 < · · · < θ2k+2s−1 < θ2k+2s < θ1 + 2π, such that

F (z) ≡ λ

∫ z

0

k+s∏
j=1

1 − η2j−1t

1 − η2jt
· dt

(1 − η2kt)(1 − η2k+2st)
(2.1)

for some λ > 0,
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(2.2)

F (z) ≡
k+s∑
j=1

cj − cj+1

π
log(1− η2jz) +

iαη2kz

1 − η2kz
+

{ iβη2k+2sz

1−η2k+2sz
if s ≥ 1,

βη2kz
(1−η2kz)

2 if s = 0,

where ck+s+1 = c1 and either s ≥ 1, ck+1 = d1, . . . , ck+s = ds,
α < 0 < β, or s = 0, α ∈ R, β > 0. Moreover, the points F (η2j−1)
are the slit ends: aj + icj or bj−k + idj−k depending on 1 ≤ j ≤ k or
k + 1 ≤ j ≤ k + s.

0 0

η2k+2s−4

η2k+2s−3

η2k+2s−2

η2k+2s−1

η2k+2s

η1

η2
η3

η4
η5

η2k−3

η2k−2

η2k−1

η2k

η2k+1

η2k+2

η2k+3

F B2s = ∞

A1 = a1 + ic1

A2 = ∞

A3 = a2 + ic2

A4 = ∞

A5 = a3 + ic3

A2k = ∞

A2k−1 = ak + ick

A2k−2 = ∞

A2k−3 = ak−1 + ick−1

B2s−1 = bs + ick+s

B2s−2 = ∞

B2s−3 = bs−1 + ick+s−1

B2s−4 = ∞

B1 = b1 + ick+1

B2 = ∞

B3 = b2 + ick+2

B4 = ∞

Figure 1. The function F.

Proof. Let A2j = B2m = ∞, A2j−1 = aj + icj , B2m−1 = bm +
idm, 1 ≤ j ≤ k, 1 ≤ m ≤ s. The univalent F ∈ A(∆) with
F (0) = 0 < F ′(0) that maps ∆ onto the unbounded polygon F (∆) =
A1A2 · · ·A2kB1B2 · · ·B2s has the form (2.1) by the Schwarz-Christoffel
formula (see Figure 1). Partial fraction decomposition and integration
of formula (2.1) gives

F (z) =
k+s∑
j=1

(−λj η2j) log(1 − η2jz) +
µ1z

1 − η2kz
(2.3)

+

{
µ2z

1−η2k+2sz
for s ≥ 1,

µ2z
(1−η2kz)

2 for s = 0,

where λj , j = 1, . . . , k + s, and µ1, µ2 are some complex numbers
which we determine will prove (2.2). By the Schwarz reflection princi-
ple, the function F can be analytically reflected about any open arc
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(ηj , ηj+1) = {eiθ : θj < θ < θj+1}, j = 1, . . . , 2k + 2s. Actually,
the Schwarz reflection principle was invented for the purpose of the
Schwarz-Christoffel formula (see [4]). We denote by η2k+2s+1 = η1
and θ2k+2s+1 = θ1 for short notation. Because the slits are paral-
lel we note two facts. First, ImF is constant on each arc (ηj , ηj+1),
j = 1, . . . , 2k + 2s. Second, for each j = 1, . . . , 2k + 2s, the tangent
vector of the curve (θj , θj+1) ∋ t → F (eit), i.e., the vector ieitF ′(eit),
is parallel to the real axis at each point t ∈ (θj , θj+1). We will need the
following obvious formula:

log(1 − eiθ) = ln

(
2 sin

|θ|
2

)
+

i(|θ| − π) sgn θ

2
(2.4)

for 0 < |θ| < π.

Let us first compute λj for j = 1, . . . , k + s − 1, j ̸= k. Fix
j = 1, 2, . . . , k + s − 1, j ̸= k. For each sufficiently small ε > 0 and
δ > 0 we have

cj − cj+1 = ImF (η2je
−iε) − ImF (η2je

iδ).

Hence there exists the finite limit

lim
ε→0+

δ→0+

(ImF (η2je
−iε) − ImF (η2je

iδ)) = cj − cj+1.

On the other hand, by (2.3) and (2.4), we have

lim
ε→0+

δ→0+

(ImF (η2je
−iε) − ImF (η2je

iδ))

= lim
ε→0+

δ→0+

Im
[
(−λjη2j)(log(1 − e−iε) − log(1 − eiδ))

]
= lim

ε→0+

δ→0+

[
Re(−λjη2j) Im(log(1 − e−iε) − log(1 − eiδ))

+ Im(−λjη2j) Re(log(1 − e−iε) − log(1 − eiδ))
]

= Re(−λjη2j) · π + lim
ε→0+

δ→0+

[
Im(−λjη2j) · ln

sin ε/2

sin δ/2

]
.

By Lemma 2.1, we get Im(−λjη2j) = 0, and so

cj − cj+1 = lim
ε→0+δ→0+

(ImF (η2je
−iε)− ImF (η2je

iδ)) = −λjη2j · π ∈ R.
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Now we compute λ2k and λ2k+2s, provided that s ≥ 1. For each
sufficiently small ε > 0 and δ > 0, we again have

ck − ck+1 = ImF (η2ke
−iε) − ImF (η2ke

iδ).

Hence, there exists the finite limit

ck − ck+1 = lim
ε→0+

δ→0+

Im(F (η2ke
−iε) − F (η2ke

iδ))

= π Re(−λ2kη2k) + lim
ε→0+

δ→0+

[
Im(−λ2kη2k) ln

sin ε/2

sin δ/2

+ Im

(
µ1η2ke

−iε

1 − e−iε
− µ1η2ke

iδ

1 − eiδ

)]
= π Re(−λ2kη2k) + lim

ε→0+

δ→0+

[
Im(−λ2kη2k) ln

sin ε/2

sin δ/2

− 1

2
Re(µ1η2k)

(
cot

ε

2
+ cot

δ

2

)]
.

Again, by Lemma 2.1, we get

Im(−λ2kη2k) = 0, Re(µ1η2k) = 0(2.5)

and

ck − ck+1 = −λ2kη2k · π.

In a similar way, we show that

(2.6) Im(−λ2k+2sη2k+2s) = 0, Re(µ2η2k+2s) = 0

and
ck+s − ck+s+1 = ck+s − c1 = −λ2k+2sη2k+2s · π.

It remains to determine λ2k for the case s = 0. As before, we consider
the finite limit

ck − ck+1 = lim
ε→0+

δ→0+

Im(F (η2ke
−iε) − F (η2ke

iδ))

= π Re(−λ2kη2k) + lim
ε→0+

δ→0+

[
Im(−λ2kη2k) ln

sin ε/2

sin δ/2
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− 1

2
Re(µ1η2k)

(
cot

ε

2
+ cot

δ

2

)
+ Im

(
µ2η2ke

−iε

(1 − e−iε)2
− µ2η2ke

iδ

(1 − eiδ)2

)]
= π Re(−λ2kη2k) + lim

ε→0+

δ→0+

[
Im(−λ2kη2k) ln

sin ε/2

sin δ/2

− 1

2
Re(µ1η2k)

(
cot

ε

2
+ cot

δ

2

)
− 1

4
Im(µ2η2k)

(
csc2

ε

2
− csc2

δ

2

)]
.

By Lemma 2.1, in this case, we have

(2.7) Im(−λ2kη2k) = 0, Re(µ1η2k) = 0, Im(µ2η2k) = 0

and
ck − ck+1 = −λ2kη2k · π.

Before we compute µ1 and µ2, note that

(2.8)
|1 − eiθ|
1 − eiθ

−→

{
i if θ → 0+,

−i if θ → 0−.

Let us start with the case s ≥ 1. We have already proved that,
in this case, Re(µ1η2k) = Re(µ2η2k+2s) = 0 (see (2.5) and (2.6)). The
tangent vector ieitF ′(eit) < 0 for all t ∈ (θ2k−1, θ2k) (see also Figure 1).
Hence, by (2.3) and (2.8), we have

0 ≥ lim
t→θ−

2k

(
|1 − η2ke

it|2 · ieitF ′(eit)
)

= lim
t→θ−

2k

(
|1 − η2ke

it|2 λ2kie
it

1 − η2ke
it

+ |1 − η2ke
it|2 µ1ie

it

(1 − η2ke
it)2

)
= −iµ1η2k.

Denote this by α = −iµ1η2k. Hence, µ1 = iαη2k. The tangent vector
ieitF ′(eit) > 0 for all t ∈ (θ2k+2s−1, θ2k+2s). In the same manner, we
obtain

0 ≤ lim
t→θ−

2k+2s

(
|1 − η2k+2se

it|2 · ieitF ′(eit)
)

= −iµ2η2k+2s = β.
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As µ1 · µ2 ̸= 0, we have α < 0 < β.

Finally, we consider the case s = 0. We have already proved that, in
this case, Re(µ1η2k) = Im(µ2 η2k) = 0 (see (2.7)). So α = −iµ1η2k ∈ R.
Moreover,

0 ≥ lim
t→θ−

2k

(
|1 − η2ke

it|3 · ieitF ′(eit)
)

= lim
t→θ−

2k

(
|1 − η2ke

it|3 · ieitµ2(1 + η2ke
it)

(1 − η2ke
it)3

)
= −2µ2η2k = −2β.

As µ2 ̸= 0, we have β = µ2η2k > 0. �

Lemma 2.3. Let c1 > c2 > · · · > ck, ck+s+1 = c1, and either s ≥ 1,
ck+1 = d1 < ck+2 = d2 < · · · < ck+s = ds, α < 0 < β or s = 0,
α ∈ R, β > 0. Choose arbitrary η2j = eiθ2j ∈ ∂∆, j = 1, . . . , k + s,
with θ2 < θ4 < · · · < θ2k+2s < θ2 +2π, and consider F defined by (2.2).
Then F is analytic on ∆ \ {η2j : j = 1, . . . , k + s} and F ′ vanishes
there only at points η2j−1 = eiθ2j−1 ∈ ∂∆, j = 1, . . . , k + s, such that
θ1 < θ2 < θ3 < · · · < θ2k+2s−1 < θ2k+2s < θ1 + 2π. Moreover,

(i) F is univalent on ∆ if ReF (η2j−1) < ReF (η2(k+m)−1) each time
as cj = dm.

(ii) F (∆) = Cl((aj), (cj)) ∩ Cr((bm), (dm)) if ReF (η2j−1) = aj for
j ≤ k, ReF (η2j−1) = bj−k for k + 1 ≤ j ≤ k + s and ImF (η1) =
c1.

Proof. The tangent vector

ξ 7−→ iξF ′(ξ), ξ ∈ ∂∆ \ {η2j : j = 1, . . . , k + s}

is a continuous real function. Indeed, by (2.2), we have

Im (iξF ′(ξ)) =

k+s∑
j=1

(
cj − cj+1

π
· Im

−iη2jξ

1 − η2jξ

)
= 0

for every ξ ∈ ∂∆\{η2j : j = 1, . . . , k+s}. Calculations of the one-sided
limits at each point η2j = eiθ2j give

lim
ε→0±

[
iei(θ2m+ε) · F ′(ei(θ2m+ε))

]
=

{
±∞ for j=1, . . . , k−1,

∓∞ for j=k+1, . . . , k+s−1,
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lim
ε→0

[
iei(θ2k+ε) · F ′(ei(θ2k+ε))

]
= −∞,

lim
ε→0

[
iei(θ2(k+s)+ε) · F ′(ei(θ2(k+s)+ε))

]
= +∞,

if s ≥ 1, and

lim
ε→0±

[
iei(θ2j+ε) · F ′(ei(θ2j+ε))

]
= ±∞ for j = 1, . . . , k,

if s = 0. Hence, by the Darboux property for real continuous functions,
the tangent vector ∂∆ \ {η2j : j = 1, . . . , k + s} ∋ ξ 7→ iξF ′(ξ) is a real
function vanishing at not less than k + s distinct points on ∂∆. Since
the (k + s + 1)th coefficient of the polynomial

z 7−→ F ′(z)
k+s∏
j=1

(1 − η2j z)(1 − η2k z)(1 − η2k+2s z)

vanishes, the function F ′ has no more zeros on ∆.

Note also that

lim
ε→0

Re[F (ei(θ2j+ε))] =

{
−∞ for j = 1, . . . , k − 1,

+∞ for j = k + 1, . . . , k + s− 1,

lim
ε→0±

Re[F (ei(θ2k+ε))] = ±∞,

lim
ε→0±

Re[F (ei(θ2(k+s)+ε))] = ∓∞,

in the case s ≥ 1, and

lim
ε→0

Re[F (ei(θ2j+ε))] = −∞ for j = 1, . . . , k,

in the case s = 0. Hence, the image of each arc (η2j , η2(j+1)) under the
mapping F is a horizontal half-line with the tip F (η2j+1).

(i) Since ReF (η2j−1) < ReF (η2k+2m−1) whenever cj = dm, the
finite values of F |∂∆, except slit ends, cover every slit exactly
twice, i.e., F is univalent.

(ii) By (2.2) and (2.4), we have

ImF (η2j−1) − ImF (η2j+1 = lim
ε→0+

[
ImF (η2je

−iε) − ImF (η2je
iε)

]
= cj − cj+1
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for all j = 1, . . . , k + s. Hence, if ImF (η1) = c1, then all the
remaining slits will lie at the prechosen heights of c2, c3, . . . , ck+s.

�

Remark 2.4. Generally, it is very hard to determine all the k + s + 2
parameters η2, η4, . . . , η2k+2s, α, β for the Riemann mapping (2.2)
whose range is Cl((aj), (cj)) ∩ Cr((bm), (dm)). From Lemma 2.3, it
follows that the points η1, η3, . . . , η2(k+s)−1 are uniquely determined by
the unknown points η2, η4, . . . , η2k+2s, α, β, so we have for them exactly
k + s + 2 equations: to those of Lemma 2.3 (ii), add F ′(0) > 0. Let us
consider the following examples of univalent functions F ∈ A(∆).

(i)

F (z) ≡ log
1 + η z

1 − η z
+

2i(tan γ)η z

1 − η2 z2

with η = eiγ , γ ∈ (0, π/2). The function has the form (2.2)
(k = s = 1, η2 = −η, η4 = η and β = −α = tan γ).
By Lemma 2.3, there exist exactly two points η1 and η2 such
that F ′(η1) = 0 and F ′(η3) = 0. Computing F ′, we see that
F ′(−η2) = F ′(η2) = 0. Hence, η1 = η2 and η3 = −η2. Moreover,
F (0) = 0 < F ′(0), F (η2) = a(γ)+iπ/2 and F (−η2) = b(γ)−iπ/2,
where a(γ) = ln(cot(γ/2)) − sec γ, b(γ) = −a(γ). By Lemma 2.3,
the function F is univalent and

F (∆) = C \ ({F (η2) − x : x ≥ 0} ∪ {F (−η2) + x : x ≥ 0}).

Observe that, in the limit case γ → 0+, we get the strip mapping

∆ ∋ z 7−→ log
1 + z

1 − z
,

which maps ∆ onto the strip {w ∈ C : | Im z| < π/2}.
(ii)

F (z) ≡ log
1 + z

1 − z
+ 2

(
tan2 γ

2

)
z

(1 − z)2
with 0 < γ < π.

In this case, k = 2, s = 0, η2 = −1, η4 = 1 and β = 2 tan2(γ/2)
in (2.2). Clearly, F (0) = 0 < F ′(0), F ′(e±iγ) = 0 (so η1 = eiγ ,
η3 = e−iγ), F (e±iγ) = a(γ) ± iπ/2, where a(γ) = ln(cot(γ/2)) −
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sec2(γ/2)/2 and

F (∆) = C \ {x± iπ/2 : x ≤ a(γ)}.

In the limit case γ → 0+, we again get the strip mapping

∆ ∋ z 7−→ log
1 + z

1 − z
.

(iii)

F (z) ≡ log

(
1 +

2z

(1 − z)2

)
+ 2β

z

1 + z2
with β > 0.

In this case, k = 1, s = 2, η2 = −i, η4 = 1, η6 = i and α = −β in
(2.2). Clearly, F (0) = 0 < F ′(0) and F ′(ξ) = F ′(−1) = F ′(ξ) =
0, where

ξ =
β + i

√
1 + 2β

1 + β

(so η1 = −1, η3 = ξ, η5 = ξ), and

F (ξ) = 1 + β + lnβ + πi,

F (−1) = − ln 2 − β,

F (ξ) = F (ξ).

Hence,

∂F (∆) = {x± πi : x ≥ 1 + β + lnβ}
∪ (−∞,− ln 2 − β] ∪ {∞}.

In the limit case, as β → 0+, we get the univalent function

∆ ∋ z 7−→ log

(
1 +

2z

(1 − z)2

)
which maps ∆ onto the slit strip {w ∈ C : | Imw| < π} \
(−∞,− ln 2].

Remark 2.5. Since every slit half-plane and slit strip of the set families
(1.7)–(1.8) can be obtained by passing in the kernel convergence sense
(with respect to zero) to the limit with a suitable sequence of above
considered slit planes, some similar results for other domains hold (for
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the kernel convergence and the Carathéodory theorem, see e.g., [6,
pages 76–78], [14, pages 13–15]).

For instance, if F ∈ H(∆) is univalent, F (0) = 0 < F ′(0) and

F (∆) = Ll((aj), (cj)) ∩ Lr((bm), (dm)),

then there are the unique 2k + 2s + 1 points ηj = eiθj ∈ ∂∆,
j = 0, . . . , 2k + 2s, θ0 < θ1 < · · · < θ2k+2s−1 < θ2k+2s < θ0 + 2π,
such that

F (z) ≡ λ

∫ z

0

k+s∏
j=1

1 − η2j−1t

1 − η2jt
· dt

(1 − η2kt)(1 − η0t)
(2.1′)

for some λ > 0,

F (z) ≡
k+s∑
j=0

cj − cj+1

π
log(1 − η2jz) +

iαη2kz

1 − η2kz
(2.2′)

where α < 0, c0 = c = ck+s+1 for s ≥ 1, and like before, ck+1 =
d1, . . . , ck+s = ds. Clearly, the points F (η2j−1) are the slit ends: aj+icj
if 1 ≤ j ≤ k and bj−k + idj−k if k + 1 ≤ j ≤ k + s. To obtain (2.1′),
consider the sequence of the domains

Dn = F (∆) ∪ {x + ic0 : x ∈ (n,+∞)} ∪ {z ∈ C : Im z > c0}.

Observe that Dn −−−−→
n→∞

F (∆) in the kernel convergence sense with

respect to zero.

By the Riemann mapping theorem, to each domain Dn there cor-
responds a unique conformal mapping Fn of the form (2.1) with the

points ηj , say η
(n)
j , j = −1, 0, 1, . . . , 2k+2s (Fn(η

(n)
−1 ) = n). If one adds

the slit {x+ ic0 : x ∈ (−∞, n]} in the right side of the Figure 1, then it
will demonstrate the function Fn.

By the Carathéodory theorem, Fn −−−−→
n→∞

F locally uniformly. Dur-

ing this limiting process, the points η
(n)
−1 and η

(n)
2k+2s tend to the single

point, say η2k+2s, and we obtain (2.1′) from (2.1) by passing n → ∞.
Of course, there are many other ways of approximating the domain
F (∆). For example, we could construct Dn by removing from the line
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{x + ic0 : x ∈ R}, the segment {x + ic0 : x ∈ (−1/n, 1/n)}, and adding

F (∆) ∪ {z ∈ C : Im z > c0}, n ∈ N.

Then Dn −−−−→
n→∞

F (∆) in the kernel convergence sense with respect

to zero and appropriate considerations lead to the formulas (2.1′) and
(2.2′).

Similarly, if F ∈ H(∆) is univalent, F (0) = 0 < F ′(0) and F (∆) =
Sl((aj), (cj)) ∩ Sr((bm), (dm)), then there are the unique 2k + 2s + 2
points ξj = eiτj , ηm = eiθm ∈ ∂∆, j = 0, . . . , 2k, m = 0, . . . , 2s,
τ0 < τ1 < · · · < τ2k < θ0 < θ1 < · · · < θ2s < τ0 + 2π, such that

F (z) ≡ λ

∫ z

0

k∏
j=1

1 − ξ2j−1t

1 − ξ2jt

s∏
m=1

1 − η2j−1t

1 − η2jt
· dt

(1 − ξ0t)(1 − η0t)

(2.1′′)

for some λ > 0 (without the second product if s = 0),

F (z) ≡
k∑

j=0

cj − cj+1

π
log(1 − ξ2jz) +

s∑
m=0

dm − dm+1

π
log(1 − η2mz),

(2.2′′)

where c0 = ds+1 = c and d0 = ck+1 = d. Obviously, F (ξ2j−1) = aj+icj
for 1 ≤ j ≤ k and F (η2m−1) = bm + idm for 1 ≤ m ≤ s. By the way,
the formulas (2.1′), (2.1′′), (2.2′) and (2.2′′) can be directly proved in
much the same manner as formulas (2.1) and (2.2). Also, the analog
of Lemma 2.3 for functions given by (2.2′) and (2.2′′) holds.

3. Proofs of the main theorems. In this section, we use the
Landau symbols O and o for complex functions of complex variables.
In particular, O(1) as z → ζ means that O(1) is a bounded function
in a punctured neighborhood of ζ, while o(1) as z → ζ means that
limz→ζ o(1) = 0.

Proof of Theorem 1.1. It is sufficient to consider the case

F (∆) = Cl((aj), (cj)) ∩ Cr((bm), (dm)),

so F has the form described in Lemma 2.2. Observe that, for every
0 ≤ r < 1, the function pr is analytic on ∆, f0 = F and, for η ∈ ∂∆,
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there exists the unrestricted limit

(3.1) lim
∆∋z→η

(1 − η z) log(1 − η z) = 0.

Denote G(z) ≡
∫ z

0
F ′(t)p(t) dt, and suppose that the function p ∈ P

is analytic at the point η2u for some u ∈ {1, 2 . . . , k + s}. We would
like to investigate the behavior of G near the point η2u using the power
series expansion of the function p around that point (this is possible as
we assumed p is analytic at η2u). Consider the following cases.

Case I. u ̸= k and u ̸= k + s. By (2.1) from Lemma 2.2, we have

G(z) =

∫ z

0

F ′(t)

(
p(η2u) +

∞∑
n=1

p(n)(η2u)

n!
(t− η2u)n

)
dt

= F (z)p(η2u) +

∫ z

0

F ′(t)
∞∑

n=1

p(n)(η2u)

n!
(t− η2u)ndt

= F (z)p(η2u) + O(1) as ∆ ∋ z → η2u.

(3.2)

Case II. s ≥ 1 and u = k or u = k+s. We start with the case u = k,
and we use (2.2) instead of (2.1). We have

G(z) = F (z)p(η2k)

+

∫ z

0

[( k+s∑
j=1

cj − cj+1

π

−η2j
1 − η2jt

+
iαη2k

(1 − η2kt)
2

+
iβη2k+2s

(1 − η2k+2st)
2

)

×
∞∑

n=1

p(n)(η2k)

n!
(t− η2k)n

]
dt

= F (z)p(η2k) + iαη2kp
′(η2k) log(1 − η2kz)

+ O(1) as ∆ ∋ z → η2k.

(3.3)

In a similar way, we obtain

G(z) = F (z)p(η2k+2s)

+ iβη2k+2sp
′(η2k+2s) log(1 − η2k+2sz) + O(1)

(3.4)

as ∆ ∋ z → η2k+2s.
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Case III. s = 0 and u = k. Proceeding as before, by Lemma 2.2 (the
case s = 0), we get

G(z) = F (z)p(η2k) − 2β p′(η2k)z/(1 − η2kz)

+ [(iα− β)p′(η2k) − β η2kp
′′(η2k)]η2k

× log(1 − η2kz) + O(1),

(3.5)

as ∆ ∋ z → η2k.

In any case, formulas (3.1)–(3.5) always lead to

(3.6) G(z) = F (z)[p(η2u) + o(1)] + O(1) as ∆ ∋ z → η2u.

Obviously, we can write (3.6) for the function pr instead of p (pr is
analytic on the whole unit circle).

For γ ∈ R, denote by ℓγ = {z ∈ ∆: ImF (z) = γ}, i.e., ℓγ is the
preimage of the horizontal line {w ∈ C : Imw = γ} under the univalent
function F . Observe that ℓγ1 ∩ ℓγ2 = ∅ for γ1 ̸= γ2, γ1, γ2 ∈ R and∪

γ∈R
ℓγ = ∆.

Fix γ ∈ R. Note that a half-line of the horizontal line {w ∈ C : Imw =
γ} is included in F (∆) if and only if there exists u ∈ {1, 2, . . . , k + s}
such that η2u ∈ ℓγ . Suppose η2u ∈ ℓγ . Then, for z ∈ ℓγ , by (3.6), we
have

Re fr(z) = Re

∫ z

0

F ′(t)pr(t) dt

= Re(F (z)[pr(η2u) + o(1)]) + O(1)

= ReF (z) Re(pr(η2u) + o(1))

− ImF (z) Im(pr(η2u) + o(1)) + O(1)

= ReF (z) Re pr(η2u) + O(1) as ℓγ ∋ z → η2u,

i.e., fr(∆) ∈ A. �

In fact, we have proved a little stronger

Theorem 1.1´. Suppose A is any of the set families (1.7)–(1.8),
F ∈ A(∆) is univalent with F (0) = 0 < F ′(0) and F (∆) ∈ A. If
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p ∈ P is analytic at every point η ∈ ∂∆ such that Re p(η) > 0 and
F (η) = ∞, then the range of the function k(·, F, p) is also in A.

Proof of Theorem 1.2. For a fixed set family A choose D ∈ A, and let
f ∈ S0

H(∆, D). Then there exists a univalent F ∈ A(∆) convex in the
direction of the real axis such that F (0) = 0 < F ′(0) and f = k(·, F, p).

For almost all real θ the angular limits f̂(eiθ), F̂ (eiθ), p̂(eiθ) exist and

are finite. Since Im F̂ = Im f̂ almost everywhere there exists a set

family Ã consisting of such slit domains whose slits are on the same

heights as domains from A and F (∆) ∈ Ã (see also [9, Remark 3]).

Perhaps Ã ̸= A, so on a suitable horizontal line {w ∈ C : Imw = γ}

(i) F (∆) has two slits,
(ii) f(∆) and F (∆) have only one slit, but each of them extends in

opposite directions.

Let pr(z) ≡ p(rz), fr = k(·, F, pr) and 0 ≤ r < 1. By Theorem 1.1,

fr(∆) ∈ Ã, and by Lemma 2.2, wr is an end of the slit {w ∈ C : Imw =
γ} \ fr(∆) if and only if there exists the zero ξj ∈ ∂∆ of F ′ such that
fr(ξj) = wr. Denote by Ω the kernel of the sequence (fn/(n+1)(∆))
with respect to 0. Since fn/(n+1) → f locally uniformly on ∆, then
f(∆) j Ω, see [2, Theorem 3.5]. However,

|Rewr|≤
∫ 1

0

|F ′(tξj)pr(tξj)| dt≤
∫ 1

0

∣∣∣∣F ′(tξj)

1 − rt

∣∣∣∣(1+rt) dt<C

∫ 1

0

(1+t) dt,

for some positive constant C. Hence, the possibilities (i)–(ii) fail, i.e.,

Ã = A. �
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