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SOME PROPERTIES OF THE SOLUTIONS OF THIRD
ORDER LINEAR ORDINARY DIFFERENTIAL

EQUATIONS

G.A. GRIGORIAN

ABSTRACT. The method of Riccati equations is used
to study some properties of third order linear ordinary
differential equations. Some criteria of asymptotic behavior
and non stability of solution of this equation are obtained.
Two oscillatory criteria are proved.

1. Introduction. Let p(t), q(t) and r(t) be real valued continuous
functions on [t0,+∞). Consider the equation

(1.1) ϕ′′′(t) + p(t)ϕ′′(t) + q(t)ϕ′(t) + r(t)ϕ(t) = 0, t ≥ t0.

Such problems, as the study of the question of asymptotic behavior and
stability, of the question of oscillation or non oscillation of solutions of
equation (1.1) by the properties of its coefficients, occupy an important
place among the problems of the qualitative theory of differential
equations, and many works are devoted to them (see [1, 5, 6, 7, 8,
10, 11, 12] and the references therein).

In the case of the constant coefficients of equation (1.1) the answers
on the above mentioned questions are evident. In particular, equa-
tion (1.1) is non oscillatory or has two linearly independent oscillatory
solutions, depending on whether all the roots of the characteristic equa-
tion

x3 + px2 + qx+ r = 0,

are real or this equation has two complex conjugate roots. The spread
of this simple yet important statement on non-autonomous equation
(1.1) is a difficult problem. Important results in this direction were
obtained in [1, 5, 6, 11].
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In the paper [5, pages 441, 442], the next remarkable statement is
proved.

Theorem 1.1. [10]. If p(t) ≡ 0, q(t) ≤ 0, r(t) > 0, t ≥ t0 and

(1.2) IL ≡
∫ +∞

t0

[
r(τ)− 2

3
√
3
(−q(τ))3/2

]
dτ = +∞,

then equation (1.1) has oscillatory solutions.

The relation (1.3) is sharp in the sense that it is also necessary
for oscillation of equation (1.1) when q and r are constants. In this
paper, an oscillatory criteria for (1.1) is proved, from which follows
(see Example 3.8, below), that equation (1.1) will have an oscillatory
solution when p(t) ≡ 0, q(t) ≤ 0, r(t) > 0, t ≥ t0, even if IL = −∞.

The criterion Routh-Hurvitz asserts (see [9, page 290]), that if p, q
and r are constant, then equation (1.1) is asymptotically stable if and
only if

(1.3) p > 0, q > 0, r > 0, pq > r.

Therefore, the failure of one or more of these inequalities can lead
to instability of the autonomous equation (1.1). There is a question:
Whether and when a non-autonomous equation (1.1) is unstable, if
(1.3) is broken? The answer to this question in part is given in this
paper (see Theorems 3.1–3.6 below).

2. Auxiliary propositions. In equation (1.1), make the change

(2.1) ϕ(t) = exp

{∫ t

t0

y(τ) dτ

}[
c+

∫ t

t0

ψ(τ) dτ

]
, t ≥ t0,

where c = const, and y(t) and ψ(t) are unknown twice continuously
differentiable functions on the [t0,+∞). We come to the equation
(2.2)

ψ′′(t) + p0(t)ψ
′(t) + q0(t)ψ(t) + r0(t)

[
c+

∫ t

t0

ψ(τ)dτ

]
= 0, t ≥ t0,
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where

(2.3)


p0(t) = 3y(t) + p(t);
q0(t) = 3y′(t) + 3y2(t) + 2p(t)y(t) + q(t);
r0(t) = y′′(t) + (3y(t) + p(t))y′(t) + y3(t) + p(t)y2(t)

+q(t)y(t) + r(t), t ≥ t0.

Consider the Riccati equation

(2.4) y′′(t) + (3y(t) + p(t))y′(t)

+ y3(t) + p(t)y2(t) + q(t)y(t) + r(t) = 0, t ≥ t0.

Let y0(t) be a real valued solution of this equation on the [t0,+∞).
Put in (2.2) y(t) = y0(t), t ≥ t0. Taking into account (2.3), we obtain
the equation

(2.5) ψ′′(t) + p1(t)ψ
′(t) + q1(t)ψ(t) = 0, t ≥ t0,

where p1(t) = 3y0(t) + p(t), q1(t) = 3y′0(t) + 3y20(t) + 2p(t)y0(t) = q(t),
t ≥ t0. In the future, where necessary, we will assume the functions
p(t) and q(t) are required of times continuously differentiable. The
addition of equation (2.4) y(t) = y0(t), t ≥ t0 and integrating from t0
to t gives

(2.6) y′0(t) +
3

2
y20(t) + p(t)y0(t)

+

∫ t

t0

[
y30(τ) + +p(τ)y20(τ) + (q(τ)− p′(τ))y0(τ) + r(τ)

]
dτ = c0,

t ≥ t0,

where c0 = y′0(t0) + (3/2)y20(t0) + p(t0)y0(t0). Denote:

pmin(t) = min
τ∈[t0,t]

{p(τ)},

p̃max(t) = max
τ∈[t0,t]

{p′(τ)},

qmin(t) = min
τ∈[t0,t]

{q(τ)}.
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Using Helder’s inequality, it is not difficult to show that(∫ t

t0

y0(τ) dτ

)3

≤ (t− t0)
2

∫ t

t0

|y30(τ)| dτ, t ≥ t0;

pmin(t)

(∫ t

t0

y0(τ) dτ

)2

≤ (t− t0)

∫ t

t0

p(τ)y20(τ) dτ, t ≥ t0.

From this and the evident inequality

(qmin(t)− p̃max(t))

∫ t

t0

|y0(τ)| dτ ≤
∫ t

t0

(q(τ)−p′(τ))|y0(τ)| dτ, t ≥ t0,

it follows that

Q(Y0(t), t, c0) ≤ (t− t0)
2

[ ∫ t

t0

{
|y30(τ)|+ p(τ)y20(τ)

(2.7)

+ (q(τ)− p′(τ))|y0(τ)|+ r(τ)

}
dτ − c0

]
, t ≥ t0,

where Q(Y, t, c) ≡ Y 3+(t−t0)pmin(t)Y
2+(t−t0)(qmin(t)−p̃max(t))|Y |+

(t− t0)2[
∫ t

t0
r(τ) dτ−c], −∞ < Y , c < +∞, Y0(t) ≡

∫ t

t0
y0(τ) dτ , t ≥ t0.

For every t ≥ t0 and c ∈ (−∞,+∞), we denote by Y (t, c) and Y (t, c)
the lower bound and maximum of solutions of the system

(2.8)

{
Q(Y, t, c) ≤ 0;
Y > 0,

respectively.

Lemma 2.1. Let the conditions y0(t) > 0 y′0(t) + (3/2)y20(t) +
p(t)y0(t) ≥ 0, t ≥ t0 hold. Then, for every t ≥ t0 and c ≥ c0, the
system (2.8) is solvable, and

(2.9) Y (t, c) ≤ Y0(t) ≤ Y (t, c), t ≥ t0.

Proof. From the conditions of the lemma, from (2.6) and (2.7) it
follows that, for every t ≥ t0 and c ≥ c0, the integral Y0(t) is a solution
of system (2.8). Therefore, (2.9) is valid. The proof of the lemma is
complete. �
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Let a(t), b(t), c(t), a1(t), b1(t), c1(t) be real valued continuous
functions on [t0,+∞). Consider the Riccati equations

z′(t) + a(t)z2(t) + b(t)z(t) + c(t) = 0, t ≥ t0,(2.10)

z′(t) + a1(t)z
2(t) + b1(t)z(t) + c1(t) = 0, t ≥ t0(2.11)

and the differential inequalities

η′(t) + a(t)η2(t) + b(t)η(t) + c(t) ≥ 0, t ≥ t0,(2.12)

η′(t) + a1(t)η
2(t) + b1(t)η(t) + c1(t) ≥ 0, t ≥ t0.(2.13)

It is not difficult to show that, for a(t) ≥ 0, a1(t) ≥ 0, t ≥ t0, these
inequalities have a solution on [t0,+∞) satisfying the arbitrary large
initial value condition: η(t0) = η(0).

Theorem∗. Let z1(t) a solution of equation (2.11) on [t0,+∞),
η0(t) and η1(t) solution inequalities (2.12) and (2.13) and correspond-
ingly on [t0,+∞) with η0(t0) ≥ z1(t0) and η1(t0) ≥ z1(t0). Moreover,
let the following conditions hold:

a(t) ≥ 0,

z(0) − z1(t0) +

∫ t

t0

exp

{∫ τ

t0

a1(ξ)[η0(ξ) + η1(ξ) + b1(ξ)] dξ

}
[
(a1(τ)− a(τ))z21(τ) + (b1(τ)− b(τ))z1(τ) + c1(τ)− c(τ)

]
dτ ≥ 0,

t ≥ t0,

for some z(0) ∈ [z1(t0), η1(t0)]. Then equation (2.10) has solution z0(t)
on [t0,+∞) with z0(t0) ≥ z(0), and z0(t) ≥ z1(t), t ≥ t0.

For the proof of this theorem, see [3, pages 1228–1230].

It is evident that, for a1(t) ≥ 0, t ≥ t0 and c1(t) ≡ 0 the function

z1(t) ≡
λ0 exp

{
−
∫ t

t0
b1(τ) dτ

}
1 + λ0

∫ t

t0
a1(τ) exp

{
−
∫ τ

t0
b1(s) ds

}
dτ
,

t ≥ t0, (λ0 = const ≥ 0)
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is a solution of equation (2.11) on [t0,+∞). Taking into account this
fact and putting a1(t) = a(t), b1(t) = b(t), t ≥ t0, and c1(t) ≡ 0, from
Theorem∗ we get

Corollary∗. Let a(t) ≥ 0, c(t) ≤ 0, t ≥ t0. Then, for
every z(0) ≥ 0, equation (2.10) has solutions z0(t) on [t0,+∞) with
z0(t0) = z(0), and

z0(t) ≥
z0(t0) exp{−

∫ t

t0
b1(τ) dτ}

1 + z0(t0)
∫ t

t0
a1(τ) exp{−

∫ τ

t0
b1(s) ds} dτ

, t ≥ t0.

Let L(t) and S(t) be arbitrary continuous differentiable functions on
[t0,+∞). Rewrite equation (2.4) in the form

(y′(t) + y2(t)− L(t)y(t) + S(t))′ + (y(t) + p(t) + L(t))(2.14)

×(y′(t) + y2(t)− L(t)y(t) + S(t))
+(L′(t) + L2(t) + p(t)L(t) + q(t)− S(t))

y(t) + r(t)− S ′(t)− (p(t) + L(t))S(t) = 0, t ≥ t0.

Denote u(t) ≡ y′(t) + y2(t) − L(t)y(t) + S(t), t ≥ t0. Then equa-
tion (2.10) can be replaced by the following system
(2.15) u′(t) + (y(t) + p(t) + L(t))u(t) + (L′(t) + L2(t) + p(t)L(t)+

+q(t)− S(t))y(t) + r(t)− S ′(t)− (p(t) + L(t))S(t) = 0;
y′(t) + y2(t)− L(t)y(t) + S(t) = u(t),

t ≥ t0. Solving the first equation of this system with respect to u(t)
and putting it into the second, we get

y′(t) + y2(t)− L(t)y(t)

(2.16)

= −S(t) + 1

E(t)

[
c1−

∫ t

t0

E(τ)

{[
L′(τ)+L2(τ)+p(τ)L(τ)+q(τ)−S(τ)

]
[
y(τ)+p(τ)+L(τ)

]
−
[
L′(τ)+L2(τ)+p(τ)L(τ)+q(τ)

]
[
p(τ) + L(τ)

]
− S ′(τ) + r(τ)

}
dτ

]
, t ≥ t0,
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where

E(t) ≡ exp

{∫ t

t0

[y(ξ) + p(ξ) + L(ξ)] dξ
}
, t ≥ t0,

c1 = y′(t0) + y2(t0)− L(t0)y(t0) + S(t0).

Lemma 2.2. Let the conditions

(1) L′(t) + L2(t) + p(t)L(t) + q(t) ≤ S(t) ≤ 0, t ≥ t0;
(2)

[
L′(t) + L2(t) + p(t)L(t) + q(t)− S(t)

][
p(t) + L(t)

]
≤ 0, t ≥ t0;

(3) r(t) ≤
[
L′(t) +L2(t) + p(t)L(t) + q(t)

][
p(t) +L(t)

]
+ S ′(t), t ≥ t0,

hold. Then, for every y(0) > 0 and c(0) > 0, equation (2.4) has a
positive solution y0(t) on [t0,+∞), satisfying the conditions

(2.17) y0(t0) = y(0);

(2.18) y′0(t0) + y20(t0)− L(t0)y0(t0) + S(t0) = c(0),

and the following inequality holds

(2.19)

∫ t

t0

y0(τ) dτ ≥ ln

(
1 + y0(t0)

∫ t

t0

exp

{∫ τ

t0

L(ξ) dξ
})

, t ≥ t0.

Proof. Let y0(t) be a solution of equation (2.4) on the [t0, ν), satisfy-
ing the initial value conditions (2.17), (2.18), where [t0, ν) is the max-
imum interval of existence for y0(t). Show that y0(t) > 0, t ∈ [t0, ν).
Suppose that it is not true. Then y0(t1) ≤ 0 for some t1 ∈ [t0, ν). By
virtue of continuity of y0(t), from this and (2.17) it follows that, for
some t ∈ [t0, ν) y0(t) = 0 and y0(t) > 0, t ∈ [t0, t). From conditions
(1)–(3) and (2.18), it follows that, for y(t) ≡ y0(t) and t = t, the right
hand side of (2.16) is positive. Therefore, y′(t) > 0. But, on the other
hand, y′(t) = lim∆t→0(y0(t+∆t))/∆t ≤ 0. The contradiction thus
obtained shows that y0(t) > 0, t ∈ [t0, ν).

We next show that ν = +∞. Suppose ν < +∞. As for the fact that
y0(t) is positive, then

(2.20) ϕ0(t) ≡ exp

{∫ t

t0

y0(τ) dτ

}
≥ 1, t ∈ [t0, ν).
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By virtue of (2.1), ϕ0(t) coincides with the solution ϕ̃0(t) of equa-

tion (1.1) on the [t0, ν). Then, from (2.20), it follows that ϕ̃0(t) ̸= 0,
t ∈ [t0, ν̃) for some ν̃ > ν. By virtue of (2.1), from this it follows that

ỹ0(t) ≡ ϕ̃′0(t)/ϕ̃0(t) is a solution of equation (2.4) on [t0, ν̃) and coin-
cides with y0(t) on [t0, ν). Therefore, [t0, ν) is not the maximal interval
of existence for y0(t). The contradiction obtained shows that ν = +∞.

We next prove (2.19). Note that y0(t) is a solution of the Riccati
equation

y′(t) + y2(t)− L(t)y(t) = u0(t), t ≥ t0,

where u0(t) ≥ 0 (t ≥ t0 is the right hand side of (2.16) for y(t) = y0(t),
t ≥ t0. Therefore, by virtue of Corollary∗, the inequality (2.19) holds.
The proof of the lemma is complete. �

We now indicate some special cases in which conditions (1)–(3) of
Lemma 2.2 hold.

I. L(t) ≡ 0, q(t) ≤ S(t) = λ0 +
∫ t

t0
[r(τ) − p(τ)q(τ)] dτ ≤ 0,

[q(t)− λ0 −
∫ t

t0
(r(τ)− p(τ)q(τ)) dτ ]p(t) ≥ 0, t ≥ t0;

II. L(t) ≡ 0, p(t)q(t) ≥ 0, q(t) ≤ S(t) = λ0 +
∫ t

t0
r(τ) dτ ≤ 0, t ≥ t0;

III. L(t) = −p(t), q(t)− p′(t) ≤ S(t) = λ0 +
∫ t

t0
r(τ) dτ ≤ 0, t ≥ t0;

IV. L(t) = −p(t), S(t) ≡ 0, q(t) ≤ p′(t), r(t) ≤ 0, t ≥ t0;
V. L(t) = −p(t), S(t) = q(t), p′(t) ≥ 0, q(t) ≤ 0, r(t) ≤ q′(t) t ≥ t0;
VI. L(t) = −p(t), S(t) = q(t)−p′(t), q(t) ≤ p′(t), r(t) ≤ −p′′(t)+q′(t),

t ≥ t0.

In system (2.15) we make the change u(t) = v(t)y(t), v(t) ̸= 0, t ≥ t0.
Arrive at the system

(2.21)



y′(t) + y2(t) + 1
v(t)

[
L′(t) + L2(t) + p(t)L(t) + q(t)

−S(t) + v′(t) + (p(t) + L(t))v(t)
]
y(t)

+ 1
v(t)

[
r(t)− S ′(t)− (p(t) + L(t))S(t)

]
= 0;

y′(t) + y2(t)− [L(t) + v(t)]y(t) + S(t) = 0, t ≥ t0.

We require L(t), S(t) and v(t) to be such that the coefficients of the
first and second equations of system (2.21) are the same. We arrive at
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the system

(2.22)

 [L(t) + v(t)]′ + [L(t) + v(t)]2 + p(t)
[L(t) + v(t)] + S(t) = 0;

S ′(t) + [p(t) + L(t) + v(t)]S(t) = r(t), t ≥ t0.

Consequently, if L(t) + v(t) and S(t) form a solution of the system
(2.22), then every solution of the Riccati equation

(2.23) y′(t) + y2(t)− [L(t) + v(t)]y(t) + S(t) = 0, t ≥ t0,

is a solution of equation (2.4).

Given [t0,+∞) functions x(t), y(t), z(t) such, that for every thrice
continuous differentiable functions ϕ(t), we find

(2.24) [ϕ′′(t)− y(t)ϕ′(t) + x(t)ϕ(t)]′

+ z(t)[ϕ′′(t)− y(t)ϕ′(t) + x(t)ϕ(t)]

= ϕ′′′(t) + p(t)ϕ′′(t) + q(t)ϕ′(t) + r(t)ϕ(t) = 0, t ≥ t0.

Expanding the brackets in this relation and resulting terms of like
derivatives of ϕ(t), we get (y(t)− z(t) + p(t))ϕ′′(t) + (y′(t)− x(t)z(t) +
q(t))ϕ′(t) + (−x′(t)−−x(t)z(t) + r(t))ϕ(t) = 0, t ≥ t0. Consequently,

(2.25)

 z(t) = y(t) + p(t);
x(t) = y′(t) + (y(t) + p(t))y(t) + q(t);
x′(t) + (y(t) + p(t))x(t) = r(t), t ≥ t0.

Eliminating x(t) and z(t) from this system, we obtain the following
Riccati equation

(2.26)

y′′(t) + (3y(t) + 2p(t))y′(t) + y3(t) + 2p(t)y2(t)

+ (p′(t) + p2(t) + q(t))y(t)

+ q′(t) + p(t)q(t)− r(t) = 0, t ≥ t0.

Let y1(t) be a solution of this equation on [t0,+∞), and let

(2.27) p2(t) ≡ −y1(t), q2(t) ≡ y′1(t) + y21(t) + p(t)y1(t) + q(t),

t ≥ t0. Consider the equation

(2.28) ϕ′′(t) + p2(t)ϕ
′(t) + q2(t)ϕ(t) = 0, t ≥ t0.
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Lemma 2.3. Every solution of equation (2.28) is a solution of equa-
tion (1.1).

Proof. Let x1(t), y1(t) and z1(t) form a solution of the system (2.26).
Then, by virtue of (2.24) and (2.25), every solution of the equation

ϕ′′(t)− y1(t)ϕ
′(t) + x1(t)ϕ(t) = 0, t ≥ t0,

is a solution of equation (1.1). Therefore by virtue of (2.28) to
complete the proof of the lemma we need only to show that q2(t) =
x1(t), t ≥ t0. By virtue of the second equation of the system (2.26)
x1(t) = y′1(t) + y21(t) + p(t)y1(t) + q(t) = q2(t), t ≥ t0. The proof of
the lemma is complete. �

Apply Lemma 2.2 to equation (2.26). This brings us to the assertion

Lemma 2.4. Let the following conditions hold :

1◦) (L(t) + p(t))′ + (L(t) + p(t))2 + q(t) ≤ S(t) ≤ 0, t ≥ t0:
2◦) [(L(t)+p(t))′+(L(t)+p(t))2+q(t)−S(t)] ×(2p(t)+L(t)) ≤ 0,

t ≥ t0:
3◦) q′(t) + p(t)q(t) − r(t) ≤ [(L(t) + p(t))′ + (L(t)+ p(t))2 +

q(t)](2p(t) + L(t)) + S ′(t), t ≥ t0.

Then, for every y(1) > 0 and c(1) > 0, equation (2.26) has positive
solution y1(t) on the [t0,+∞), satisfying the conditions

y1(t0) = y(1);

y′1(t0) + y21(t0) + L(t0)y1(t0) + S(t0) = c(1).

Moreover, the inequality∫ t

t0

y1(τ) dτ ≥ ln

(
1 + y1(t0)

∫ t

t0

exp

{∫ τ

t0

L(ξ)dξ
})

, t ≥ t0,

holds.

We indicate some particular cases in which the conditions 1◦)–3◦) of
Lemma 2.4 are satisfied:

I.◦ S(t) ≡ 0, (L(t) + p(t))′ + (L(t) + p(t))2 + q(t) = 0, q′(t) +
p(t)q(t)− r(t) ≤ 0, t ≥ t0;
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II.◦ L(t) ≡ 0, S(t) = p′(t)+p2(t)+q(t) ≤ 0, q′(t)+p(t)q(t)−r(t) ≤
2(p′(t) + p2(t) + q(t))p(t) + (p′(t) + p2(t) + q(t))′, t ≥ t0;

III.◦ L(t) = −p(t), S(t) = q(t) ≤ 0, r(t) ≥ 0, t ≥ t0;
IV.◦ L(t) = −p(t), S(t) ≡ 0, q(t) ≤ 0, p(t)q(t) ≤ 0, q′(t) ≤ r(t),

t ≥ t0;
V.◦ L(t) = −2p(t), S(t) ≡ 0, q′(t)+p(t)q(t) ≤ r(t), −p′(t)+p2(t)+

q(t) ≤ 0, t ≥ t0;
VI.◦ L(t) = −2p(t), S(t) = −p′(t)+p2(t)+q(t) ≤ 0, p(t)q(t)−r(t) ≤

[−p′(t) + p2(t)]′, t ≥ t0.

Let a(t), b(t) and c(t) be continuous functions on [t0,+∞).

Lemma 2.5. Let the following conditions hold :

1)
∫ +∞
t0

c(τ) dτ = +∞;

2)
∫ t

t0
|a(τ)| dτ ≤ K

∫ t

t0
c(τ) dτ , t ≥ t0, K = const;

3) b(t) → 0 when t→ ∞.

Then

(2.29)

∫ t

t0

a(τ)b(τ) dτ = o

(∫ t

t0

c(τ) dτ

)
, t→ +∞.

Proof. From 1), it follows that
∫ t

t0
c(τ) dτ > 0, t ≥ t1, for some

t1 ≥ t0. We show that, for every ε > 0, there exists tε > t1 such that

(2.30) J(t) ≡
∫ t

t0
|a(τ)b(τ)| dτ∫ t

t0
c(τ) dτ

< ε, t ≥ tε.

By virtue of 3), choose N > t1 so large that |b(t)| < ε/(2K) for t > N .
Then, by virtue of 2),

(2.31)

J(t) =

∫ N

t0
|a(τ)b(τ)| dτ +

∫ t

N
|a(τ)b(τ)| dτ∫ t

t0
c(τ) dτ

≤
∫ N

t0
|a(τ)b(τ)| dτ∫ t

t0
c(τ) dτ

+
ε

2K

∫ t

N
|a(τ)b(τ)| dτ∫ t

t0
c(τ) dτ

≤
∫ N

t0
|a(τ)b(τ)| dτ∫ t

t0
c(τ) dτ

+
ε

2K
.



158 G.A. GRIGORIAN

By virtue of 1), we choose tε > N so large that∫ N

t0
|a(τ)b(τ)| dτ∫ t

t0
c(τ) dτ

<
ε

2
for t ≥ tε.

From this and from (2.31), equation (2.30) follows, which proves (2.29).
The proof of the lemma is complete. �

3. Some properties of the solutions of equation (1.1). Let
t0 < t1 < · · · < tn < · · · be an infinitely large sequence.

Theorem 3.1. Let the following conditions hold :

A1)
∫ t

tk
exp

{ ∫ τ

tk
[p(s) −

∫ s

tk
exp

{
−
∫ s

ξ
p(u) du

}
q(ξ) dξ] ds

}
q(τ) dτ ≤

0, t ∈ [tk, tk+1), k = 0, 1, . . .;
B1) r(t) ≤ 0, t ≥ t0.

Then every solution ϕ0(t) of equation (1.1) with ϕ0(t0) = 1, ϕ′0(t0) >
0 satisfies the inequalities

(3.1) ϕ0(t) ≥ 1 + ϕ′0(t0)(t− t0), ϕ′(t) > 0, t ≥ t0.

Proof. From A1), it follows that the equation

L′(t) + L2(t) + p(t)L(t) + q(t) = 0, t ≥ t0,

has nonnegative solution L0(t) on the [t0,+∞) (see [4, page 26,
Theorem 4.1]). Then from B1), it follows that, for L(t) ≡ L0(t),
S(t) ≡ 0, Lemma 2.2 1)–3) hold. Therefore, by virtue of Lemma 2.2,
equation (2.4) has positive solution y0(t), satisfying the condition
y0(t0) = ϕ′0(t0) > 0, and (because L0(t) ≥ 0, t ≥ t0)∫ t

t0

y0(τ) dτ ≥ ln(1 + ϕ′0(t0)(t− t0)), t ≥ t0.

By virtue of (2.1), it follows that the function

ϕ0(t) ≡ exp

{∫ t

t0

y0(τ) dτ

}
, t ≥ t0,

is a solution of equation (1.1), satisfying the conditions in (3.1). The
proof of the theorem is complete. �
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Theorem 3.2. Let the following conditions hold :

A2) q(t) ≤ 0; r(t) ≤ q′(t) + p(t)q(t), t ≥ t0.

Then every solution ϕ0(t) of equation (1.1) with ϕ0(t0) = 1 and
ϕ′0(t0) > 0 satisfies the inequalities (3.1). Also, if

B1) p(t) ≥ 0, t ≥ t0,

then

(3.2) exp
{
Y (t, c)

}
≤ ϕ0(t) ≤ exp

{
Y (t, c)

}
, t ≥ t0,

where c = ϕ′′0(t0) + (1/2)(ϕ′0(t0))
2 + p(t0)ϕ

′
0(t0).

Proof. The conditions A2) of Theorem 3.2 show that, for L(t) ≡ 0,
S(t) = q(t), t ≥ t0, conditions 1)–3) of Lemma 2.2 are satisfied.
Therefore, equation (2.4) has positive solution y0(t) on [t0,+∞) with
y0(t0) = ϕ′0(t0) > 0, and∫ t

t0

y0(τ) dτ ≥ ln
(
1 + ϕ′0(t0)(t− t0)

)
, t ≥ t0.

By virtue of (2.1), it follows that ϕ0(t) ≡ exp{
∫ t

t0
y0(τ) dτ}(t ≥ t0)

is a solution of equation (1.1), satisfying the relations (3.1). Further,
because y0(t) is a solution of equation (2.16), then from the conditions
A2) it follows that y′0(t) + y20(t) ≥ 0, t ≥ t0. From this and from A2),
we get

y′0(t) +
3

2
y20(t) + p(t)y0(t) ≥ 0, t ≥ t0.

By virtue of Lemma 2.1 equation (3.2) follows. The proof of the
theorem is complete. �

Remark 3.3. In view of I and II, Theorem 3.2 remains valid, if in it
we change condition A2) by one of the following groups of conditions.

a11) q(t) ≤ λ0 +
∫ t

t0
[r(τ)− p(τ)q(τ)] dτ ≤ 0, (q(t)− λ0 −

∫ t

t0
[r(τ)−

p(τ)q(τ)] dτ)p(t) ≥ 0, λ0 = const, t ≥ t0.

a21) q(t) ≤ λ0 +
∫ t

t0
r(τ) dτ ≤ 0, p(t)q(t) ≥ 0, λ0 = const, t ≥ t0.

Taking into account III–VI, by analogy of Theorem 3.2, the following
can be proven.
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Theorem 3.4. Let one of the following groups of conditions be satis-
fied :

A3) q(t)− p′(t) ≤ λ0 +
∫ t

t0
r(τ) dτ ≤ 0, t ≥ t0, λ0 = const;

B3) q(t) ≤ p′(t), r(t) ≤ 0, t ≥ t0;
C3) p

′(t) ≥ 0, q(t) ≤ 0, r(t) ≤ q′(t), t ≥ t0;
Γ3) q(t) ≤ p′(t), r(t) ≤ q′(t)− p′′(t), t ≥ t0.

Then every solution ϕ0(t) of equation (1.1) with ϕ0(t0) = 1, ϕ′(t0) > 0
satisfies the inequalities:

ϕ0(t) > 1 + ϕ′0(t0)

∫ t

t0

exp

{
−

∫ τ

t0

p(s) ds

}
dτ,

ϕ′(t) > 0, t ≥ t0.

Theorem 3.5. Let condition B1) of Theorem 3.1 and the condition

A4) q(t) ≤ 0, t ≥ t0,

be satisfied. Then, for every α > 0, equation (1.1) has a solution ϕ0(t)
such that
(3.3)

ϕ0(t0) = 1,

ϕ0(t) ≥ 1 + ϕ′0(t0)(t− t0)

+ α

∫ t

t0

dτ

∫ τ

t0

exp

{∫ ξ

t0

p(s) ds

}
dξ, ϕ′0(t) > 0, t ≥ t0,

and, if condition B1) is satisfied, then (3.2) is valid.

Proof. By virtue of Corollary∗ and from condition A2) it follows that
the equation

L′(t) + L2(t) + p(t)L(t) + q(t) = 0, t ≥ t0,

has a positive solution L0(t) on [t0,+∞), satisfying the inequality

(3.4) L0(t) ≥
α exp

{∫ t

t0
p(ξ) dξ

}
1 + α

∫ t

t0
exp

{∫ τ

t0
p(ξ) dξ

}
dτ
, t ≥ t0, α > 0.

It is not difficult to see that, for L(t) = L0(t), t ≥ t0, S(t) ≡ 0 and
if the condition B2) is satisfied, then conditions 1)–3) of Lemma 2.2
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are satisfied. Therefore, equation (2.4) has a positive solution y0(t) on
[t0,+∞) with y0(t0) = ϕ′0(t0) > 0, and the inequality
(3.5)∫ t

t0

y0(τ) dτ ≥ ln

(
1 + ϕ′0(t0)

∫ t

t0

exp

{∫ τ

t0

L0(ξ) dξ

}
dτ

)
, t ≥ t0,

is satisfied. By virtue of (2.1),

ϕ0(t) ≡ exp

{∫ t

t0

y0(τ) dτ

}
, t ≥ t0,

is a solution of equation (1.1). Then, from (3.4) and (3.5), equa-
tion (3.3) follows.

To prove the last part of the theorem we merely repeat the arguments
relating to the proof of (3.2) of Theorem 3.1. The proof of the theorem
is complete. �

Theorem 3.6. Let condition A4) of Theorem 3.5 be satisfied, and let

A3)
∫ +∞
t0

exp{−
∫ τ

t0
p(ξ) dξ} dτ = +∞; r(t) ≥ 0, t ≥ t0.

Then equation (1.1) is nonstable.

Proof. Consider the equation

(3.6) y′(t) + y2(t) + p(t)y(t)

= −q(t) +
∫ t

t0

exp

{
−
∫ t

τ

(p(ξ) + y(ξ))

}
r(τ) dτ, t ≥ t0.

Let y2(t) solution of this equation with y2(t0) > 0. From A2) and B3) it
follows that the right hand side of (3.6) for y(t) ≡ y2(t) is nonnegative
in the domain of existence of the y2(t). Then, using the method of
proof of Lemma 2.2, we can easily show that y2(t) is continuable on
[t0,+∞). Note that y2(t) is a solution of the Riccati equation

y′(t) + y2(t) + p(t)y(t) = u2(t), t ≥ t0,

where u2(t) ≥ 0, t ≥ t0, the right hand part of (3.6) for y(t) = y2(t),
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t ≥ t0. By virtue of Corollary∗, from this the inequality

y2(t) ≥
y2(t0) exp

{
−
∫ t

t0
p(ξ) dξ

}
1 + y2(t0)

∫ t

t0
exp

{
−
∫ τ

t0
p(ξ) dξ

}
dτ
, t ≥ t0

follows. Consequently,∫ t

t0

y2(τ) dτ ≥ ln

(
1 + y2(t0)

∫ t

t0

exp

{
−
∫ τ

t0

p(ξ) dξ

}
dτ

)
,(3.7)

t ≥ t0.

Note that L0(t) + v0(t) ≡ y2(t) and

S0(t) ≡
∫ t

t0

exp

{
−
∫ τ

t0

(p(ξ) + y2(ξ)) dξ

}
r(τ) dτ, t ≥ t0,

form a solution of the system (2.22). Consider the equation

(3.8) ϕ′′(t)− (L0(t) + v0(t))ϕ
′(t) + S0(t)ϕ(t) = 0, t ≥ t0.

Let ϕj(t), j = 1, 2, be linearly independent real-valued solutions of this
equation. Then ϕ±(t) ≡ ϕ1(t) ± iϕ2(t) linearly independent complex
solutions of the same equation do not vanish on [t0,+∞). Therefore,
y±(t) ≡ ϕ′±(t)/ϕ±(t), t ≥ t0, are solutions of equation (2.23) for
L(t) + v(t) = L0(t) + v0(t), S(t) = S0(t), t ≥ t0. Then y±(t) is a
solutions of equation (2.4) on [t0,+∞). By virtue of (2.1) it follows
that

ϕ±(t) = ϕ±(t0) exp

{∫ t

t0

y±(τ) dτ

}
is a solution of equation (1.1). Therefore, to complete the proof of the
theorem, it is enough to show that equation (3.8) is nonstable. By
virtue of Liuvill’s formula the Wronskian W (t) of the solutions ϕ±(t)
is equal to:

W (t) =W (t0) exp

{∫ t

t0

y2(τ) dτ

}
, t ≥ t0 (W (t0) ̸= 0).

From this, A3) and (3.7) the unboundedness of W (t) follows. Conse-
quently, equation (3.9) is unstable. The proof of the theorem is com-
plete. �

Theorem 3.7. Let condition B5) of Theorem 3.6 be satisfied, and let :
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A6) p(t) ≥ 0, t ≥ t0;

B6) q(t) ≤ 0,
∫ +∞
t0

|q(τ)| dτ < +∞;∫ +∞

t0

[r(τ)− p(τ)q(τ)− q′(τ)] dτ = +∞,∫ t

t0

∣∣p′(τ)− p2(τ)− q(τ)
∣∣ dτ

= O

(∫ t

t0

[r(τ)− p(τ)q(τ)− q′(τ)] dτ

)
, t→ +∞.

Then equation (1.1) has two linearly independent oscillatory solutions
which are solutions of a linear ordinary differential equation with one
coefficient of greatest derivative.

Proof. Put L(t) = −p(t), S(t) = q(t), t ≥ t0. Then, if the conditions
B5), A6) and B6) are satisfied, the conditions 1)–3) of Lemma 2.4 will
be satisfied. Therefore, equation (2.26) has positive solution y1(t) on
[t0,+∞). Consequently, by virtue of Lemma 2.3 to prove the theorem,
it is enough to show that equation (2.28) is oscillatory.

In (2.28), we make a change:

ϕ(t) = exp

{
−
∫ t

t0

p2(τ)

2
dτ

}
ψ(t), t ≥ t0.

This brings us to

(3.9) ψ′′(t) +Q(t)ψ(t) = 0, t ≥ t0,

where

Q(t) = q2(t)−
p′2(t)

2
− p22(t)

4
, t ≥ t0.

It is evident that equation (2.28) is oscillatory if and only if equa-
tion (3.13) is the same. A sufficient condition of oscillation of (3.13) is
(see [4, page 958])

(3.10)

∫ +∞

t0

Q(τ) dτ = +∞.



164 G.A. GRIGORIAN

By virtue of (2.27),

(3.11) Q(t) =
3

2
y′1(t) +

3

4
y21(t) + p(t)y1(t) + q(t), t ≥ t0.

By virtue of A6), two cases are possible:

a)
∫ +∞
t0

p(τ)y1(τ) dτ = +∞;

b)
∫ +∞
t0

p(τ)y1(τ) dτ < +∞.

In case B6) a), (3.11) follows (3.10). Let case b) take place. By
virtue of (2.14)–(2.16), equation (2.26) is equivalent to the following
equation

(3.12) y′(t) + y2(t) + p(t)y(t) + q(t) =
1

E1(t)

{
c1 +

∫ t

t0

E1(τ)r(τ) dτ

}
,

t ≥ t0, where

E1(t) ≡ exp

{∫ t

t0

[
y(ξ) + p(ξ)

]
dξ

}
, t ≥ t0,

c1 ≡ y′(t0)+y
2(t0)++p(t0)y(t0)+ q(t0) > 0. From this, it follows that

y′1(t) + y21(t)− L(t)y1(t) = u1(t), t ≥ t0,

where u1(t)(≥ 0) right hand part of (3.12) for y(t) = y1(t), t ≥ t0.
Then

(3.13) Q̃(t) ≡ y′1(t) + y21(t) + p(t)y1(t) + q(t) ≥ 0, t ≥ t0.

We show that

(3.14) I ≡
∫ +∞

t0

Q̃(τ) dτ = +∞.

Suppose that this is not true. Then, by virtue of (3.13), the inequality
I < +∞ holds. From this, A6) and B6), it follows that

(3.15) lim
t→+∞

y1(t) = 0,

(3.16)

∫ +∞

t0

y21(τ) dτ < +∞.
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Substituting y(t) = y1(t), t ≥ t0, in (2.26) and integrating from t0 to t,
we will have:

(3.17) y′1(t) +
3

2
y21(t) + 2p(t)y1(t)

+

∫ t

t0

y31(τ) dτ + 2

∫ t

t0

p(τ)y21(τ) dτ

+

∫ t

t0

[
p2(τ)− p′(τ) + q(τ)

]
y1(τ) dτ

+

∫ t

t0

[q′(τ) + p(τ)q(τ)− r(τ)] dτ = c2, t ≥ t0,

where c2 = y′1(t0) +
3
2y

2
1(t0) + 2p(t0)y1(t0). By virtue of Lemma 2.5

from B6) and (3.15) it follows that∫ t

t0

[
p2(τ)− p′(τ) + q(τ)

]
y1(τ) dτ = o

(∫ t

t0

[r(τ)− q′(τ)− p(τ)q(τ)] dτ

)
,

t→ +∞.

From this, B6), (3.15), (3.16) and b),

y′1(t) +
3

2
y21(t) + 2p(t)y1(t) −→ +∞, t→ +∞

follows. Then, by virtue of b) and (3.16), we will have y1(t) → +∞
when t → +∞, which contradicts (3.15). The contradiction thus
obtained proves (3.14). From (3.14), B6) and b), (3.10) follows. The
proof of the theorem is complete. �

Example 3.8. Consider equation

ϕ′′′(t) + (1 +
√
3 + sin t)ϕ′′(t) + λϕ(t) = 0,(3.18)

t ≥ t0, λ = const > 0.

It is not difficult to see that, for this equation, all conditions of
Theorem 3.7 are satisfied. Therefore, it has two linearly independent
oscillatory solutions, the zeroes of which separate each other.
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In (3.18), we make a change:

ϕ(t) = exp

{
− 1

2

∫ t

t0

p(τ) dτ

}
ψ(t), t ≥ t0.

This brings us to the equation

(3.19) ψ′′′(t) + q1(t)ψ
′(t) + r1(t)ψ(t) = 0, t ≥ t0,

where q1(t) ≡ −(1/3)(1+
√
3+sin t)2−cos t ≤ 0, r1(t) ≡ λ+(2/27)(1+√

3 + sin t)3 − sin t/3 > 0, t ≥ t0. For

I1 ≡
∫ 2π

0

{
(1 +

√
3 + sin τ)3 − [(1 +

√
3 + sin τ)2 + 3 cos τ ]3/2

}
dτ

≈ −4.065,

and for equation (3.19) condition (1.3) is satisfied only for λ >
−I1/27π ≈ 0.047 (for 0 < λ < −I1/27π, we have IL = −∞). Con-
sequently, Lazer’s theorem is not applicable to (3.18), where 0 < λ ≤
−I1/27π (note that Theorem 8 of [5] [a generalization of Lazer’s the-
orem]) also cannot be applicable to (3.18); see [11, page 392]. Mean-
while, Theorem 3.6 is applicable to (3.18) for all λ > 0.

Remark 3.9. The oscillatory theorems for the cases q1(t) ≤ 0 and
r1(t) ≥ 0, where the equality (1.3) (for q(t) ≡ q1(t) and r(t) ≡ r1(t))
may not hold, are obtained in the work [1]. They relate to the case
when

I2 ≡
∫ +∞

t0

r1(τ) dτ < +∞

(in Example 3.8, I2 = +∞). It is not difficult to see that, if p(t) ≥ 0,
q(t) ≡ 0 and r(t) ≥ 0, r(t) ̸≡ 0 are periodic functions, then the
conditions B6) of Theorem 3.7 are satisfied, while for IL (for q(t) ≡ q1(t)
and r(t) ≡ r1(t)) the following cases are possible.

1) IL = +∞,
2) IL diverges,
3) IL = −∞.

The following theorem is a supplement to [5, page 134, Theorem 4].

Theorem 3.10. Let the following conditions hold :
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A7) ∫ t

tk

exp

{
−
∫ τ

tk

ds

∫ s

tk

q(ξ)dξ

}
q(τ) dτ ≤ 0,

t ∈ [tk, tk+1), k = 0, 1, 2, . . . ,

where tk, k = 0, 1, . . ., is the same as in Theorem 3.1,

B7) q
′(t) + p(t)q(t)− r(t) ≤ 0, t ≥ t0.

Then, if all nontrivial solutions of equation (1.1) oscillate, except one
multiplied by arbitrary constant, then equation (1.1) has two linearly
independent oscillatory solutions, which are solutions of a second order
linear ordinary differential equation with one coefficient of greatest
derivative.

Proof. By virtue of [4, Theorem 4.1], from A7), it follows that the
equation

(L(t) + p(t))′ + (L(t) + p(t))2 + q(t) = 0, t ≥ t0,

has solution L0(t) on [t0,+∞). Then, from B7) it follows that for
L(t) ≡ L0(t) and S(t) ≡ 0 the conditions 1◦)–3◦) of Lemma 2.4 are
satisfied (see I◦)). Therefore, equation (2.26) has solution y1(t) on
[t0,+∞).

By Lemma 2.3, it follows that all solutions of equation (2.28), the co-
efficients of which are determined by y1(t) according to formula (2.27),
are solutions of equation (1.1).

Hence, to complete the proof of the theorem, it remains to show that
equation (2.28) oscillates. Suppose equation (2.28) does not oscillate.
Then it has two linearly independent non oscillatory solutions which
are simultaneously solutions of equation (1.1). But, from the conditions
of the theorem, it follows that equation (1.1) cannot have two linearly
independent oscillatory solutions. The contradiction so obtained proves
oscillation of equation (2.28). The proof of the theorem is complete. �

Remark 3.11. In view of II◦–VI◦, Theorem 3.10 remains valid if
we replace conditions A7) and B7) by one of the following groups of
conditions.
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a17) q
′(t) + p(t)q(t) − r(t) ≤ 2(p′(t)p2(t) + q(t))p(t) + (p′(t)p2(t) +
q(t))′, p′(t)p2(t) + q(t) ≤ 0, t ≥ t0.

a27) q(t) ≤ 0, r(t) ≥ 0, t ≥ t0.
a37) q(t) ≤ 0, p(t)q(t) ≤ 0, q′(t) ≤ r(t), t ≥ t0.
a47) q

′(t) + p(t)q(t) ≤ r(t), −p′(t) + p2(t) + q(t) ≤ 0, t ≥ t0.
a57) p(t)q(t) − r(t) ≤ [−p′(t) + p2(t)]′, −p′(t) + p2(t) + q(t) ≤ 0,

t ≥ t0.
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