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NON-VANISHING OF CARLITZ-FERMAT
QUOTIENTS MODULO PRIMES

NGUYEN NGOC DONG QUAN

1. Introduction. Let q = ps, where p is a prime and s is a positive
integer. Let Fq be the finite field of q elements, and set A = Fq[T ] and
k = Fq(T ). Let τ be the mapping defined by τ(x) = xq, and let k⟨τ⟩
denote the twisted polynomial ring. Let C : A → k⟨τ⟩ (a 7→ Ca) be the
Carlitz module, namely, let C be an Fq-algebra homomorphism such
that CT = T + τ . Let R be any commutative k-algebra. The definition
of the Carlitz module C implies that CT (a) = Ta+ aq for every a ∈ R.

Let ℘ be a monic prime in A. The Carlitz-Fermat quotient Q℘ :
A → A is the mapping defined by

Q℘(a) :=
C℘−1(a)

℘
for each a ∈ A.

The notion of Carlitz-Fermat quotients first appeared in the work of
Mauduit [6]. In this note, we prove several non-vanishing results of
Carlitz-Fermat quotients modulo primes in A, which are Carlitz module
analogues of the results in [5]. As a by-product, we give an alternative
proof of the result in [2] that a Mersenne prime in A is a non-Wieferich
prime in the Carlitz module context. We briefly recall the notions of
Mersenne primes and Wieferich primes in the Carlitz module setting.

Definition 1.1. A Mersenne prime M in A is a prime of the form
αC℘(1), where ℘ is a monic prime in A and α is an element in F×

q .

Definition 1.2. Let W be a prime element in A. Write W = α℘,
where α ∈ F×

q is the leading coefficient of W and ℘ is a monic prime
in A. We say that W is a Wieferich prime if Q℘(1) ≡ 0 (mod ℘);
otherwise, W is called a non-Wieferich prime.
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The notion of Mersenne primes in A was introduced by the author
in [2], and the notion of Wieferich primes in A was first introduced by
Dinesh Thakur in [9]. See also Thakur’s recent preprint [11] for more
beautiful results on several types of primes in A and their connections
with zeta values.

2. Carlitz-Fermat quotients. In this section, we prove several
properties of Carlitz-Fermat quotients. The main result of this section
is the following.

Proposition 2.1. Let ℘ be a monic prime in A of degree d > 0. Then

(i) Q℘ is an Fq-module homomorphism;
(ii) Q℘(a+m℘) ≡ Q℘(a)−m (mod ℘) for all a,m ∈ A;

and
(iii) Q℘(Cm(a)) ≡ mQ℘(a) (mod ℘) for all a,m ∈ A.

Proof. Since the Carlitz module C is an Fq-algebra homomorphism,
we see that (i) follows immediately.

We now prove (ii). By [8, Proposition 12.11], one can write
C℘(x) ∈ A[x] in the form

C℘(x) = ℘x+ [℘, 1]xq + · · ·+ [℘, d− 1]xqd−1

+ xqd ,(2.1)

where [℘, i] is a polynomial of degree qi(d − i) for each 1 ≤ i ≤ d − 1.
Furthermore, we know that [℘, i] is divisible by ℘ for each 1 ≤ i ≤ d−1.
Hence, we see that

C℘−1(m℘) = ℘(m℘) + [℘, 1](m℘)q + · · ·+ (m℘)q
d

−m℘

= ℘
(
m℘+ [℘, 1]mq℘q−1 + · · ·+mqd℘qd−1 −m

)
,

and thus Q℘(m℘) ≡ −m (mod ℘). It thus follows from part (i) that

Q℘(a+m℘) = Q℘(a) +Q℘(m℘) ≡ Q℘(a)−m (mod ℘).

We now prove that (iii) holds. Let m be an arbitrary element in A
of degree h, and let a ∈ A. We can write Cm(x) ∈ A[x] in the form

Cm(x) = mx+ [m, 1]xq + [m, 2]xq2 + · · ·+ [m,h− 1]xqh−1

+ [m,h]xqh ,
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where [m, i] is a polynomial of degree qi(h− i) for each 1 ≤ i ≤ h. We
see that

℘Q℘(Cm(a)) = C℘−1(Cm(a)) = Cm(℘−1)(a)

= Cm(C℘−1(a)) = Cm(℘Q℘(a))

= m(℘Q℘(a)) + [m, 1](℘Q℘(a))
q +· · ·+ [m,h](℘Q℘(a))

qh ,

and thus

Q℘(Cm(a))=mQ℘(a)+[m, 1]℘q−1(Q℘(a))
q+· · ·+[m,h]℘qh−1(Q℘(a))

qh .

Therefore, we deduce that

Q℘(Cm(a)) ≡ mQ℘(a) (mod ℘),

which proves that (iii) is true. �

Remark 2.2. Let p be an odd prime in Z. Recall that the Fermat
quotient qp : Z → Z is defined by qp(a) = (ap−1 − 1)/p for each integer
a with gcd(a, p) = 1. According to [1], Eisenstein noted that the
Fermat quotient qp satisfies the following properties.

(1) qp(ab) ≡ qp(a) + qp(b) (mod p);
(2) qp(a+mp) ≡ qp(a)−m/a (mod p);

and

(3) qp(a
m) ≡ mqp(a) (mod p).

There are well-known analogies [3, 8, 10] between the Carlitz
module a 7→ Cm(a), m ∈ A, and the power map a 7→ am, m ∈ Z.
Hence, (i), (ii) and (iii) in Proposition 2.1 are Carlitz module analogues
of (1), (2) and (3) mentioned above.

3. Non-vanishing of Carlitz-Fermat quotients modulo primes.
In this section, using Proposition 2.1, we prove several non-vanishing
results of Carlitz-Fermat quotients modulo primes.

Theorem 3.1. Let ℘ be a monic prime in A of degree d > 0, and let
Q℘ be the Carlitz-Fermat quotient of ℘. Let a,m be nonzero elements
in A such that ℘ does not divide m. Assume that Cm(a) = b℘ for some



128 NGUYEN NGOC DONG QUAN

b ∈ A. Then

Q℘(a) ≡ − b

m
(mod ℘).

Proof. It follows from part Proposition 2.1 (iii) that

mQ℘(a) ≡ Q℘(Cm(a)) = Q℘(b℘) (mod ℘).

By parts (i) and (ii) in Proposition 2.1, we deduce that Q℘(b℘) ≡ −b
(mod ℘), and thus Q℘(a) ≡ −b/m (mod ℘). �

In [2], the author proves that a Mersenne prime is a non-Wieferich
prime in the Carlitz module context. We present here an alternative
proof of this result using Theorem 3.1.

Corollary 3.2. Let MP = αCP (1) be a Mersenne prime, where α is
an element in F×

q and P is a monic prime in A of degree d > 0. Then
MP is a non-Wieferich prime.

Proof. Write MP = β℘, where β ∈ F×
q is the leading coefficient of

MP and ℘ is a monic prime in A. We see that CP (1) = α−1MP =
α−1β℘. We can write CP (x) ∈ A[x] in the form

CP (x) = Px+ [P, 1]xq + · · ·+ [P, d− 1]xqd−1

+ xqd ,

where [P, i] is a polynomial in A of degree qi(d−i) for each 1 ≤ i ≤ d−1.
Furthermore, it is known [4, Proposition 2.4] that [P, i] is divisible by
P for each 1 ≤ i ≤ d− 1. Hence, we deduce that

β℘ = MP = αCP (1)

= α(P + [P, 1] + · · · [P, d− 1] + 1) ≡ α (mod P ),

and thus ℘ ≡ αβ−1 ̸≡ 0 (mod P ).

Since P, ℘ are relatively prime, applying Theorem 3.1 with P , ℘, 1
and α−1β in the roles of m, ℘, a and b, respectively, we deduce that

Q℘(1) ≡ −α−1β

P
̸≡ 0 (mod ℘),

and thus MP = β℘ is a non-Wieferich prime. �

Corollary 3.3. Let a be an element in A, and let m,n be nonzero
elements in A. Let H be the unique element in A such that Cmn(a) =
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Cn(a)H. Assume that there exists a monic prime ℘ dividing H such
that ℘ does not divide mn. Write H = b℘ for some b ∈ A. Then

Q℘(a) ≡ −bCn(a)

mn
(mod ℘).

Proof. We see that Cmn(a) = HCn(a) = bCn(a)℘. Since ℘ does not
divide mn, applying Theorem 3.1 with a, bCn(a), mn and ℘ in the roles
of a, b, m and ℘, respectively, we deduce that

Q℘(a) ≡ −bCn(a)

mn
(mod ℘). �

Corollary 3.4. We maintain the same notation and assumptions as
in Corollary 3.3. Assume that v℘(H) = 1, where v℘ denotes the ℘-
adic valuation. Assume further that m and Cn(a) are relatively prime.
Then Q℘(a) ̸≡ 0 (mod ℘).

Proof. By Corollary 3.3, we know that

Q℘(a) ≡ −bCn(a)

mn
(mod ℘).

We prove that bCn(a) ̸≡ 0 (mod ℘). Indeed, we know that 1 =
v℘(H) = v℘(b℘) = 1 + v℘(b), and thus v℘(b) = 0. Hence, b ̸≡ 0
(mod ℘).

We can write Cm(x) ∈ A[x] in the form

Cm(x) = mx+ [m, 1]xq + · · ·+ [m, deg(m)]xqdeg(m)

,

where [m, i] is a polynomial of degree qi(deg(m) − i) for each 1 ≤ i ≤
deg(m) − 1 and [m,deg(m)] is the leading coefficient of m. Then we
see that

Cmn(a) = Cm(Cn(a))

=Cn(a)(m+[m, 1](Cn(a))
q−1+· · ·+[m, deg(m)](Cn(a))

qdeg(m)−1).

Since Cmn(a) = Cn(a)H, we deduce that

H = m+ [m, 1](Cn(a))
q−1 + · · ·+ [m,deg(m)](Cn(a))

qdeg(m)−1.

Since gcd(m,Cn(a)) = 1, it follows from the equation of H that
H ≡ m ̸≡ 0 (mod q) for each prime q dividing Cn(a). Hence, H and
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Cn(a) are relatively prime, and therefore Cn(a) ̸≡ 0 (mod ℘). This
implies that bCn(a) ̸≡ 0 (mod ℘), and hence

Q℘(a) ≡ −bCn(a)

mn
̸≡ 0 (mod ℘). �

Remark 3.5. Corollary 3.3 and Corollary 3.4 are Carlitz analogues of
Corollary 2 and Corollary 3 in [5], respectively.
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