SOME PROPERTIES OF THE SOLUTIONS OF THIRD ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS

G.A. GRIGORIAN

Abstract

The method of Riccati equations is used to study some properties of third order linear ordinary differential equations. Some criteria of asymptotic behavior and non stability of solution of this equation are obtained. Two oscillatory criteria are proved.

1. Introduction. Let $p(t), q(t)$ and $r(t)$ be real valued continuous functions on $\left[t_{0},+\infty\right)$. Consider the equation

$$
\begin{equation*}
\phi^{\prime \prime \prime}(t)+p(t) \phi^{\prime \prime}(t)+q(t) \phi^{\prime}(t)+r(t) \phi(t)=0, \quad t \geq t_{0} . \tag{1.1}
\end{equation*}
$$

Such problems, as the study of the question of asymptotic behavior and stability, of the question of oscillation or non oscillation of solutions of equation (1.1) by the properties of its coefficients, occupy an important place among the problems of the qualitative theory of differential equations, and many works are devoted to them (see $[\mathbf{1}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}$, $10,11,12$] and the references therein).

In the case of the constant coefficients of equation (1.1) the answers on the above mentioned questions are evident. In particular, equation (1.1) is non oscillatory or has two linearly independent oscillatory solutions, depending on whether all the roots of the characteristic equation

$$
x^{3}+p x^{2}+q x+r=0,
$$

are real or this equation has two complex conjugate roots. The spread of this simple yet important statement on non-autonomous equation (1.1) is a difficult problem. Important results in this direction were obtained in $[\mathbf{1}, 5,6,11]$.

[^0]In the paper [5, pages 441, 442], the next remarkable statement is proved.

Theorem 1.1. [10]. If $p(t) \equiv 0, q(t) \leq 0, r(t)>0, t \geq t_{0}$ and

$$
\begin{equation*}
I_{L} \equiv \int_{t_{0}}^{+\infty}\left[r(\tau)-\frac{2}{3 \sqrt{3}}(-q(\tau))^{3 / 2}\right] d \tau=+\infty \tag{1.2}
\end{equation*}
$$

then equation (1.1) has oscillatory solutions.

The relation (1.3) is sharp in the sense that it is also necessary for oscillation of equation (1.1) when q and r are constants. In this paper, an oscillatory criteria for (1.1) is proved, from which follows (see Example 3.8, below), that equation (1.1) will have an oscillatory solution when $p(t) \equiv 0, q(t) \leq 0, r(t)>0, t \geq t_{0}$, even if $I_{L}=-\infty$.

The criterion Routh-Hurvitz asserts (see [9, page 290]), that if p, q and r are constant, then equation (1.1) is asymptotically stable if and only if

$$
\begin{equation*}
p>0, \quad q>0, \quad r>0, \quad p q>r \tag{1.3}
\end{equation*}
$$

Therefore, the failure of one or more of these inequalities can lead to instability of the autonomous equation (1.1). There is a question: Whether and when a non-autonomous equation (1.1) is unstable, if (1.3) is broken? The answer to this question in part is given in this paper (see Theorems 3.1-3.6 below).
2. Auxiliary propositions. In equation (1.1), make the change

$$
\begin{equation*}
\phi(t)=\exp \left\{\int_{t_{0}}^{t} y(\tau) d \tau\right\}\left[c+\int_{t_{0}}^{t} \psi(\tau) d \tau\right], \quad t \geq t_{0} \tag{2.1}
\end{equation*}
$$

where $c=$ const, and $y(t)$ and $\psi(t)$ are unknown twice continuously differentiable functions on the $\left[t_{0},+\infty\right)$. We come to the equation

$$
\begin{equation*}
\psi^{\prime \prime}(t)+p_{0}(t) \psi^{\prime}(t)+q_{0}(t) \psi(t)+r_{0}(t)\left[c+\int_{t_{0}}^{t} \psi(\tau) d \tau\right]=0, \quad t \geq t_{0} \tag{2.2}
\end{equation*}
$$

where

$$
\left\{\begin{align*}
p_{0}(t)= & 3 y(t)+p(t) \tag{2.3}\\
q_{0}(t)= & 3 y^{\prime}(t)+3 y^{2}(t)+2 p(t) y(t)+q(t) \\
r_{0}(t)= & y^{\prime \prime}(t)+(3 y(t)+p(t)) y^{\prime}(t)+y^{3}(t)+p(t) y^{2}(t) \\
& +q(t) y(t)+r(t), \quad t \geq t_{0}
\end{align*}\right.
$$

Consider the Riccati equation

$$
\begin{align*}
& y^{\prime \prime}(t)+(3 y(t)+p(t)) y^{\prime}(t) \tag{2.4}\\
& \quad+y^{3}(t)+p(t) y^{2}(t)+q(t) y(t)+r(t)=0, \quad t \geq t_{0}
\end{align*}
$$

Let $y_{0}(t)$ be a real valued solution of this equation on the $\left[t_{0},+\infty\right)$. Put in (2.2) $y(t)=y_{0}(t), t \geq t_{0}$. Taking into account (2.3), we obtain the equation

$$
\begin{equation*}
\psi^{\prime \prime}(t)+p_{1}(t) \psi^{\prime}(t)+q_{1}(t) \psi(t)=0, \quad t \geq t_{0} \tag{2.5}
\end{equation*}
$$

where $p_{1}(t)=3 y_{0}(t)+p(t), q_{1}(t)=3 y_{0}^{\prime}(t)+3 y_{0}^{2}(t)+2 p(t) y_{0}(t)=q(t)$, $t \geq t_{0}$. In the future, where necessary, we will assume the functions $p(t)$ and $q(t)$ are required of times continuously differentiable. The addition of equation (2.4) $y(t)=y_{0}(t), t \geq t_{0}$ and integrating from t_{0} to t gives
(2.6) $\quad y_{0}^{\prime}(t)+\frac{3}{2} y_{0}^{2}(t)+p(t) y_{0}(t)$

$$
\begin{array}{r}
+\int_{t_{0}}^{t}\left[y_{0}^{3}(\tau)++p(\tau) y_{0}^{2}(\tau)+\left(q(\tau)-p^{\prime}(\tau)\right) y_{0}(\tau)+r(\tau)\right] d \tau=c_{0} \\
t \geq t_{0}
\end{array}
$$

where $c_{0}=y_{0}^{\prime}\left(t_{0}\right)+(3 / 2) y_{0}^{2}\left(t_{0}\right)+p\left(t_{0}\right) y_{0}\left(t_{0}\right)$. Denote:

$$
\begin{aligned}
p_{\min }(t) & =\min _{\tau \in\left[t_{0}, t\right]}\{p(\tau)\}, \\
\widetilde{p}_{\max }(t) & =\max _{\tau \in\left[t_{0}, t\right]}\left\{p^{\prime}(\tau)\right\}, \\
q_{\min }(t) & =\min _{\tau \in\left[t_{0}, t\right]}\{q(\tau)\}
\end{aligned}
$$

Using Helder's inequality, it is not difficult to show that

$$
\begin{gathered}
\left(\int_{t_{0}}^{t} y_{0}(\tau) d \tau\right)^{3} \leq\left(t-t_{0}\right)^{2} \int_{t_{0}}^{t}\left|y_{0}^{3}(\tau)\right| d \tau, \quad t \geq t_{0} \\
p_{\min }(t)\left(\int_{t_{0}}^{t} y_{0}(\tau) d \tau\right)^{2} \leq\left(t-t_{0}\right) \int_{t_{0}}^{t} p(\tau) y_{0}^{2}(\tau) d \tau, \quad t \geq t_{0}
\end{gathered}
$$

From this and the evident inequality

$$
\left(q_{\min }(t)-\widetilde{p}_{\max }(t)\right) \int_{t_{0}}^{t}\left|y_{0}(\tau)\right| d \tau \leq \int_{t_{0}}^{t}\left(q(\tau)-p^{\prime}(\tau)\right)\left|y_{0}(\tau)\right| d \tau, \quad t \geq t_{0}
$$

it follows that

$$
\begin{align*}
Q\left(Y_{0}(t), t, c_{0}\right) \leq & \left(t-t_{0}\right)^{2}\left[\int _ { t _ { 0 } } ^ { t } \left\{\left|y_{0}^{3}(\tau)\right|+p(\tau) y_{0}^{2}(\tau)\right.\right. \tag{2.7}\\
& \left.\left.+\left(q(\tau)-p^{\prime}(\tau)\right)\left|y_{0}(\tau)\right|+r(\tau)\right\} d \tau-c_{0}\right], \quad t \geq t_{0}
\end{align*}
$$

where $Q(Y, t, c) \equiv Y^{3}+\left(t-t_{0}\right) p_{\text {min }}(t) Y^{2}+\left(t-t_{0}\right)\left(q_{\text {min }}(t)-\widetilde{p}_{\max }(t)\right)|Y|+$ $\left(t-t_{0}\right)^{2}\left[\int_{t_{0}}^{t} r(\tau) d \tau-c\right],-\infty<Y, c<+\infty, Y_{0}(t) \equiv \int_{t_{0}}^{t} y_{0}(\tau) d \tau, t \geq t_{0}$. For every $t \geq t_{0}$ and $c \in(-\infty,+\infty)$, we denote by $\underline{Y}(t, c)$ and $\bar{Y}(t, c)$ the lower bound and maximum of solutions of the system

$$
\left\{\begin{array}{l}
Q(Y, t, c) \leq 0 \tag{2.8}\\
Y>0
\end{array}\right.
$$

respectively.

Lemma 2.1. Let the conditions $y_{0}(t)>0 y_{0}^{\prime}(t)+(3 / 2) y_{0}^{2}(t)+$ $p(t) y_{0}(t) \geq 0, t \geq t_{0}$ hold. Then, for every $t \geq t_{0}$ and $c \geq c_{0}$, the system (2.8) is solvable, and

$$
\begin{equation*}
\underline{Y}(t, c) \leq Y_{0}(t) \leq \bar{Y}(t, c), \quad t \geq t_{0} \tag{2.9}
\end{equation*}
$$

Proof. From the conditions of the lemma, from (2.6) and (2.7) it follows that, for every $t \geq t_{0}$ and $c \geq c_{0}$, the integral $Y_{0}(t)$ is a solution of system (2.8). Therefore, (2.9) is valid. The proof of the lemma is complete.

Let $a(t), b(t), c(t), a_{1}(t), b_{1}(t), c_{1}(t)$ be real valued continuous functions on $\left[t_{0},+\infty\right)$. Consider the Riccati equations

$$
\begin{align*}
z^{\prime}(t)+a(t) z^{2}(t)+b(t) z(t)+c(t) & =0, & t \geq t_{0}, \tag{2.10}\\
z^{\prime}(t)+a_{1}(t) z^{2}(t)+b_{1}(t) z(t)+c_{1}(t) & =0, & t \geq t_{0} \tag{2.11}
\end{align*}
$$

and the differential inequalities

$$
\begin{align*}
\eta^{\prime}(t)+a(t) \eta^{2}(t)+b(t) \eta(t)+c(t) & \geq 0, \tag{2.12}\\
\eta^{\prime}(t)+a_{1}(t) \eta_{0}(t)+b_{1}(t) \eta(t)+c_{1}(t) & \geq 0, \tag{2.13}\\
& t \geq t_{0}
\end{align*}
$$

It is not difficult to show that, for $a(t) \geq 0, a_{1}(t) \geq 0, t \geq t_{0}$, these inequalities have a solution on $\left[t_{0},+\infty\right)$ satisfying the arbitrary large initial value condition: $\eta\left(t_{0}\right)=\eta_{(0)}$.

Theorem*. Let $z_{1}(t)$ a solution of equation (2.11) on $\left[t_{0},+\infty\right)$, $\eta_{0}(t)$ and $\eta_{1}(t)$ solution inequalities (2.12) and (2.13) and correspondingly on $\left[t_{0},+\infty\right)$ with $\eta_{0}\left(t_{0}\right) \geq z_{1}\left(t_{0}\right)$ and $\eta_{1}\left(t_{0}\right) \geq z_{1}\left(t_{0}\right)$. Moreover, let the following conditions hold:

$$
\begin{gathered}
a(t) \geq 0 \\
z_{(0)}-z_{1}\left(t_{0}\right)+\int_{t_{0}}^{t} \exp \left\{\int_{t_{0}}^{\tau} a_{1}(\xi)\left[\eta_{0}(\xi)+\eta_{1}(\xi)+b_{1}(\xi)\right] d \xi\right\} \\
{\left[\left(a_{1}(\tau)-a(\tau)\right) z_{1}^{2}(\tau)+\left(b_{1}(\tau)-b(\tau)\right) z_{1}(\tau)+c_{1}(\tau)-c(\tau)\right] d \tau \geq 0} \\
t \geq t_{0},
\end{gathered}
$$

for some $z_{(0)} \in\left[z_{1}\left(t_{0}\right), \eta_{1}\left(t_{0}\right)\right]$. Then equation (2.10) has solution $z_{0}(t)$ on $\left[t_{0},+\infty\right)$ with $z_{0}\left(t_{0}\right) \geq z_{(0)}$, and $z_{0}(t) \geq z_{1}(t), t \geq t_{0}$.

For the proof of this theorem, see [3, pages 1228-1230].
It is evident that, for $a_{1}(t) \geq 0, t \geq t_{0}$ and $c_{1}(t) \equiv 0$ the function

$$
\begin{gathered}
z_{1}(t) \equiv \frac{\lambda_{0} \exp \left\{-\int_{t_{0}}^{t} b_{1}(\tau) d \tau\right\}}{1+\lambda_{0} \int_{t_{0}}^{t} a_{1}(\tau) \exp \left\{-\int_{t_{0}}^{\tau} b_{1}(s) d s\right\} d \tau}, \\
t \geq t_{0}, \quad\left(\lambda_{0}=\mathrm{const} \geq 0\right)
\end{gathered}
$$

is a solution of equation (2.11) on $\left[t_{0},+\infty\right)$. Taking into account this fact and putting $a_{1}(t)=a(t), b_{1}(t)=b(t), t \geq t_{0}$, and $c_{1}(t) \equiv 0$, from Theorem* we get

Corollary*. Let $a(t) \geq 0, c(t) \leq 0, t \geq t_{0}$. Then, for every $z_{(0)} \geq 0$, equation (2.10) has solutions $z_{0}(t)$ on $\left[t_{0},+\infty\right)$ with $z_{0}\left(t_{0}\right)=z_{(0)}$, and

$$
z_{0}(t) \geq \frac{z_{0}\left(t_{0}\right) \exp \left\{-\int_{t_{0}}^{t} b_{1}(\tau) d \tau\right\}}{1+z_{0}\left(t_{0}\right) \int_{t_{0}}^{t} a_{1}(\tau) \exp \left\{-\int_{t_{0}}^{\tau} b_{1}(s) d s\right\} d \tau}, \quad t \geq t_{0}
$$

Let $\mathcal{L}(t)$ and $\mathcal{S}(t)$ be arbitrary continuous differentiable functions on $\left[t_{0},+\infty\right)$. Rewrite equation (2.4) in the form

$$
\begin{align*}
&\left(y^{\prime}(t)+\right.\left.y^{2}(t)-\mathcal{L}(t) y(t)+\mathcal{S}(t)\right)^{\prime}+(y(t)+p(t)+\mathcal{L}(t)) \tag{2.14}\\
& \times\left(y^{\prime}(t)+y^{2}(t)-\mathcal{L}(t) y(t)+\mathcal{S}(t)\right) \\
&+\left(\mathcal{L}^{\prime}(t)+\mathcal{L}^{2}(t)+p(t) \mathcal{L}(t)+q(t)-\mathcal{S}(t)\right) \\
& y(t)+r(t)-\mathcal{S}^{\prime}(t)-(p(t)+\mathcal{L}(t)) \mathcal{S}(t)=0, \quad t \geq t_{0}
\end{align*}
$$

Denote $u(t) \equiv y^{\prime}(t)+y^{2}(t)-\mathcal{L}(t) y(t)+\mathcal{S}(t), t \geq t_{0}$. Then equation (2.10) can be replaced by the following system

$$
\left\{\begin{array}{l}
u^{\prime}(t)+(y(t)+p(t)+\mathcal{L}(t)) u(t)+\left(\mathcal{L}^{\prime}(t)+\mathcal{L}^{2}(t)+p(t) \mathcal{L}(t)+\right. \tag{2.15}\\
+q(t)-\mathcal{S}(t)) y(t)+r(t)-\mathcal{S}^{\prime}(t)-(p(t)+\mathcal{L}(t)) \mathcal{S}(t)=0 \\
y^{\prime}(t)+y^{2}(t)-\mathcal{L}(t) y(t)+\mathcal{S}(t)=u(t)
\end{array}\right.
$$

$t \geq t_{0}$. Solving the first equation of this system with respect to $u(t)$ and putting it into the second, we get

$$
\begin{align*}
& y^{\prime}(t)+y^{2}(t)-\mathcal{L}(t) y(t) \tag{2.16}\\
& =-\mathcal{S}(t)+\frac{1}{E(t)}\left[c_{1}-\int_{t_{0}}^{t} E(\tau)\left\{\left[\mathcal{L}^{\prime}(\tau)+\mathcal{L}^{2}(\tau)+p(\tau) \mathcal{L}(\tau)+q(\tau)-\mathcal{S}(\tau)\right]\right.\right. \\
& {[y(\tau)+p(\tau)+\mathcal{L}(\tau)]-\left[\mathcal{L}^{\prime}(\tau)+\mathcal{L}^{2}(\tau)+p(\tau) \mathcal{L}(\tau)+q(\tau)\right]} \\
& \left.\left.[p(\tau)+\mathcal{L}(\tau)]-\mathcal{S}^{\prime}(\tau)+r(\tau)\right\} d \tau\right], \quad t \geq t_{0}
\end{align*}
$$

where

$$
\begin{gathered}
E(t) \equiv \exp \left\{\int_{t_{0}}^{t}[y(\xi)+p(\xi)+\mathcal{L}(\xi)] d \xi\right\}, \quad t \geq t_{0} \\
c_{1}=y^{\prime}\left(t_{0}\right)+y^{2}\left(t_{0}\right)-\mathcal{L}\left(t_{0}\right) y\left(t_{0}\right)+\mathcal{S}\left(t_{0}\right)
\end{gathered}
$$

Lemma 2.2. Let the conditions
(1) $\mathcal{L}^{\prime}(t)+\mathcal{L}^{2}(t)+p(t) \mathcal{L}(t)+q(t) \leq \mathcal{S}(t) \leq 0, t \geq t_{0}$;
(2) $\left[\mathcal{L}^{\prime}(t)+\mathcal{L}^{2}(t)+p(t) \mathcal{L}(t)+q(t)-\mathcal{S}(t)\right][p(t)+\mathcal{L}(t)] \leq 0, t \geq t_{0}$;
(3) $r(t) \leq\left[\mathcal{L}^{\prime}(t)+\mathcal{L}^{2}(t)+p(t) \mathcal{L}(t)+q(t)\right][p(t)+\mathcal{L}(t)]+\mathcal{S}^{\prime}(t), t \geq t_{0}$,
hold. Then, for every $y_{(0)}>0$ and $c_{(0)}>0$, equation (2.4) has a positive solution $y_{0}(t)$ on $\left[t_{0},+\infty\right)$, satisfying the conditions

$$
\begin{equation*}
y_{0}\left(t_{0}\right)=y_{(0)} \tag{2.17}
\end{equation*}
$$

$$
\begin{equation*}
y_{0}^{\prime}\left(t_{0}\right)+y_{0}^{2}\left(t_{0}\right)-\mathcal{L}\left(t_{0}\right) y_{0}\left(t_{0}\right)+\mathcal{S}\left(t_{0}\right)=c_{(0)} \tag{2.18}
\end{equation*}
$$

and the following inequality holds

$$
\begin{equation*}
\int_{t_{0}}^{t} y_{0}(\tau) d \tau \geq \ln \left(1+y_{0}\left(t_{0}\right) \int_{t_{0}}^{t} \exp \left\{\int_{t_{0}}^{\tau} \mathcal{L}(\xi) d \xi\right\}\right), \quad t \geq t_{0} \tag{2.19}
\end{equation*}
$$

Proof. Let $y_{0}(t)$ be a solution of equation (2.4) on the $\left[t_{0}, \nu\right)$, satisfying the initial value conditions (2.17), (2.18), where $\left[t_{0}, \nu\right)$ is the maximum interval of existence for $y_{0}(t)$. Show that $y_{0}(t)>0, t \in\left[t_{0}, \nu\right)$. Suppose that it is not true. Then $y_{0}\left(t_{1}\right) \leq 0$ for some $t_{1} \in\left[t_{0}, \nu\right)$. By virtue of continuity of $y_{0}(t)$, from this and (2.17) it follows that, for some $\bar{t} \in\left[t_{0}, \nu\right) y_{0}(\bar{t})=0$ and $y_{0}(t)>0, t \in\left[t_{0}, \bar{t}\right)$. From conditions (1)-(3) and (2.18), it follows that, for $y(t) \equiv y_{0}(t)$ and $t=\bar{t}$, the right hand side of (2.16) is positive. Therefore, $y^{\prime}(\bar{t})>0$. But, on the other hand, $y^{\prime}(\bar{t})=\lim _{\Delta t \rightarrow 0}\left(y_{0}(\bar{t}+\Delta t)\right) / \Delta t \leq 0$. The contradiction thus obtained shows that $y_{0}(t)>0, t \in\left[t_{0}, \nu\right)$.

We next show that $\nu=+\infty$. Suppose $\nu<+\infty$. As for the fact that $y_{0}(t)$ is positive, then

$$
\begin{equation*}
\phi_{0}(t) \equiv \exp \left\{\int_{t_{0}}^{t} y_{0}(\tau) d \tau\right\} \geq 1, \quad t \in\left[t_{0}, \nu\right) \tag{2.20}
\end{equation*}
$$

By virtue of $(2.1), \phi_{0}(t)$ coincides with the solution $\widetilde{\phi}_{0}(t)$ of equation (1.1) on the $\left[t_{0}, \nu\right)$. Then, from (2.20), it follows that $\widetilde{\phi}_{0}(t) \neq 0$, $t \in\left[t_{0}, \widetilde{\nu}\right)$ for some $\widetilde{\nu}>\nu$. By virtue of (2.1), from this it follows that $\widetilde{y}_{0}(t) \equiv \widetilde{\phi}_{0}^{\prime}(t) / \widetilde{\phi}_{0}(t)$ is a solution of equation (2.4) on $\left[t_{0}, \widetilde{\nu}\right)$ and coincides with $y_{0}(t)$ on $\left[t_{0}, \nu\right)$. Therefore, $\left[t_{0}, \nu\right)$ is not the maximal interval of existence for $y_{0}(t)$. The contradiction obtained shows that $\nu=+\infty$.

We next prove (2.19). Note that $y_{0}(t)$ is a solution of the Riccati equation

$$
y^{\prime}(t)+y^{2}(t)-\mathcal{L}(t) y(t)=u_{0}(t), \quad t \geq t_{0}
$$

where $u_{0}(t) \geq 0\left(t \geq t_{0}\right.$ is the right hand side of (2.16) for $y(t)=y_{0}(t)$, $t \geq t_{0}$. Therefore, by virtue of Corollary*, the inequality (2.19) holds. The proof of the lemma is complete.

We now indicate some special cases in which conditions (1)-(3) of Lemma 2.2 hold.
I. $\mathcal{L}(t) \equiv 0, q(t) \leq \mathcal{S}(t)=\lambda_{0}+\int_{t_{0}}^{t}[r(\tau)-p(\tau) q(\tau)] d \tau \leq 0$, $\left[q(t)-\lambda_{0}-\int_{t_{0}}^{t}(r(\tau)-p(\tau) q(\tau)) d \tau\right] p(t) \geq 0, t \geq t_{0} ;$
II. $\mathcal{L}(t) \equiv 0, p(t) q(t) \geq 0, q(t) \leq \mathcal{S}(t)=\lambda_{0}+\int_{t_{0}}^{t} r(\tau) d \tau \leq 0, t \geq t_{0}$;
III. $\mathcal{L}(t)=-p(t), q(t)-p^{\prime}(t) \leq \mathcal{S}(t)=\lambda_{0}+\int_{t_{0}}^{t} r(\tau) d \tau \leq 0, t \geq t_{0}$;
IV. $\mathcal{L}(t)=-p(t), S(t) \equiv 0, q(t) \leq p^{\prime}(t), r(t) \leq 0, t \geq t_{0}$;
V. $\mathcal{L}(t)=-p(t), S(t)=q(t), p^{\prime}(t) \geq 0, q(t) \leq 0, r(t) \leq q^{\prime}(t) t \geq t_{0} ;$
VI. $\mathcal{L}(t)=-p(t), S(t)=q(t)-p^{\prime}(t), q(t) \leq p^{\prime}(t), r(t) \leq-p^{\prime \prime}(t)+q^{\prime}(t)$, $t \geq t_{0}$.

In system (2.15) we make the change $u(t)=v(t) y(t), v(t) \neq 0, t \geq t_{0}$. Arrive at the system

$$
\left\{\begin{array}{l}
y^{\prime}(t)+y^{2}(t)+\frac{1}{v(t)}\left[\mathcal{L}^{\prime}(t)+\mathcal{L}^{2}(t)+p(t) \mathcal{L}(t)+q(t)\right. \tag{2.21}\\
\left.-\mathcal{S}(t)+v^{\prime}(t)+(p(t)+\mathcal{L}(t)) v(t)\right] y(t) \\
+\frac{1}{v(t)}\left[r(t)-\mathcal{S}^{\prime}(t)-(p(t)+\mathcal{L}(t)) \mathcal{S}(t)\right]=0 \\
y^{\prime}(t)+y^{2}(t)-[\mathcal{L}(t)+v(t)] y(t)+\mathcal{S}(t)=0, \quad t \geq t_{0}
\end{array}\right.
$$

We require $\mathcal{L}(t), \mathcal{S}(t)$ and $v(t)$ to be such that the coefficients of the first and second equations of system (2.21) are the same. We arrive at
the system

$$
\left\{\begin{array}{l}
{[\mathcal{L}(t)+v(t)]^{\prime}+[\mathcal{L}(t)+v(t)]^{2}+p(t)} \tag{2.22}\\
\quad[\mathcal{L}(t)+v(t)]+\mathcal{S}(t)=0 \\
\mathcal{S}^{\prime}(t)+[p(t)+\mathcal{L}(t)+v(t)] \mathcal{S}(t)=r(t), \quad t \geq t_{0}
\end{array}\right.
$$

Consequently, if $\mathcal{L}(t)+v(t)$ and $\mathcal{S}(t)$ form a solution of the system (2.22), then every solution of the Riccati equation

$$
\begin{equation*}
y^{\prime}(t)+y^{2}(t)-[\mathcal{L}(t)+v(t)] y(t)+\mathcal{S}(t)=0, \quad t \geq t_{0} \tag{2.23}
\end{equation*}
$$

is a solution of equation (2.4).
Given $\left[t_{0},+\infty\right)$ functions $x(t), y(t), z(t)$ such, that for every thrice continuous differentiable functions $\phi(t)$, we find

$$
\begin{align*}
& {\left[\phi^{\prime \prime}(t)-y(t) \phi^{\prime}(t)+x(t) \phi(t)\right]^{\prime}} \tag{2.24}\\
& \quad \quad \quad+z(t)\left[\phi^{\prime \prime}(t)-y(t) \phi^{\prime}(t)+x(t) \phi(t)\right] \\
& \quad=\phi^{\prime \prime \prime}(t)+p(t) \phi^{\prime \prime}(t)+q(t) \phi^{\prime}(t)+r(t) \phi(t)=0, \quad t \geq t_{0}
\end{align*}
$$

Expanding the brackets in this relation and resulting terms of like derivatives of $\phi(t)$, we get $(y(t)-z(t)+p(t)) \phi^{\prime \prime}(t)+\left(y^{\prime}(t)-x(t) z(t)+\right.$ $q(t)) \phi^{\prime}(t)+\left(-x^{\prime}(t)--x(t) z(t)+r(t)\right) \phi(t)=0, t \geq t_{0}$. Consequently,

$$
\left\{\begin{array}{l}
z(t)=y(t)+p(t) \tag{2.25}\\
x(t)=y^{\prime}(t)+(y(t)+p(t)) y(t)+q(t) \\
x^{\prime}(t)+(y(t)+p(t)) x(t)=r(t), \quad t \geq t_{0}
\end{array}\right.
$$

Eliminating $x(t)$ and $z(t)$ from this system, we obtain the following Riccati equation

$$
\begin{align*}
y^{\prime \prime}(t) & +(3 y(t)+2 p(t)) y^{\prime}(t)+y^{3}(t)+2 p(t) y^{2}(t) \\
& +\left(p^{\prime}(t)+p^{2}(t)+q(t)\right) y(t) \tag{2.26}\\
& +q^{\prime}(t)+p(t) q(t)-r(t)=0, \quad t \geq t_{0}
\end{align*}
$$

Let $y_{1}(t)$ be a solution of this equation on $\left[t_{0},+\infty\right)$, and let

$$
\begin{equation*}
p_{2}(t) \equiv-y_{1}(t), \quad q_{2}(t) \equiv y_{1}^{\prime}(t)+y_{1}^{2}(t)+p(t) y_{1}(t)+q(t) \tag{2.27}
\end{equation*}
$$

$t \geq t_{0}$. Consider the equation

$$
\begin{equation*}
\phi^{\prime \prime}(t)+p_{2}(t) \phi^{\prime}(t)+q_{2}(t) \phi(t)=0, \quad t \geq t_{0} \tag{2.28}
\end{equation*}
$$

Lemma 2.3. Every solution of equation (2.28) is a solution of equation (1.1).

Proof. Let $x_{1}(t), y_{1}(t)$ and $z_{1}(t)$ form a solution of the system (2.26). Then, by virtue of (2.24) and (2.25), every solution of the equation

$$
\phi^{\prime \prime}(t)-y_{1}(t) \phi^{\prime}(t)+x_{1}(t) \phi(t)=0, \quad t \geq t_{0}
$$

is a solution of equation (1.1). Therefore by virtue of (2.28) to complete the proof of the lemma we need only to show that $q_{2}(t)=$ $x_{1}(t), t \geq t_{0}$. By virtue of the second equation of the system (2.26) $x_{1}(t)=y_{1}^{\prime}(t)+y_{1}^{2}(t)+p(t) y_{1}(t)+q(t)=q_{2}(t), \quad t \geq t_{0}$. The proof of the lemma is complete.

Apply Lemma 2.2 to equation (2.26). This brings us to the assertion
Lemma 2.4. Let the following conditions hold:
$\left.1^{\circ}\right)(\mathcal{L}(t)+p(t))^{\prime}+(\mathcal{L}(t)+p(t))^{2}+q(t) \leq \mathcal{S}(t) \leq 0, t \geq t_{0}:$
$\left.2^{\circ}\right)\left[(\mathcal{L}(t)+p(t))^{\prime}+(\mathcal{L}(t)+p(t))^{2}+q(t)-\mathcal{S}(t)\right] \times(2 p(t)+\mathcal{L}(t)) \leq 0$, $t \geq t_{0}$:
$\left.3^{\circ}\right) q^{\prime}(t)+p(t) q(t)-r(t) \leq\left[(\mathcal{L}(t)+p(t))^{\prime}+(\mathcal{L}(t)+p(t))^{2}+\right.$ $q(t)](2 p(t)+\mathcal{L}(t))+\mathcal{S}^{\prime}(t), t \geq t_{0}$.

Then, for every $y_{(1)}>0$ and $c_{(1)}>0$, equation (2.26) has positive solution $y_{1}(t)$ on the $\left[t_{0},+\infty\right)$, satisfying the conditions

$$
\begin{gathered}
y_{1}\left(t_{0}\right)=y_{(1)} \\
y_{1}^{\prime}\left(t_{0}\right)+y_{1}^{2}\left(t_{0}\right)+\mathcal{L}\left(t_{0}\right) y_{1}\left(t_{0}\right)+\mathcal{S}\left(t_{0}\right)=c_{(1)}
\end{gathered}
$$

Moreover, the inequality

$$
\int_{t_{0}}^{t} y_{1}(\tau) d \tau \geq \ln \left(1+y_{1}\left(t_{0}\right) \int_{t_{0}}^{t} \exp \left\{\int_{t_{0}}^{\tau} \mathcal{L}(\xi) d \xi\right\}\right), \quad t \geq t_{0}
$$

holds.

We indicate some particular cases in which the conditions $\left.1^{\circ}\right)-3^{\circ}$) of Lemma 2.4 are satisfied:

$$
\begin{array}{ll}
\mathrm{I} . & S(t) \equiv 0,(\mathcal{L}(t)+p(t))^{\prime}+(\mathcal{L}(t)+p(t))^{2}+q(t)=0, q^{\prime}(t)+ \\
& p(t) q(t)-r(t) \leq 0, t \geq t_{0}
\end{array}
$$

$$
\begin{aligned}
& \text { II. }{ }^{\circ} \mathcal{L}(t) \equiv 0, S(t)=p^{\prime}(t)+p^{2}(t)+q(t) \leq 0, q^{\prime}(t)+p(t) q(t)-r(t) \leq \\
& 2\left(p^{\prime}(t)+p^{2}(t)+q(t)\right) p(t)+\left(p^{\prime}(t)+p^{2}(t)+q(t)\right)^{\prime}, t \geq t_{0} ; \\
& \text { III. }{ }^{\circ} \mathcal{L}(t)=-p(t), \mathcal{S}(t)=q(t) \leq 0, r(t) \geq 0, t \geq t_{0} ; \\
& \text { IV. }{ }^{\circ} \mathcal{L}(t)=-p(t), \mathcal{S}(t) \equiv 0, q(t) \leq 0, p(t) q(t) \leq 0, q^{\prime}(t) \leq r(t), \\
& t \geq t_{0} \text {; } \\
& \mathrm{V} .{ }^{\circ} \mathcal{L}(t)=-2 p(t), \mathcal{S}(t) \equiv 0, q^{\prime}(t)+p(t) q(t) \leq r(t),-p^{\prime}(t)+p^{2}(t)+ \\
& q(t) \leq 0, t \geq t_{0} ; \\
& \mathrm{VI} .{ }^{\circ} \mathcal{L}(t)=-2 p(t), \mathcal{S}(t)=-p^{\prime}(t)+p^{2}(t)+q(t) \leq 0, p(t) q(t)-r(t) \leq \\
& {\left[-p^{\prime}(t)+p^{2}(t)\right]^{\prime}, \quad t \geq t_{0} .}
\end{aligned}
$$

Let $a(t), b(t)$ and $c(t)$ be continuous functions on $\left[t_{0},+\infty\right)$.

Lemma 2.5. Let the following conditions hold:

1) $\int_{t_{0}}^{+\infty} c(\tau) d \tau=+\infty$;
2) $\int_{t_{0}}^{t}|a(\tau)| d \tau \leq K \int_{t_{0}}^{t} c(\tau) d \tau, t \geq t_{0}, K=\mathrm{const}$;
3) $b(t) \rightarrow 0$ when $t \rightarrow \infty$.

Then

$$
\begin{equation*}
\int_{t_{0}}^{t} a(\tau) b(\tau) d \tau=o\left(\int_{t_{0}}^{t} c(\tau) d \tau\right), \quad t \rightarrow+\infty \tag{2.29}
\end{equation*}
$$

Proof. From 1), it follows that $\int_{t_{0}}^{t} c(\tau) d \tau>0, t \geq t_{1}$, for some $t_{1} \geq t_{0}$. We show that, for every $\varepsilon>0$, there exists $t_{\varepsilon}>t_{1}$ such that

$$
\begin{equation*}
J(t) \equiv \frac{\int_{t_{0}}^{t}|a(\tau) b(\tau)| d \tau}{\int_{t_{0}}^{t} c(\tau) d \tau}<\varepsilon, \quad t \geq t_{\varepsilon} \tag{2.30}
\end{equation*}
$$

By virtue of 3), choose $N>t_{1}$ so large that $|b(t)|<\varepsilon /(2 K)$ for $t>N$. Then, by virtue of 2),

$$
\begin{align*}
J(t) & =\frac{\int_{t_{0}}^{N}|a(\tau) b(\tau)| d \tau+\int_{N}^{t}|a(\tau) b(\tau)| d \tau}{\int_{t_{0}}^{t} c(\tau) d \tau} \\
& \leq \frac{\int_{t_{0}}^{N}|a(\tau) b(\tau)| d \tau}{\int_{t_{0}}^{t} c(\tau) d \tau}+\frac{\varepsilon}{2 K} \frac{\int_{N}^{t}|a(\tau) b(\tau)| d \tau}{\int_{t_{0}}^{t} c(\tau) d \tau} \tag{2.31}\\
& \leq \frac{\int_{t_{0}}^{N}|a(\tau) b(\tau)| d \tau}{\int_{t_{0}}^{t} c(\tau) d \tau}+\frac{\varepsilon}{2 K}
\end{align*}
$$

By virtue of 1), we choose $t_{\varepsilon}>N$ so large that

$$
\frac{\int_{t_{0}}^{N}|a(\tau) b(\tau)| d \tau}{\int_{t_{0}}^{t} c(\tau) d \tau}<\frac{\varepsilon}{2} \quad \text { for } t \geq t_{\varepsilon}
$$

From this and from (2.31), equation (2.30) follows, which proves (2.29). The proof of the lemma is complete.
3. Some properties of the solutions of equation (1.1). Let $t_{0}<t_{1}<\cdots<t_{n}<\cdots$ be an infinitely large sequence.

Theorem 3.1. Let the following conditions hold:

$$
\left.\mathrm{A}_{1}\right) \int_{t_{k}}^{t} \exp \left\{\int_{t_{k}}^{\tau}\left[p(s)-\int_{t_{k}}^{s} \exp \left\{-\int_{\xi}^{s} p(u) d u\right\} q(\xi) d \xi\right] d s\right\} q(\tau) d \tau \leq
$$

$$
0, t \in\left[t_{k}, t_{k+1}\right), k=0,1, \ldots
$$

$$
\left.\mathrm{B}_{1}\right) r(t) \leq 0, t \geq t_{0}
$$

Then every solution $\phi_{0}(t)$ of equation (1.1) with $\phi_{0}\left(t_{0}\right)=1, \phi_{0}^{\prime}\left(t_{0}\right)>$ 0 satisfies the inequalities

$$
\begin{equation*}
\phi_{0}(t) \geq 1+\phi_{0}^{\prime}\left(t_{0}\right)\left(t-t_{0}\right), \quad \phi^{\prime}(t)>0, t \geq t_{0} \tag{3.1}
\end{equation*}
$$

Proof. From A_{1}), it follows that the equation

$$
\mathcal{L}^{\prime}(t)+\mathcal{L}^{2}(t)+p(t) \mathcal{L}(t)+q(t)=0, \quad t \geq t_{0}
$$

has nonnegative solution $\mathcal{L}_{0}(t)$ on the $\left[t_{0},+\infty\right)$ (see [4, page 26, Theorem 4.1]). Then from B_{1}), it follows that, for $\mathcal{L}(t) \equiv \mathcal{L}_{0}(t)$, $S(t) \equiv 0$, Lemma 2.21)-3) hold. Therefore, by virtue of Lemma 2.2, equation (2.4) has positive solution $y_{0}(t)$, satisfying the condition $y_{0}\left(t_{0}\right)=\phi_{0}^{\prime}\left(t_{0}\right)>0$, and (because $\left.\mathcal{L}_{0}(t) \geq 0, t \geq t_{0}\right)$

$$
\int_{t_{0}}^{t} y_{0}(\tau) d \tau \geq \ln \left(1+\phi_{0}^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)\right), \quad t \geq t_{0}
$$

By virtue of (2.1), it follows that the function

$$
\phi_{0}(t) \equiv \exp \left\{\int_{t_{0}}^{t} y_{0}(\tau) d \tau\right\}, \quad t \geq t_{0}
$$

is a solution of equation (1.1), satisfying the conditions in (3.1). The proof of the theorem is complete.

Theorem 3.2. Let the following conditions hold:

$$
\left.\mathrm{A}_{2}\right) q(t) \leq 0 ; r(t) \leq q^{\prime}(t)+p(t) q(t), t \geq t_{0}
$$

Then every solution $\phi_{0}(t)$ of equation (1.1) with $\phi_{0}\left(t_{0}\right)=1$ and $\phi_{0}^{\prime}\left(t_{0}\right)>0$ satisfies the inequalities (3.1). Also, if

$$
\left.\mathrm{B}_{1}\right) p(t) \geq 0, t \geq t_{0}
$$

then

$$
\begin{equation*}
\exp \{\underline{Y}(t, c)\} \leq \phi_{0}(t) \leq \exp \{\bar{Y}(t, c)\}, \quad t \geq t_{0} \tag{3.2}
\end{equation*}
$$

where $c=\phi_{0}^{\prime \prime}\left(t_{0}\right)+(1 / 2)\left(\phi_{0}^{\prime}\left(t_{0}\right)\right)^{2}+p\left(t_{0}\right) \phi_{0}^{\prime}\left(t_{0}\right)$.
Proof. The conditions A_{2}) of Theorem 3.2 show that, for $\mathcal{L}(t) \equiv 0$, $\mathcal{S}(t)=q(t), t \geq t_{0}$, conditions 1)-3) of Lemma 2.2 are satisfied. Therefore, equation (2.4) has positive solution $y_{0}(t)$ on $\left[t_{0},+\infty\right)$ with $y_{0}\left(t_{0}\right)=\phi_{0}^{\prime}\left(t_{0}\right)>0$, and

$$
\int_{t_{0}}^{t} y_{0}(\tau) d \tau \geq \ln \left(1+\phi_{0}^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)\right), \quad t \geq t_{0}
$$

By virtue of (2.1), it follows that $\phi_{0}(t) \equiv \exp \left\{\int_{t_{0}}^{t} y_{0}(\tau) d \tau\right\}\left(t \geq t_{0}\right)$ is a solution of equation (1.1), satisfying the relations (3.1). Further, because $y_{0}(t)$ is a solution of equation (2.16), then from the conditions A_{2}) it follows that $y_{0}^{\prime}(t)+y_{0}^{2}(t) \geq 0, t \geq t_{0}$. From this and from $\left.\mathrm{A}_{2}\right)$, we get

$$
y_{0}^{\prime}(t)+\frac{3}{2} y_{0}^{2}(t)+p(t) y_{0}(t) \geq 0, \quad t \geq t_{0}
$$

By virtue of Lemma 2.1 equation (3.2) follows. The proof of the theorem is complete.

Remark 3.3. In view of I and II, Theorem 3.2 remains valid, if in it we change condition A_{2}) by one of the following groups of conditions.

$$
\begin{array}{ll}
\left.\mathrm{a}_{1}^{1}\right) & q(t) \leq \lambda_{0}+\int_{t_{0}}^{t}[r(\tau)-p(\tau) q(\tau)] d \tau \leq 0,\left(q(t)-\lambda_{0}-\int_{t_{0}}^{t}[r(\tau)-\right. \\
& p(\tau) q(\tau)] d \tau) p(t) \geq 0, \lambda_{0}=\mathrm{const}, t \geq t_{0} \\
\left.\mathrm{a}_{1}^{2}\right) & q(t) \leq \lambda_{0}+\int_{t_{0}}^{t} r(\tau) d \tau \leq 0, p(t) q(t) \geq 0, \lambda_{0}=\mathrm{const}, t \geq t_{0}
\end{array}
$$

Taking into account III-VI, by analogy of Theorem 3.2, the following can be proven.

Theorem 3.4. Let one of the following groups of conditions be satisfied:
$\left.\mathrm{A}_{3}\right) q(t)-p^{\prime}(t) \leq \lambda_{0}+\int_{t_{0}}^{t} r(\tau) d \tau \leq 0, t \geq t_{0}, \lambda_{0}=\mathrm{const} ;$
$\left.\mathrm{B}_{3}\right) q(t) \leq p^{\prime}(t), r(t) \leq 0, t \geq t_{0}$;
$\left.\mathrm{C}_{3}\right) p^{\prime}(t) \geq 0, q(t) \leq 0, r(t) \leq q^{\prime}(t), t \geq t_{0}$;
$\left.\Gamma_{3}\right) q(t) \leq p^{\prime}(t), r(t) \leq q^{\prime}(t)-p^{\prime \prime}(t), t \geq t_{0}$.
Then every solution $\phi_{0}(t)$ of equation (1.1) with $\phi_{0}\left(t_{0}\right)=1, \phi^{\prime}\left(t_{0}\right)>0$ satisfies the inequalities:

$$
\begin{gathered}
\phi_{0}(t)>1+\phi_{0}^{\prime}\left(t_{0}\right) \int_{t_{0}}^{t} \exp \left\{-\int_{t_{0}}^{\tau} p(s) d s\right\} d \tau \\
\phi^{\prime}(t)>0, \quad t \geq t_{0}
\end{gathered}
$$

Theorem 3.5. Let condition B_{1}) of Theorem 3.1 and the condition

$$
\left.\mathrm{A}_{4}\right) q(t) \leq 0, t \geq t_{0}
$$

be satisfied. Then, for every $\alpha>0$, equation (1.1) has a solution $\phi_{0}(t)$ such that

$$
\begin{align*}
\phi_{0}\left(t_{0}\right)= & 1 \tag{3.3}\\
\phi_{0}(t) \geq & 1+\phi_{0}^{\prime}\left(t_{0}\right)\left(t-t_{0}\right) \\
& +\alpha \int_{t_{0}}^{t} d \tau \int_{t_{0}}^{\tau} \exp \left\{\int_{t_{0}}^{\xi} p(s) d s\right\} d \xi, \quad \phi_{0}^{\prime}(t)>0, t \geq t_{0}
\end{align*}
$$

and, if condition B_{1}) is satisfied, then (3.2) is valid.

Proof. By virtue of Corollary* and from condition A_{2}) it follows that the equation

$$
\mathcal{L}^{\prime}(t)+\mathcal{L}^{2}(t)+p(t) \mathcal{L}(t)+q(t)=0, \quad t \geq t_{0}
$$

has a positive solution $\mathcal{L}_{0}(t)$ on $\left[t_{0},+\infty\right)$, satisfying the inequality

$$
\begin{equation*}
\mathcal{L}_{0}(t) \geq \frac{\alpha \exp \left\{\int_{t_{0}}^{t} p(\xi) d \xi\right\}}{1+\alpha \int_{t_{0}}^{t} \exp \left\{\int_{t_{0}}^{\tau} p(\xi) d \xi\right\} d \tau}, \quad t \geq t_{0}, \alpha>0 \tag{3.4}
\end{equation*}
$$

It is not difficult to see that, for $\mathcal{L}(t)=\mathcal{L}_{0}(t), t \geq t_{0}, \mathcal{S}(t) \equiv 0$ and if the condition B_{2}) is satisfied, then conditions 1)-3) of Lemma 2.2
are satisfied. Therefore, equation (2.4) has a positive solution $y_{0}(t)$ on $\left[t_{0},+\infty\right)$ with $y_{0}\left(t_{0}\right)=\phi_{0}^{\prime}\left(t_{0}\right)>0$, and the inequality

$$
\begin{equation*}
\int_{t_{0}}^{t} y_{0}(\tau) d \tau \geq \ln \left(1+\phi_{0}^{\prime}\left(t_{0}\right) \int_{t_{0}}^{t} \exp \left\{\int_{t_{0}}^{\tau} \mathcal{L}_{0}(\xi) d \xi\right\} d \tau\right), \quad t \geq t_{0} \tag{3.5}
\end{equation*}
$$

is satisfied. By virtue of (2.1),

$$
\phi_{0}(t) \equiv \exp \left\{\int_{t_{0}}^{t} y_{0}(\tau) d \tau\right\}, \quad t \geq t_{0}
$$

is a solution of equation (1.1). Then, from (3.4) and (3.5), equation (3.3) follows.

To prove the last part of the theorem we merely repeat the arguments relating to the proof of (3.2) of Theorem 3.1. The proof of the theorem is complete.

Theorem 3.6. Let condition A_{4}) of Theorem 3.5 be satisfied, and let

$$
\left.\mathrm{A}_{3}\right) \int_{t_{0}}^{+\infty} \exp \left\{-\int_{t_{0}}^{\tau} p(\xi) d \xi\right\} d \tau=+\infty ; r(t) \geq 0, t \geq t_{0}
$$

Then equation (1.1) is nonstable.

Proof. Consider the equation

$$
\begin{align*}
y^{\prime}(t) & +y^{2}(t)+p(t) y(t) \tag{3.6}\\
& =-q(t)+\int_{t_{0}}^{t} \exp \left\{-\int_{\tau}^{t}(p(\xi)+y(\xi))\right\} r(\tau) d \tau, \quad t \geq t_{0}
\end{align*}
$$

Let $y_{2}(t)$ solution of this equation with $y_{2}\left(t_{0}\right)>0$. From $\left.\mathrm{A}_{2}\right)$ and $\left.\mathrm{B}_{3}\right)$ it follows that the right hand side of (3.6) for $y(t) \equiv y_{2}(t)$ is nonnegative in the domain of existence of the $y_{2}(t)$. Then, using the method of proof of Lemma 2.2, we can easily show that $y_{2}(t)$ is continuable on $\left[t_{0},+\infty\right)$. Note that $y_{2}(t)$ is a solution of the Riccati equation

$$
y^{\prime}(t)+y^{2}(t)+p(t) y(t)=u_{2}(t), \quad t \geq t_{0}
$$

where $u_{2}(t) \geq 0, t \geq t_{0}$, the right hand part of (3.6) for $y(t)=y_{2}(t)$,
$t \geq t_{0}$. By virtue of Corollary*, from this the inequality

$$
y_{2}(t) \geq \frac{y_{2}\left(t_{0}\right) \exp \left\{-\int_{t_{0}}^{t} p(\xi) d \xi\right\}}{1+y_{2}\left(t_{0}\right) \int_{t_{0}}^{t} \exp \left\{-\int_{t_{0}}^{\tau} p(\xi) d \xi\right\} d \tau}, \quad t \geq t_{0}
$$

follows. Consequently,

$$
\begin{gather*}
\int_{t_{0}}^{t} y_{2}(\tau) d \tau \geq \ln \left(1+y_{2}\left(t_{0}\right) \int_{t_{0}}^{t} \exp \left\{-\int_{t_{0}}^{\tau} p(\xi) d \xi\right\} d \tau\right) \tag{3.7}\\
t \geq t_{0}
\end{gather*}
$$

Note that $\mathcal{L}_{0}(t)+v_{0}(t) \equiv y_{2}(t)$ and

$$
\mathcal{S}_{0}(t) \equiv \int_{t_{0}}^{t} \exp \left\{-\int_{t_{0}}^{\tau}\left(p(\xi)+y_{2}(\xi)\right) d \xi\right\} r(\tau) d \tau, \quad t \geq t_{0}
$$

form a solution of the system (2.22). Consider the equation

$$
\begin{equation*}
\phi^{\prime \prime}(t)-\left(\mathcal{L}_{0}(t)+v_{0}(t)\right) \phi^{\prime}(t)+\mathcal{S}_{0}(t) \phi(t)=0, \quad t \geq t_{0} \tag{3.8}
\end{equation*}
$$

Let $\phi_{j}(t), j=1,2$, be linearly independent real-valued solutions of this equation. Then $\phi_{ \pm}(t) \equiv \phi_{1}(t) \pm i \phi_{2}(t)$ linearly independent complex solutions of the same equation do not vanish on $\left[t_{0},+\infty\right)$. Therefore, $y_{ \pm}(t) \equiv \phi_{ \pm}^{\prime}(t) / \phi_{ \pm}(t), t \geq t_{0}$, are solutions of equation (2.23) for $\mathcal{L}(t)+v(t)=\mathcal{L}_{0}(t)+v_{0}(t), \mathcal{S}(t)=\mathcal{S}_{0}(t), t \geq t_{0}$. Then $y_{ \pm}(t)$ is a solutions of equation (2.4) on $\left[t_{0},+\infty\right)$. By virtue of (2.1) it follows that

$$
\phi_{ \pm}(t)=\phi_{ \pm}\left(t_{0}\right) \exp \left\{\int_{t_{0}}^{t} y_{ \pm}(\tau) d \tau\right\}
$$

is a solution of equation (1.1). Therefore, to complete the proof of the theorem, it is enough to show that equation (3.8) is nonstable. By virtue of Liuvill's formula the Wronskian $W(t)$ of the solutions $\phi_{ \pm}(t)$ is equal to:

$$
W(t)=W\left(t_{0}\right) \exp \left\{\int_{t_{0}}^{t} y_{2}(\tau) d \tau\right\}, \quad t \geq t_{0}\left(W\left(t_{0}\right) \neq 0\right)
$$

From this, A_{3}) and (3.7) the unboundedness of $W(t)$ follows. Consequently, equation (3.9) is unstable. The proof of the theorem is complete.

Theorem 3.7. Let condition B_{5}) of Theorem 3.6 be satisfied, and let:

$$
\begin{aligned}
& \left.\mathrm{A}_{6}\right) p(t) \geq 0, t \geq t_{0} \\
& \left.\mathrm{~B}_{6}\right) q(t) \leq 0, \int_{t_{0}}^{+\infty}|q(\tau)| d \tau<+\infty \\
& \\
& \quad \int_{t_{0}}^{+\infty}\left[r(\tau)-p(\tau) q(\tau)-q^{\prime}(\tau)\right] d \tau=+\infty \\
& \\
& \quad \int_{t_{0}}^{t}\left|p^{\prime}(\tau)-p^{2}(\tau)-q(\tau)\right| d \tau \\
& \quad=O\left(\int_{t_{0}}^{t}\left[r(\tau)-p(\tau) q(\tau)-q^{\prime}(\tau)\right] d \tau\right), \quad t \rightarrow+\infty
\end{aligned}
$$

Then equation (1.1) has two linearly independent oscillatory solutions which are solutions of a linear ordinary differential equation with one coefficient of greatest derivative.

Proof. Put $\mathcal{L}(t)=-p(t), \mathcal{S}(t)=q(t), t \geq t_{0}$. Then, if the conditions $\left.\mathrm{B}_{5}\right), \mathrm{A}_{6}$) and B_{6}) are satisfied, the conditions 1)-3) of Lemma 2.4 will be satisfied. Therefore, equation (2.26) has positive solution $y_{1}(t)$ on $\left[t_{0},+\infty\right)$. Consequently, by virtue of Lemma 2.3 to prove the theorem, it is enough to show that equation (2.28) is oscillatory.

In (2.28), we make a change:

$$
\phi(t)=\exp \left\{-\int_{t_{0}}^{t} \frac{p_{2}(\tau)}{2} d \tau\right\} \psi(t), \quad t \geq t_{0}
$$

This brings us to

$$
\begin{equation*}
\psi^{\prime \prime}(t)+Q(t) \psi(t)=0, \quad t \geq t_{0} \tag{3.9}
\end{equation*}
$$

where

$$
Q(t)=q_{2}(t)-\frac{p_{2}^{\prime}(t)}{2}-\frac{p_{2}^{2}(t)}{4}, \quad t \geq t_{0}
$$

It is evident that equation (2.28) is oscillatory if and only if equation (3.13) is the same. A sufficient condition of oscillation of (3.13) is (see [4, page 958])

$$
\begin{equation*}
\int_{t_{0}}^{+\infty} Q(\tau) d \tau=+\infty \tag{3.10}
\end{equation*}
$$

By virtue of (2.27),

$$
\begin{equation*}
Q(t)=\frac{3}{2} y_{1}^{\prime}(t)+\frac{3}{4} y_{1}^{2}(t)+p(t) y_{1}(t)+q(t), \quad t \geq t_{0} . \tag{3.11}
\end{equation*}
$$

By virtue of A_{6}), two cases are possible:
a) $\int_{t_{0}}^{+\infty} p(\tau) y_{1}(\tau) d \tau=+\infty$;
b) $\int_{t_{0}}^{+\infty} p(\tau) y_{1}(\tau) d \tau<+\infty$.

In case B_{6}) a), (3.11) follows (3.10). Let case b) take place. By virtue of (2.14)-(2.16), equation (2.26) is equivalent to the following equation

$$
\begin{equation*}
y^{\prime}(t)+y^{2}(t)+p(t) y(t)+q(t)=\frac{1}{E_{1}(t)}\left\{c_{1}+\int_{t_{0}}^{t} E_{1}(\tau) r(\tau) d \tau\right\} \tag{3.12}
\end{equation*}
$$

$t \geq t_{0}$, where

$$
E_{1}(t) \equiv \exp \left\{\int_{t_{0}}^{t}[y(\xi)+p(\xi)] d \xi\right\}, \quad t \geq t_{0}
$$

$c_{1} \equiv y^{\prime}\left(t_{0}\right)+y^{2}\left(t_{0}\right)++p\left(t_{0}\right) y\left(t_{0}\right)+q\left(t_{0}\right)>0$. From this, it follows that

$$
y_{1}^{\prime}(t)+y_{1}^{2}(t)-\mathcal{L}(t) y_{1}(t)=u_{1}(t), \quad t \geq t_{0}
$$

where $u_{1}(t)(\geq 0)$ right hand part of (3.12) for $y(t)=y_{1}(t), t \geq t_{0}$. Then

$$
\begin{equation*}
\widetilde{Q}(t) \equiv y_{1}^{\prime}(t)+y_{1}^{2}(t)+p(t) y_{1}(t)+q(t) \geq 0, \quad t \geq t_{0} . \tag{3.13}
\end{equation*}
$$

We show that

$$
\begin{equation*}
I \equiv \int_{t_{0}}^{+\infty} \widetilde{Q}(\tau) d \tau=+\infty \tag{3.14}
\end{equation*}
$$

Suppose that this is not true. Then, by virtue of (3.13), the inequality $I<+\infty$ holds. From this, A_{6}) and B_{6}), it follows that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} y_{1}(t)=0 \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\int_{t_{0}}^{+\infty} y_{1}^{2}(\tau) d \tau<+\infty \tag{3.16}
\end{equation*}
$$

Substituting $y(t)=y_{1}(t), t \geq t_{0}$, in (2.26) and integrating from t_{0} to t, we will have:

$$
\begin{align*}
& y_{1}^{\prime}(t)+\frac{3}{2} y_{1}^{2}(t)+2 p(t) y_{1}(t) \tag{3.17}\\
& \quad+\int_{t_{0}}^{t} y_{1}^{3}(\tau) d \tau+2 \int_{t_{0}}^{t} p(\tau) y_{1}^{2}(\tau) d \tau \\
& \quad+\int_{t_{0}}^{t}\left[p^{2}(\tau)-p^{\prime}(\tau)+q(\tau)\right] y_{1}(\tau) d \tau \\
& \quad+\int_{t_{0}}^{t}\left[q^{\prime}(\tau)+p(\tau) q(\tau)-r(\tau)\right] d \tau=c_{2}, \quad t \geq t_{0}
\end{align*}
$$

where $c_{2}=y_{1}^{\prime}\left(t_{0}\right)+\frac{3}{2} y_{1}^{2}\left(t_{0}\right)+2 p\left(t_{0}\right) y_{1}\left(t_{0}\right)$. By virtue of Lemma 2.5 from B_{6}) and (3.15) it follows that

$$
\begin{aligned}
\int_{t_{0}}^{t}\left[p^{2}(\tau)-p^{\prime}(\tau)+q(\tau)\right] y_{1}(\tau) d \tau & =o\left(\int_{t_{0}}^{t}\left[r(\tau)-q^{\prime}(\tau)-p(\tau) q(\tau)\right] d \tau\right) \\
t & \rightarrow+\infty
\end{aligned}
$$

From this, $\left.\mathrm{B}_{6}\right),(3.15),(3.16)$ and b$)$,

$$
y_{1}^{\prime}(t)+\frac{3}{2} y_{1}^{2}(t)+2 p(t) y_{1}(t) \longrightarrow+\infty, \quad t \rightarrow+\infty
$$

follows. Then, by virtue of b) and (3.16), we will have $y_{1}(t) \rightarrow+\infty$ when $t \rightarrow+\infty$, which contradicts (3.15). The contradiction thus obtained proves (3.14). From (3.14), B_{6}) and b), (3.10) follows. The proof of the theorem is complete.

Example 3.8. Consider equation

$$
\begin{gather*}
\phi^{\prime \prime \prime}(t)+(1+\sqrt{3}+\sin t) \phi^{\prime \prime}(t)+\lambda \phi(t)=0 \tag{3.18}\\
t \geq t_{0}, \quad \lambda=\mathrm{const}>0
\end{gather*}
$$

It is not difficult to see that, for this equation, all conditions of Theorem 3.7 are satisfied. Therefore, it has two linearly independent oscillatory solutions, the zeroes of which separate each other.

In (3.18), we make a change:

$$
\phi(t)=\exp \left\{-\frac{1}{2} \int_{t_{0}}^{t} p(\tau) d \tau\right\} \psi(t), \quad t \geq t_{0}
$$

This brings us to the equation

$$
\begin{equation*}
\psi^{\prime \prime \prime}(t)+q_{1}(t) \psi^{\prime}(t)+r_{1}(t) \psi(t)=0, \quad t \geq t_{0} \tag{3.19}
\end{equation*}
$$

where $q_{1}(t) \equiv-(1 / 3)(1+\sqrt{3}+\sin t)^{2}-\cos t \leq 0, r_{1}(t) \equiv \lambda+(2 / 27)(1+$ $\sqrt{3}+\sin t)^{3}-\sin t / 3>0, t \geq t_{0}$. For

$$
\begin{aligned}
I_{1} & \equiv \int_{0}^{2 \pi}\left\{(1+\sqrt{3}+\sin \tau)^{3}-\left[(1+\sqrt{3}+\sin \tau)^{2}+3 \cos \tau\right]^{3 / 2}\right\} d \tau \\
& \approx-4.065
\end{aligned}
$$

and for equation (3.19) condition (1.3) is satisfied only for $\lambda>$ $-I_{1} / 27 \pi \approx 0.047$ (for $0<\lambda<-I_{1} / 27 \pi$, we have $I_{\mathrm{L}}=-\infty$). Consequently, Lazer's theorem is not applicable to (3.18), where $0<\lambda \leq$ $-I_{1} / 27 \pi$ (note that Theorem 8 of [5] [a generalization of Lazer's theorem]) also cannot be applicable to (3.18); see [11, page 392]. Meanwhile, Theorem 3.6 is applicable to (3.18) for all $\lambda>0$.

Remark 3.9. The oscillatory theorems for the cases $q_{1}(t) \leq 0$ and $r_{1}(t) \geq 0$, where the equality (1.3) (for $q(t) \equiv q_{1}(t)$ and $r(t) \equiv r_{1}(t)$) may not hold, are obtained in the work [1]. They relate to the case when

$$
I_{2} \equiv \int_{t_{0}}^{+\infty} r_{1}(\tau) d \tau<+\infty
$$

(in Example 3.8, $I_{2}=+\infty$). It is not difficult to see that, if $p(t) \geq 0$, $q(t) \equiv 0$ and $r(t) \geq 0, r(t) \not \equiv 0$ are periodic functions, then the conditions B_{6}) of Theorem 3.7 are satisfied, while for $I_{L}\left(\right.$ for $q(t) \equiv q_{1}(t)$ and $\left.r(t) \equiv r_{1}(t)\right)$ the following cases are possible.

1) $I_{L}=+\infty$,
2) I_{L} diverges,
3) $I_{L}=-\infty$.

The following theorem is a supplement to [5, page 134, Theorem 4].
Theorem 3.10. Let the following conditions hold:
A_{7})

$$
\begin{gathered}
\int_{t_{k}}^{t} \exp \left\{-\int_{t_{k}}^{\tau} d s \int_{t_{k}}^{s} q(\xi) d \xi\right\} q(\tau) d \tau \leq 0 \\
t \in\left[t_{k}, t_{k+1}\right), k=0,1,2, \ldots
\end{gathered}
$$

where $t_{k}, k=0,1, \ldots$, is the same as in Theorem 3.1,

$$
\left.\mathrm{B}_{7}\right) q^{\prime}(t)+p(t) q(t)-r(t) \leq 0, t \geq t_{0} .
$$

Then, if all nontrivial solutions of equation (1.1) oscillate, except one multiplied by arbitrary constant, then equation (1.1) has two linearly independent oscillatory solutions, which are solutions of a second order linear ordinary differential equation with one coefficient of greatest derivative.

Proof. By virtue of [4, Theorem 4.1], from A_{7}), it follows that the equation

$$
(\mathcal{L}(t)+p(t))^{\prime}+(\mathcal{L}(t)+p(t))^{2}+q(t)=0, \quad t \geq t_{0}
$$

has solution $\mathcal{L}_{0}(t)$ on $\left[t_{0},+\infty\right)$. Then, from $\left.\mathrm{B}_{7}\right)$ it follows that for $\mathcal{L}(t) \equiv \mathcal{L}_{0}(t)$ and $\mathcal{S}(t) \equiv 0$ the conditions $\left.\left.1^{\circ}\right)-3^{\circ}\right)$ of Lemma 2.4 are satisfied (see $\left.I^{\circ}\right)$). Therefore, equation (2.26) has solution $y_{1}(t)$ on $\left[t_{0},+\infty\right)$.

By Lemma 2.3, it follows that all solutions of equation (2.28), the coefficients of which are determined by $y_{1}(t)$ according to formula (2.27), are solutions of equation (1.1).

Hence, to complete the proof of the theorem, it remains to show that equation (2.28) oscillates. Suppose equation (2.28) does not oscillate. Then it has two linearly independent non oscillatory solutions which are simultaneously solutions of equation (1.1). But, from the conditions of the theorem, it follows that equation (1.1) cannot have two linearly independent oscillatory solutions. The contradiction so obtained proves oscillation of equation (2.28). The proof of the theorem is complete.

Remark 3.11. In view of $\mathrm{II}^{\circ}-\mathrm{VI}^{\circ}$, Theorem 3.10 remains valid if we replace conditions A_{7}) and B_{7}) by one of the following groups of conditions.

```
\(\left.\mathrm{a}_{7}^{1}\right) q^{\prime}(t)+p(t) q(t)-r(t) \leq 2\left(p^{\prime}(t) p^{2}(t)+q(t)\right) p(t)+\left(p^{\prime}(t) p^{2}(t)+\right.\)
    \(q(t))^{\prime}, p^{\prime}(t) p^{2}(t)+q(t) \leq 0, t \geq t_{0}\).
\(\left.\mathrm{a}_{7}^{2}\right) q(t) \leq 0, r(t) \geq 0, t \geq t_{0}\).
\(\left.\mathrm{a}_{7}^{3}\right) q(t) \leq 0, p(t) q(t) \leq 0, q^{\prime}(t) \leq r(t), t \geq t_{0}\).
\(\left.\mathrm{a}_{7}^{4}\right) q^{\prime}(t)+p(t) q(t) \leq r(t),-p^{\prime}(t)+p^{2}(t)+q(t) \leq 0, t \geq t_{0}\).
\(\left.\mathrm{a}_{7}^{5}\right) p(t) q(t)-r(t) \leq\left[-p^{\prime}(t)+p^{2}(t)\right]^{\prime},-p^{\prime}(t)+p^{2}(t)+q(t) \leq 0\),
    \(t \geq t_{0}\).
```


REFERENCES

1. L. Erbe, Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations, Pac. J. Math. 64 (1976), 369-385.
2. Linn H. Erbe, Quingkai Kong and Sigui Ruan, Kamenev tipe theorems for second order matrix differential systems, Proc. Amer. Math. Soc. 117 (1983), 957962.
3. G.A. Grigorian, On two comparison tests for second-order linear ordinary differential equations, Diff. Urav. 47 (2011), 1225-1240 (in Russian); Diff. Equat. 47 (2011), 1237-1252, (in English).
4. \qquad Two comparison criteria for scalar Riccati equations and some applications, Izv. Math. 11 (2012), 20-35.
5. G.D. Jones, Oscillatory behavior of third order differential equations, Proc. Amer. Math. Soc. 41 (1974), 133-136.
6. E. Kamke, Handbook of ordinary differential equations, Gos. Izdat., Moscow, 1953.
7. I.T. Kiguradze and T.A. Chanturia, The asymptotic behavior of the solutions of nonlinear ordinary differentia equations, Nauka, Moscow, 1990.
8. V.A. Kondratev, On the zeroes of the equation $y^{(n)}+p(x) y=0$, DAN USSR 120 (1958), 1180-1182.
9. A.I. Kostrikin, Introduction to algebra, Nauka, Moscow, 1977.
10. A.C. Lazer, The behavior of solutions of the differential equations $y^{\prime \prime \prime}+$ $P(x) y^{\prime}+q(x) y=0$, Pac. J. Math. 17 (1966), 435-466.
11. N. Parhi and P. Das, Asymptotic property of solutions of a class of thirdorder differential equations, Proc. Amer. Math. Soc. 110 (1990), 387-393.
12. C.A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968.

Institute of Mathematics NAS of Armenia, str. Bagramian, 24/5, C. Erevan, 0019, Armenia
Email address: mathphys2@instmath.sci.am

[^0]: 2010 AMS Mathematics subject classification. Primary 34C10, 34C99.
 Keywords and phrases. Riccati equations, criterion of Raus-Hurwitz, asymptotic behavior, non stability, oscillation.

 Received by the editors on June 10, 2013, and in revised form on April 16, 2014.

