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ORTHOGONAL ON THE UNIT CIRCLE
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ABSTRACT. This paper surveys the close relationships
among the topics included in the title. Emphasis is given to
the family of positive Perron-Carathéodory continued frac-
tions (PPC-fractions) which play a central role in the theory
of trigonometric moment problems and Szegd polynomials
orthogonal on the unit circle. An important application of
PPC-fractions is frequency analysis of discrete time signals
using Wiener-Levinson digital filters with illustrations given
from computational experiments.

1. Introduction. Continued fractions have played a fundamental
role in the origin and development of moment theory and orthogonal
polynomials. The classical Stieltjes moment problem, posed and solved
in the celebrated memoir [71], made essential use of Stieltjes continued
fractions

a1z asz asz

(1.1) 1 + 1 + 1 + 77

an >0, n=123,...,

where z is a complex variable. The first full treatment of the classical
Hamburger moment problem [22] was based on real J-fractions

a1 a2 as
1.2
( a) b1+2’ - b2+2’ - b3+z - ’
where
(1.2b) ap, >0, b,eR, n=1,223,....
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It is well documented that the study of orthogonal polynomials
originated in the theory of continued fractions (1.2) [72, page 54].
Other moment theory and orthogonal functions investigated by means
of continued fractions include the strong Stieltjes moment problem
[45], the strong Hamburger moment problem [30, 31] and orthogonal
Laurent polynomials [31, 42, 54].

A family of continued fractions, called positive Perron-Carathéodory
fractions (PPC-fractions) plays a role for the trigonometric moment
problem and Szegd polynomials that is analogous to that of the con-
tinued fractions (1.1) and (1.2) for classical moment problems and or-
thogonal polynomials. The PPC-fractions, introduced in [32, 33, 34],
have the form

250 1 (1—|51|2)Z 1 (1—|(52‘2)Z
1. - T p—— - - pe— - - ot
(1.32) do === 52+ 0 Aot & 4+
where
(1.3b) 5 >0, 6,€C, |o,] <1, n=1,2,3,....

An important application of PPC-fractions and their denominators
of odd order (the Szegd polynomials) is frequency analysis based on
Wiener-Levinson digital filters [5, 20, 47, 52, 66, 76]. Frequency
analysis is the determination of unknown frequencies in a discrete
time signal consisting of a superposition of sinusoidal waves. Speech
processing and other applications in real time are made possible by fast
computational methods such as Levinson’s algorithm for computing
the reflection coefficients d,, of the associated PPC-fraction (1.3) and
related algorithms for solving Toeplitz systems of equations [3, 4, 6,
10, 11, 14, 15, 16, 26]. Theoretical foundations for these applications
using PPC-fractions and Szegd polynomials are given in a series of
papers [28, 29, 35, 36, 39, 40, 48, 53, 55, 56, 57, 58, 69]. Some
illustrations from computational experiments are given in Section 9 of
this paper and also in [37, 38, 41].

The study of PPC-fractions and their applications has been pub-
lished in a large number of papers, many of which are not readily
accessible. The purpose of the present article is to provide a unified,
concise and self-contained survey of this work, giving proofs that are
attainable without excessive effort. For the most part, proofs are based
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on elementary and constructive methods; some provide estimates of the
speed of convergence and truncation error bounds.

Equations (1.4)—(1.9) provide some basic notation, definitions and
formulas in continued fraction theory. See, e.g., [9, 23, 42, 49, 50,
59, 75]. We use the standard notation for continued fractions

aq as as ai
1.4 b — — — -o- =0
( a) O+b1+b2+b3+ 0+ a9 ’
b1 +
as
by + -
by + —
where
(1.4b) 0#a,€C, b,€C, n=0,1,2,....

The nth numerator A, and nth denominator B, of the continued
fraction (1.4) are defined by the difference equations

(158,) A_1 = ]., B_1 = 0, AQ = b()7 BO = ].,

An _ An—l An—2 _
(1.5b) (Bn) = b, (Bn1> + an, (Bn2> , n=1,23....

They satisfy the determinant formulas:

(1.6) ApBy oy = AniBy = (-1)"""[]a;, n=123....
=1

The associated linear fractional transformations

by tw

(1.7b) So(w) = sp(w), Sp(w) = Sn—1(sp(w)), n=1,23,...,

(1.7a)  so(w) =by +w, sp(w)

. n=1,23,...,

provide the useful relationships

A, + A, 1w ai az
(18) = B B Tl 4 b+
Ap—1 Qp

+ bn—l + bn+UJ
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Therefore, the nth approximant S,,(0) of the continued fraction (1.4) is
given by

(1.9) 8,(0) =22 =py+ 2t 92 . I 01,2, .

From the difference equations (1.5), it follows that for PPC-fractions
(1.3), the nth numerator P, (z) and nth denominator Q,,(z) are defined
by

(1.10a) Py(z) =89, Qo(z)=1, Pi(z)=—00, Qi(2)=
and forn =1,2,3,...,

iy () =5 (o) ()
and

) (G =a (Gnd) a1z (G ).

Hence, P, (z) and Q,(z) are polynomials in z of the form
(1.11a)

P2n ZP%,]ZJ QZn Zq2n,jz n=0,1,2,...,

(1.11b)

P2n+1 ZanJrl ]ZJ Q2n+1 Z q2n+1 jz n= 07 13 2; sty

where py, j € C, gm,; € C, for m=0,1,2,..., and

(1110) P2n,0 = 503 qon,0 = 1; Pon+1,n = _50; Pn+1,n = 1.

Thus, the (2n)th approximant f,(z) = Pan(2)/Q2,(z) is a rational
function holomorphic at z = 0, and the (2n + 1)th approximant
gn(2) = Pant1(2)/Qans1(2) is a rational function holomorphic at
z = oo. It is shown (Section 2) that {f, ()}, converges to a function
f(2) holomorphic in the disk |z| < 1 that satisfies

(1.12) Re f(z) >0 for|z| <1, f(0)>0
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Moreover, there exists a sequence {u,}°, in C such that

(1.13a) f2)=po+2) m¥, |2l <1,
k=1

and, for each integer n > 0, there exist coefficients uk ) € C such that

(1.13b) fa( O+2ZNkZ + Z 2"

k=n-+1

for all z in a neighborhood of z = 0. Thus, the coefficients of individual
powers of z in equation (1.13b) agree with those in equation (1.13a)
for 0 < k < n, n > 0. An analogous property holds for the sequence
{gn(2)}22, of odd order approximants of the PPC fraction (1.3). This
remarkable property of PPC-fractions is of great value and is exploited
both for moment theory and for Szeg6 polynomials.

It is also useful to consider M-terminating PPC-fractions

260 1 (1-]0uf)=

5o — _
1 + 35,2+ 6 +
(1.14a) 0z L
1 (1 — |5]y[,1| ) z 1
+ p_1z T Oni—1 + Spz

where M is a positive integer and the complex coefficients 9,, satisfy
(1.14b) 6 >0, |0 <1 formn=1,2,...,M —1and |6p] = 1.

For 0 < n < M, the nth numerator P,(z), nth denominator Q,(z)
and nth approximant S, (0) of the continued fraction (1.4) are defined
by equations (1.10) and S,(0) = P,(2)/Qn(z). The M-terminating
PPC-fraction (1.14) is said to represent the rational function

PQM(Z)
Qanm(2)

f(z) =

By a distribution function on [—, 7] is meant a real valued, bounded
non-decreasing function ¥ (0) defined on [—m, 7] = {0 : —7 < 0 < 7}.
The set of all distribution functions on [—m, 7] is denoted by ¥(—m, ).
We consider the following sets:

Uoo(—m, ) ={tp € U(—m,7):4 has infinitely many points of increase},
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Uy (—m,m) ={t € U(—m,7m): ¢ has M points of increase},

where M is a positive integer. The trigonometric moment problem
(TMP) for a doubly infinite sequence {p,}> in C consists of find-
ing necessary and sufficient conditions for the existence of a 9 €
U oo (—m, ), such that

™

1 .
(1.15) o = 5o e Mdy(0), n=0,+1,42,....
s

—T

Such a function % is called a solution to the TMP. It is readily shown
[1, Theorem 5.1.2] that, if a solution exists, then it is essentially
unique. The number pu, is called the nth moment with respect to
1. Akhiezer and Krein [2] were the first to investigate trigonometric
moment problems. Extensive expositions of the TMP can be found in
the books [1, 17, 18, 19, 21, 46, 70].

The approach for moment theory in the present paper establishes
a one-to-one correspondence between PPC-fractions (1.3) and distri-
bution functions ¢ € U, (—m, 7). Use is made of the connections
(established by Toeplitz in [73]) between positive definite quadratic
(Toeplitz) forms
n

(1.16) Z Z ajOtj—k, aj, ar €C

j=—nk=—n

and Toeplitz determinants T,gm) associated with the sequence { i, }>
where, for m =0,+1,4+2,... and £k =1,2,3,...,

(1.17a) ™ =1,
and
Hm Hm—1 T Pm—k+41
Hm+1 Hm ot Bm—k42
(m) _
(1.17b) T, = ) : -
Hm+k—1 Hm+k—2 o Hm

It is shown (Theorem 2.2) that there exists a PPC-fraction whose
sequence of even order approximants converges to a function f(z)
represented by the power series (1.13a) if and only if {u, }>°, satisfies

(1.18) fn =7, and T >0forn=0,1,2,....
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Conditions (1.18) are necessary and sufficient for existence of a solution
to the TMP for {u,}>°. See Theorem 3.1.

Functions belonging to the class C defined by
C ={f: f(#) is holomorphic in |z| < 1, f(0) > 0 and

(1.19) Ref(z) > 0 for |z| < 1}

are closely related to PPC-fractions and play an important role in
trigonometric moment theory. The functions in C were introduced in
[7, 8] and are called normalized Carathéodory functions. The Herglotz-
Riesz representation theorem ([1, 24, 67, 68]) asserts that for every
f € C there exists a 1) € U(—m, ) such that

1 [T e 42
(1.20) flz) = %/_ﬂ - Zd¢(0)7 |z| < 1.

It is shown (Section 6) that, if ¢y € Uy (—m, ), then f(z) is
the limit of the even order approximants of a PPC-fraction and, if
Y € Uy (—m,7), then f(z) is represented by an M-terminating PPC-
fraction. Therefore, the class C of functions is completely characterized
by PPC-fractions and M-terminating PPC-fractions.

Polynomials orthogonal on the unit circle were introduced by Szego
[72] using inner products with respect to a distribution function ¢ €
Voo (—m,m)

1 4 N 7 o~
(1.21) (P,Quy = [ P(e")Q(e?)dy(0), P.QEA,

C2r )

where A is the linear space

q
(1.22) A:{chzk:ckec, pgq}.

k=p

If Q,(z) is the nth denominator of the PPC-fraction corresponding
to 1, then the nth degree, monic Szegé polynomial (orthogonal with
respect to 1) is given by

(1.23a) n(2) = Qany1(z), n=0,1,2,...,
and the nth reciprocal polynomial p¥(z) = 2"p,(1/Z) is given by
(1.23b) pr(z) = Qan(2), n=0,1,2,....



8 C. BONAN-HAMADA, W.B. JONES AND O. NJASTAD

Since Szego polynomials are denominators of PPC-fractions, many of
their properties given in Section 4 are immediate consequences of results
on PPC-fractions established in Section 2. This work is essential for the
study of frequency analysis based on Wiener-Levinson filters (Sections
7 and 8).

Let B(t) be a real valued function of the form

I
(1.24a) B(t)= > a;e®™Vi' teR, I€{1,2,3,.. 1},
j=-1

where the frequencies f; satisfy

(1.24b) O=fo< fi<fo<---<fr, fi=—-f- 3=12,...,1,
and the amplitudes a; satisfy

(1.24c¢) ap>0, O#a;=0a-;€C, j=12,..., I

Frequency analysis consists of determining the unknown frequencies
f; using as input a finite sample of N (observed) values

I
(1.252)  xn(m)=B(tym) = Y_ ;™™ m=0,1,2,...,N-1,
j=—1I

where the w; are normalized frequencies defined by

(1.25Db) wj =2rAtf;, j=0,£1,£2,... %1,
and
(1.25¢) 0 < At <1/(2fr).

Frequency analysis based on Wiener-Levinson filters (Sections 7
and 8) uses a discrete time signal of the form (1.25) to construct
Szegd polynomials p,(¢n;z) with the property that, as N — oo,
the zeros of p,(¢¥n;z) with greatest moduli converge to the critical
points €™ j = 0,£1,42,..., %] on the unit circle. Here, 1x(6) is
a distribution function defined by the signal {xx(m)}NZ}. Wiener
filters [76] were developed in the context of continuous time signals.
The modification for discrete signals is the work of Levinson [47]. In
the special case that there exists a frequency f such that f; = jf,
j =0,1,...,I, then the series (1.24) reduces to an ordinary Fourier
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series and f is the fundamental harmonic. For speech processing and
many other applications, the unknown frequencies f; are not multiples
of a fundamental frequency, see [16, 52, 66].

2. Positive Perron-Carathéodory continued fractions. PPC-
fractions provide the structural framework for developing moment the-
ory and orthogonal polynomials on the unit circle. From the difference
equations (1.10) the nth numerator P,(z) and nth denominator @, (z)
satisty, forn =0,1,2,...,

(2.1a)  Pon(z) = —2"Papya(1/2), Qan(2) = 2" Qan11(1/7),

Q1)) Pouns(z) = 7 P(/D, Qaia(z) = G177,
Also,
(2.2a) fn(2) = —gn(1/2) and  gu(2) = —fu(1/2)

where

(2.2b) fn(2)

_ Pa(2) _ Pania(2)
Q2n(2) Qany1(2)

It follows from the determinant formulas (1.6) that, for n =1,2,3,.. .,

and  gn(z)

n—1

(2:38)  Pon(2)Qan-1(2) = Pon—1(2)Qan(2) = 250 [ [ (1 = 16;1*)z"7",
j=1

and

(23b) P2n+1(Z)Q2n(Z) - P2n(Z)Q2n+1(Z) = _260 H(l - |6]|2)Zn

Forn=0,1,2,...,
(2.3¢)
Pay12(2)Qan(2) = Pon(2)Qanta(2) = =2000n11 [ (1 = 16;17)2",
j=1
and
(2.3d)

Pay13(2)Qan11(2) = Pant1(2)Qanvs(2) = 2000011 [ (1 —16;17)2" .

Jj=1
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In equation (2.3a) when n = 1, the empty product is 1 by definition.

Since Py, (%) /Q2n (%) is holomorphic at z = 0 and Paypt1(2)/Q2n+1(2)
is holomorphic at z = oo, we can express these functions as convergent
power series

PQn( (n) k
2.4a + 2 eC,
(2.4a) Ors) Z w, e
for all z in a neighborhood of z = 0, and
Popy1(2) —k (n)
2.4b = —,u -2 po , p, eC,
CAD) Ganle) — Z :

for all z in a neighborhood of z = oo. Dividing both sides of (2.3¢c)
by the product Q2,(2)Q2,+2(2) and dividing both sides of (2.3d) by
Q2n+1(2)Qan+3(2) yields the following theorem from [32]:

Theorem 2.1. Corresponding to each PPC-fraction (1.3), there exists
a unique pair (Lo, Loo) of formal power series (fps) of the form

(25) Lo=po+2Y mkz¥,  Loo=—po—2Y p_sz" meC,
k=1

such that, forn=0,1,2,

(2.6a)  Lo— 52" — 25, H (1—16,2)=" + 0(="+2),
2n
and
_Pni®) o Tra s (L) AN
(2.6b) Loo Q2n+1(z)_2§°£[1<1 155 ( 5 +0( (5 .

It follows from equation (2.4) and Theorem 2.1 that, for n =
0,1,2,...,
(2.7) " =, k=0, £1, £2,..., £n.

This is a remarkable and useful property of PPC-fractions in view of
the fact (Theorem 2.3) that the rational functions (2.4a) and (2.4Db)
converge to functions f(z) and g(z), respectively. Theorem 2.1 not only
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enables us to establish the existence of the corresponding pair (L, Loo)
of series (2.5) but, in view of equation (2.7), we obtain explicit formulas
for the PPC-fraction coefficients ¢,, and the polynomials @Q,,(z) in terms
of Toeplitz determinants (1.18).

Theorem 2.2 ([32]).

(A) For a PPC-fraction (1.3), let (Lo, Loo) be the corresponding

pair of formal power series (2.5), and let T,gm) denote the Toeplitz
determinants (1.17) for the double sequence {un}>. Then, for n =
1,2,3,...,

(28) Ho = 50 > 07 Hn = H—n, TT(LO) > 07
(=1) (1)
(2'9) On = (_1) W) 0p = (_1) Wv
(0) (0)
1— |(S |2 — TnJrlTnfl
(Téo))Q )
Ho H1 Hn
1 H—1 Ho o Hn—1
(2.10a) Qan(z) = @ : : ol
Hentl H_ni2 - H1
Zn Zn_l PPN 1
/‘LO /“Lfl F —n
1 H1 Ho T He—n+1
(2.10b) Qant1(z) = 70 : : :
Un—1 HPn—2 *°* 251
1 z z"

(B) Conversely, let (Lo, Loo) be a pair of formal power series (2.5)
such that {p}>2 satisfies (2.8). Let {6,} be defined by

T

(2.11) 8o = Lo, 6 = (—1)" 2,
0 0 T,SO)

n=1,23,....
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Then |6, < 1 forn =1,2,3,..., and hence (1.3a) is a PPC-fraction
whose coefficients 6, satisfy equations (2.9), and (1.3) corresponds to
(Lo, Loo)-

Proof.

(A) Combining equation (2.3¢) with Theorem 2.1 yields, for n =
1,2,3,...,

(2.128) Q2n(2)Lo — Pan(2) = —2000,11 | [(1 = [6;1%)2" ! + O(z""2),
j=1

and

(212b)  Q2n(2)Loo — Pon(2) = =200 [T (1 = 16,*) + OC«)'

j=1
By equating coefficients of like powers of z on both sides of equations
(2.12a) and (2.12b), we arrive at the system of linear equations

(2.13)
:U’0+ H—142n,1 +-+ H—nq2n.n = 60 H?:l(]' - |5J|2)
Bt Hoq2n,1 +ot+ pepti1Gonn =0
pnt  Hn—192n1 +:-+  HoG2n.n =0.

Since a unique solution to the system (2.13) is ensured by Theorem 2.1,

the Toeplitz determinants of the system satisfy T, ,(L +)1 # 0. Cramer’s rule

[27] implies

(2.14) T, = H — 15T, n=1,2,3,....

Since Tl(o) = pg = 99 > 0, it follows by induction that T,(LO) > 0 for
n = 1,2,3,.... The expression for ¢, given in equation (2.9) can be
obtained by solving the last n equations in the system (2.13) for gy,

since &, = q2n.n, n = fi—n, and hence 7Y = 7Y, The expression

for (1—18,]?) in equation (2.9) is a consequence of the Jacobi identities
(23]

2
(2.15) (T,SO)) =710 4 TOTED ) n=1,2,3,...,
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and the expressions for §, and 9§, in equation (2.9). The formulas
given in equation (2.10) can be derived from the last n equations in the
system (2.13).

(B) Since {ux} satisfies relationship (2.8), we have 7 =18,
and hence by (2.15),

70 7(0)
1— |6n|2 — n+l1-n—1

()

Therefore, (1.3a) is a PPC-fraction, and it corresponds to a pair
(Lo, L) of the formal power series

>0, n=1,23,....

o0 o0
Lo = jio + QZﬁkzk, Loo = —Jip — QZﬁ—szk-
k=1 k=1

If f,gm) denotes the Toeplitz determinant associated with {zg}>,,

then one can show that fl((m) = T,Em), for m = 0, £1, £2,... and
k =1,2,3,... by a standard argument; see, e.g., [42, Theorem 7.2].
Therefore, (3.1a) is a PPC-fraction corresponding to (Lo, Lo )- O

An important characteristic of continued fractions is that the ap-
proximants can be generated by the composition of a sequence of lin-
ear fractional transformations. This property has been exploited in the
development of continued fraction convergence theory [42, 49, 50].

By use of conformal mapping one can verify the convergence of
the approximant sequences { f,(z)} and {g,(z)} and also estimate the
truncation error.

The linear fractional transformations associated with a PPC-fraction
(1.3) follow from equations (1.7)—(1.9) and are, for n = 1,2,3,...,

(216&) So(Z,W) = 60 + w, 52n(zaw) == 1 s
6nZ +w

—26 1—16,]?)z

(2.16b) 15w = oty () i %

(2.16¢) So(z,w) = so(z,w), Sp(z,w) 1= Sp_1(z, sn(z,w)),
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1—w
2.16d = -1 = 4
(2.16d) ro(z,w) := so(z,81(z,w™ ")) T o’
1 On +w

2.16 n(z,w) == = ,
(2.16¢) ra(z:w) son (s sami1 (0 1) L+ 0w

(2.16f) Ro(z,w) :=19(z,w), R, (z,w) := Rp_1(2,r(z,w)).
It follows that, for n =1,2,3,.. .,
P,(z) + wP,-1(2)

(2.17) Sn(z,w) = On(2) £ 0Qn 1 (2)’
_ b w1y = Penii(2)w + Pon(2)
(2.18) Ry (z,w) = Sant1(z,w™ ") Do ()0 £ Oon(2)”
Hence, forn =1,2,3,...,
(2.19)
P2 o Ponri(®)
PG, T B0 m@img, T T e

Theorem 2.3 ([32, 44], Convergence). Let (1.3) be a PPC-fraction
with corresponding pair (Lo, Loo) of formal power series (2.5) and
(2n)th approzimant fn(z) = Pan(2)/Qan(z). Then {fn(2)}5° converges
uniformly on compact subsets of the unit disk |z| < 1 to a normalized
Carathéodory function f(z) satisfying, forn=1,2,3,...,

(2.20) f(0) =dp = po >0, Re f(z) >0, for|z| <1,
(2.21) f2)=po+2) ez, for|z| <1,
k=1
1+ p? 260p
(2.22) ’f(z)—501p2 STo 2 for|z| < p <1,
40|21
(223) 1)~ b < T forlil <1

400 [Ty (1 — 185 1) |2+

(224)  |f(2) = fa(2)] < |Q2n(2)|? = [2Q2n+1(2)[2’

for |z| < 1.



SURVEY ARTICLE: CONTINUED FRACTIONS 15

The inequalities (2.23) and (2.24) provide a priori and a posteriori
truncation error bounds, respectively. Our proof of Theorem 2.3 makes
use of four lemmas.

Lemma 2.4 (Conformal mapping). Let (1.3) be a PPC-fraction with
associated linear fractional transformations (2.16). For R := |z| < 1,
let U be the open disk in C defined by U := [u : |u| < R]. Let

(2.25)

on(1 - R?)z (1 —8,*) R?
[, == = =1,2.3,....
1- R2[6,2 p 1-R2s, 2 "
Then
1+ R? 260R
(226) To(Z,UR): |:§EC:‘5501—R2 < 1—R2:|
and

(2.27) (2, Up)=[£€C:|6E-T,| <pn) CUr, n=123,....

Proof. Tt is readily shown that, if £ = ro(z,w), then w = (§p —
£)/(do + &), from which one can verify equation (2.26). Similarly, if
¢ =r,(z,w), then w = (£ — §,2) /(2 — 0,&), from which one can obtain
the equality relation in (2.27). To prove the inclusion relation in (2.27),
it suffices to show that

(2.28) Tl + pn < R.

Substituting the expressions for I',, and p,, in the inequality (2.28) and
multiplying both sides by (1 — R?|d,|?) yields the equivalent inequality

R(1 = R)(1 = R|0n]) = 0,

which is clearly valid. ]

It follows from Lemma 2.4 and equation (2.16f) that, for |z| < 1 and
n=1,2,3,...,

(2.29)  R,(2,Ur) C R,_1(2,Ugr) C--- C Ro(2,Ug) = ro(z,Ur).

Therefore, {R,(z,Ur)} is a nested sequence of non-empty circular
disks. Since

(230) fn—‘,—m(z) :Rn_i,_m(Z,O) € R”(Za UR)) nam:051727"'7
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we have the following lemma.

Lemma 2.5. If |z| < 1, then
(231) |fn+m(z)7fn(z)| SQ[?(R"(Z,UR)), namzoa]-»Qa"'v
where p(D) denotes the radius of a disk D.

It follows that the sequence {f,(z)} converges to a finite value
whenever we have lim,, .o, p(R,(z,Ugr)) = 0.

Lemma 2.6. For R=|z| <1 andn=1,2,3,...,

260 [T, (1 — |6;]2)|2|"+?
(2.32) p(Bn(2,Ur)) = |Q02,1}]z)|12( |z|ani|1 (2)|*

Proof. Let w,, € Ug be chosen so that R, (z,w,) is the center of the
disk R, (z,URg). By equation (2.18),

(2.33) Ry (z,—u,) =00 if u, = M

Q2n+1(2)
Since R, (z,wy) and Ry, (z, —u,) are inverses with respect to the bound-
ary of R,(z,Ug), and since inverses are preserved under linear frac-
tional transformations, it follows that w, and —u, are inverses with
respect to the circle |w| = R = |z| in the w-plane. Hence, the ray
extending from w = 0 to w = w,, passes through w = —u,, and

(2.34) 7:= Arg(w,) = Arg(—u,) and |w,|-|un| = R? = |2]* < 1.

Therefore, v, := |z]e!™ is the point of intersection of the circle |w| = R
and the line segment [w,,, —u,]. An application of equation (2.18) and
the determinant formulas (2.3) yields

p(Rn(z,Ur)) = |Rn(z,wn) — Rn(2,vn)|
_ 200 Hj:l(l - ‘5j|2)|z|n|wn — Un|
Q20 (2)2|wn + Un - |un +vn|

By equations (2.33) and (2.34), we obtain

|wn = va| = (1Q2n(2) = [2Qant1(2)]) [2] = [un + val - ||
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and ) )
_ Q2 ()] — [2Q2n11(2))]
|wn + un| = ;
Q20 (2)Q2n+1(2)]
from which equation (2.32) is an immediate consequence. O

It is convenient to introduce gg := 1/po and for n =1,2,3,...,

o = 7" __On1 00
N0 T T T T (- )

(2.35)
which follows from equation (2.9).

Lemma 2.7 (Christoffel-Darboux formulas). Forx,y € C, 27 # 1 and
n=0,1,2,...,

(2.36) > 0jQ2j-1(2)Q2;-1(y)
=0

_on (Q2n(9€)Q2n(y) - I?Q2n+1(13)@2n+1(y))
h 1—2y )

Proof. For n =1,2,3,..., the difference equations (1.10) imply

(2.37a) Qa2n+1(2) = 2Q27-1(2) + 6nQ2n—2(2),
(2:37b) Q2n(2) = 8,2Qan—1(2) + Qon—2(2),
and hence,

(2:38a) 2Qani(2) = Q2n+1<12>1667|12@zn<z>
and

(2.38Db) Qan_2(2) = an(Z)l__égﬁgnH(Z)'
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From equations (2.37) and (2.38), it follows that

0j (sz(l‘)sz (y) — x?Q2j+1($)sz+1(y))

1—2ay
(2.39) 0j (Q2j72(x)Q2j72(y> - ny2jfl($)Q2jfl(y))
- 1—ay

+ 0jQ2j+1(2)Q254+1(y).

Summing both sides of equation (2.39) yields the Christoffel-Darboux
formulas (2.36). O

Proof of Theorem 2.3. In equation (2.36), we set © = y = z and
obtain

0n(|Q2n(2)* = [2Q2n+1(2)|*)

1—zf?

(240) 00 <Y 0Q211(2))* =

Jj=0

Therefore, by equation (2.35),
(2.41) Q2n(2) ] = |2Qan+1(2)]? > (1 — |2 H (1—16;]%)

Combining equation (2.32) and inequality (2.41) yields, for |z| = R < 1,

200 [T7_, (1 — |6;*)]="+! _ 26|+
T Q2 (2)? — [2Q2nt1(2)]2 T 1—|22

It follows from inequality (2.42) and Lemma 2.5 that {f,(2)}° con-
verges uniformly on compact subsets of |z|] < 1 to a function f(z)
holomorphic in |z] < 1. The mapping properties (2.29) imply that
Re f(z) > 0 for |z| < 1, and hence, f(z) is a normalized Carathéodory
function. The truncation error estimates (2.23) and (2.24) follow from
inequality (2.42). By a convergence theorem for continued fractions
given in [42, Theorem 5.13], assertion (2.21) holds since the pair
(Lo, Loo) of power series (2.5) corresponds to the PPC-fraction (1.3)
and the sequence {f,(2)}§° is uniformly bounded on compact subsets
of |z] < 1. O

(2.42) radOR,(z,Ug) <
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We note that the convergence theorem [42, Theorem 5.13] makes
essential use of the Stieltjes-Vitali theorem (see, e.g., [25, Theorem
15.3.2], [71], [74, Theorem 20.15]).

From equation (2.2) and Theorem 2.3 it follows that the sequence
{gn(2)} of odd order approximants of a PPC-fraction (1.1) converges
to a function g(z) holomorphic in |z| > 1, satisfying

(2.43) g(0) = —po = =60 <0, Re(g(z)) <0 for|z|>1,

and

(2.44) g(2) = —po =23 py=F, 2> 1
k=1

3. Trigonometric moment problem.

Theorem 3.1 ([32], [34], Trigonometric moment problem). Let
{pn} be a doubly infinite sequence in C with associated Toeplitz

determinants Tlgm) given by equation (1.17). Then the following three
statements are equivalent.

(A) There exists a distribution function ¢ € ¥ o(—m,m) such that
its moments [, satisfy

1 U

(3.1) o =5 e"M0dy(0), n=0,+1, £2,....
(B)
(3.2) o =T and T >0, n=123,....

(C) There exists a PPC-fraction (1.3) corresponding to the pair
(Lo, Loo) of power series (2.5).

Proof. We begin by showing that (A) implies (B). If there exists a
Y € Uy (—m, ) such that equation (3.1) holds, then clearly w, = 7—,
n=0,1,2,.... If

(3.3) P(z) = Z arz®, ay €C,
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then

64 g [ IPENPIO) = Y g >0,
J,k=—n

and the left hand side of equation (3.4) equals zero if and only if

P(z) =0, since 9(#) has infinitely many points of increase. Therefore,

the right hand side of equation (3.3) is a positive definite Toeplitz form.

By a well-known property of Toeplitz forms, Téo) >0,n=123,...

[21, pages 16-19].

The equivalence of (B) and (C) is implied by Theorem 2.2 (B).

It remains to show that (C) implies (A). By Theorem 2.3, the se-
quence of (2n) approximants {f,(z)} of the PPC-fraction (1.3) con-
verges to a normalized Carathéodory function f(z). It follows from the
Herglotz-Riesz representation theorem [1, page 91] that there exists a

¥ € ¥(—m, ), such that

T el 4 o
(3.5) £(2) 1/ T2 ), |2 < 1.

T on el —z
Expanding the integrand of equation (3.5) in increasing powers of ze =%
and integrating term-by-term yields

f(z) =po + QZpkzk, for |z| < 1,
k=1

where the py, are given by equation (3.1). It remains to show that (0)
has infinitely many points of increase. It 1(0) has only a finite number
of points of increase, then there exists a Laurent polynomial (3.3), not
identically zero, such that the Toeplitz form (3.4) is zero. This implies

that TT(LO) = 0 for some n € [1,2,3,...], and hence, the inequality in
(3.2) does not hold. This leads to a contradiction since (B) and (C)
are equivalent. O

The M-definite trigonometric moment problem in which () has
only a finite number M of points of increase is treated in Section 5
using M-terminating PPC-fractions.

4. Szeg6 polynomials. Since the Szegdé polynomials p,(z) and
reciprocal polynomials pf(z) can be expressed as denominators of a
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PPC-fraction, one can easily derive many properties of p,(z) and pZ(z2)
from corresponding properties of PPC-fractions.

Theorem 4.1. Let ) € Voo (—m,7) be given, let (-, )y be the associated
inner product (1.21), and let PPC{d,} be the PPC-fraction whose
existence is insured by Theorem 3.1. Let {p,(2)}° and {p(2)}5° be
defined by

(4.1) on(2) = Qany1(2), pr(z) = Qan(z), n=0,1,2,....

Then, for n >0, p,(2) is a monic polynomial of degree n and

0 m=0,1,...,n—1

4.2 n(2), 2™ )y =
(4.2) (pn(2) ) {T,s(i)l/Tv(Lo)

)

(0) /(0) _
(4.3) (pn(2),2™)y = {Tn+1/Tn m =0,

0 m=12,...,n,
(4.4a) pn(2) = 2pn—1(2) + npr_1(2),
(4.4b) pr(2) = Onzpp—1(2) + p;,_1(2),
(45) i) =2"pa(f3) and pu(z) = " PR(ISR)
(4.6) p(z)=0=|z| < L.

Proof. Let {1, }5° be the moment sequence (3.1) associated with .
By equation (4.1) and Theorem 2.2 (A), p,(z) and p}(z) can be ex-
pressed in terms of Toeplitz determinants T,gm) as in equation (2.10).
It follows from equation (2.10) that p,(z) is a monic polynomial of
degree n and p(z) is a polynomial of degree at most n. The orthogo-
nality properties (4.2) and (4.3) follow from equations (2.10) and (3.1).
Recurrence relations (4.4) are readily derived from equation (4.1), and
the difference equations (1.10). The reciprocity relation (4.5) follows
from equations (2.1) and (4.1). It remains only to verify (4.6). From
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the mapping properties (2.26), (2.27) and (2.29), we have

250])
-1’

/\

Qanyi(z) PP —1
Thus, all zeros of p,,(2) = Qa2,+1(2) lie inside |z| < 1. Let

(4.7 for |z| > p > 1.

Ponyi1(2) P +1 '

(4.8) Pn( :ﬁz—z] and p;(z :ﬁl—z]

where 21, 22, . . ., 2, are the zeros of p,,(z). Assume that one of the zeros,
say 2z, = €% lies on |z| = 1. From equation (4.8), we obtain p,(z;) =
0 = p} (2k), which leads to a contradiction of equation (2.3a). O

It follows from (4.6) that all n zeros of p,(z) lie in the open disk
|z| < 1. From equation (4.5), if zx # 0 is a zero of p,(z), then 1/Zj is
a zero of p’(z). Hence, all zeros of pf(z) lie in |z| > 1.

Levinson’s algorithm [47] is an efficient procedure for the computa-
tion of the coefficients of individual powers of z in Szeg6 polynomials
and the §,, coefficients of associated PPC-fractions. The algorithm is
of great value for frequency analysis computation. For the Szego poly-
nomials p,(z) associated with a distribution function ¢ € U (—m, ),
we write

(49)  pa2)=d a2, pre) =3 a0 =1
j=0 =0

Then by equations (4.2) and (4.4a), forn =1,2,3,...,
0= (pn(2), 1)y = (2pn-1(2), L)y + n{py_1(2), 1)y,
and hence,
n—1 (n—1
Z] 0 qj( )M j—1

1 1
Z; 0 q](n )Hj+1—n

(4.10) 5, = — L n=1,2,3,....
Since po(z) = p§(z) = 1, equation (4.10) yields

5 =Bt
Ho
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From equation (4.4),

and hence, by equation (4.10),
5 — p2y — pop—2
2= .
Mo — H1p—1

Continuing in this manner, one can calculate successively the coeffi-
: (n) . _
cients 6, q; ', n=1,2,3,....

Theorem 4.2. Let P(z) be a polynomial in z of the form

P(2)=2"+a12"  +apz" % 4 Fay, a; €C, n>1,
and let 1 € Voo (—m, 7). Then,
1 /™ . 1 (™ .
s P162d9:7 7,“92(10:7

min o [ IPEOPa00) = 5 [ I PA6) = (o pube
where p,(z) is the nth degree, monic Szegé polynomial with respect to
.

Proof. See, e.g., [72, Theorem 11.1.2]. a

5. M-terminating PPC-fractions. The results of Sections 2, 3
and 4 have immediate counterparts for M-terminating PPC-fractions
(1.14). These are summarized in the present section, with proofs being
given only when they differ significantly from the analogous results for
PPC-fractions.

The nth numerator P,(z) and denominator @,,(z) are polynomials
defined by the difference equations (1.10) for n =0,1,2,..., M. Since
|0a7] = 1, we have

(5.1) Popryi1(2) = 0 Pone(2), Qan+1(2) = 0 Qan(2),

(5.2) Pap(z) = —TMZMPQMO/EL Qam(2) = EzMQ2M(1/E)

and

(5-3) f(2)

— P (2) _ Ponry1(2)
C Qam(z)  Qama(2)

— /7.
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Theorem 5.1. Let f(z) be a rational function represented by an M-
terminating PPC-fraction (1.14). Then:

(A) f(z) is holomorphic for |z| <1 and for |z| > 1 and satisfies
(5.4) f(0) >0, Ref(z)>0for|z| <1, Ref(z)<0 for|z|>1.

(B) f(2) has power series representations of the form
(5.5) f(z) = {MO M

—po — 2 oy pokz N |2l > 1,
where the coefficients py, satisfy
(5.6) fn =T—n and T >0
form=0,1,2,...M and TJ(\?)H =0.
(C) The coefficients d,, in the M-terminating PPC-fraction (1.14)

satisfy
(57&) do = po > 0,
and, form=1,2,..., M,
(-1 (0) ()
T T, 4T~
(5.7b) 0o = (-1)" "5 and 115, = e

(D) The nth denominators Q,(z) of the M-terminating PPC frac-
tion (1.14) are represented by the determinant formulas (2.10)
forn=1,2,..., M.

(E) The M zeros of Qapr+1(2) = dpmQa2m(2) lie on the unit circle
|z| = 1. It will be shown (Theorem 5.4) that they are distinct
and mon-real zeros occurring in conjugate pairs.

Theorem 5.2. Let {p,}>°, be a doubly infinite sequence in C satisfy-

ing equation (5.6). Let {6,}5° be defined by

WY
7

Then {6,}3° satisfies equation (1.14b); hence, equation (1.14a) is an
M-terminating PPC-fraction representing a function f(z) with power
series expansions (5.5).

(5.8) 0o :=po and 0, :=(-1) n=12,...M.
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Theorem 5.3. Let {u,}>°,, be an infinite double sequence in C with

Toeplitz determinants T,Em) given by equation (1.17). Then the follow-
ing three statements are equivalent:

(A) There exists a distribution function ¢ € Uy (—m,m), for some
M €11,2,3,...], such that

(5.9) L, = % e M0dy(0), n=0+1,%2,....
(B)
(5.10)

fn =T and T >0 forn=0,1,2,...,M and T\y),, = 0.

(C) There exists an M-terminating PPC-fraction (1.14) represent-
ing a normalized Carathéodory function f(z), such that

(5.11a) f(z) = po + 2Zukzk for|z] <1
k=1
and
(5.11b) f(z)=—po— QZu_szk for |z| > 1.
k=1

Proof. Tt follows from a well-known property of Toeplitz forms [21,
page 19] that (A) and (B) are equivalent. By Theorem 5.1, (A) and
(C) are equivalent. O

If € Upy(—m,7) for M € [1,2,3,...], then
1 s

:a o

(5.12) (P(2),Q(2))y : P()Q(e) dip(8),

defines an M-definite inner product on

(513) Afol,JW%»l = { Z ckzk e, €C,0<n< M- ].}

k=—n

Let @, (z) denote the nth denominator of the M-terminating PPC-
fraction (1.14) associated with 1 (Theorem 5.3). Then, for n =
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0,1,2,..., M, the nth degree monic Szegé polynomial p,(z) and nth
reciprocal polynomial pf(z) are given by:

(514) pn(Z) :Q2n+1(2), p:,(z) :Q2n(2)7 n:071727"'7M'

Basic properties of these polynomials are summarized in the following:

Theorem 5.4. The Szegé polynomials p,(z) associated with an M-
definite inner product (5.12), where 1 € Uy (—m,m) satisfy the follow-
ing properties forn =0,1,2,... M:

0 k=0,1,....n—1
5.15 n(2), 25V = Ty
(5.15) (Pn(2),2")y {TT(LT1/T7(LO) P

(0) (0) _
(5.16) <p;<z>,zk>w—{T"+l/T" =0

0 k=1,2,...,n.
(5.17a) pn(2) = 2pn-1(2) + Onpyy_1(2),
(5.17b) Pr(2) = 0nzpn-1(2) + pp_1(2),
(5.18) oi(2) = 2" pnl1/2).
(5.19) () =0=|z| <1 forn=1,2,... .M —1.

In addition, ppr(z) has exactly M zeros, all are distinct and lie on the
unit circle. All non-real zeros occur in conjugate pairs.

Proof. Arguments analogous to those used in Section 4 apply, except
for the part about the zeros of pps(2).

By conditions (5.10) and equation (5.15), (par(2), par(2))y = 0, and
hence, pys(e®t) = 0 at exactly the M points of increase of . a

6. Carathéodory functions. PPC-fractions and M-terminating
PPC-fractions provide a complete characterization of the normalized
Carathéodory functions f(z) € C . From Theorems 2.3 and 5.1, it is
seen that the sequence of (2n)th approximants of every PPC-fractions
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converges to a function f(z) € C, and every M-terminating PPC-
fraction represents a function in C. It is now shown that every f(z) € C
can be represented by one or the other of these two ways.

Theorem 6.1. If f(z) € C, then either there exists a PPC-fraction
with (2n)th approzimants {fn(2)} converging to f(z) for |z| < 1 or
there ezists an M-terminating PPC-fraction representing f(z).

Proof. By the Herglotz-Riesz representation theorem [1], there ex-
ists ¢ € U(—m,7) such that

1 [ e 42 >
£6) =5 | Srdu0) = o+ 2y st <1,

T or el — 2
- k=1

where iy, is the kth moment with respect to 1. If ¢ € ¥ (—m, ), then,
by Theorem 3.1, there exists a PPC-fraction with (2n)th approximant
sequence { f,(z)} converging to f(z) uniformly on compact subsets of
lz2| < 1. If v € ¥y (—m, ) for some positive integer M, then by
Theorem 5.3, there exists an M-terminating PPC-fraction representing

f(2). O

7. Frequency analysis. Let B(t) be a real valued function of
the form (1.24) with normalized frequencies w;. Let 1(0) be a step
function defined on [—m, 7] with a jump |a;|? at each point § = w;,
j=0, 1, £2,...,+1I. Then

Y € Uy (—m,7), where M =2[+1L,

I 0 ifa=0,
1 ifa=1.

The Herglotz transform [1, page 91]

T 16 I W
7.1 () 1/ e,efzdw(a)zz o, [PE 2

2 J_. e ewi — z

j=—1

is a rational, normalized Carathéodory function. If the kth moment
with respect to v is denoted by ux, then

po + 2307 2t 2| < 1,
f(z):{ e K

(7.2) _
—po =232 pokz ™t |2 > 1
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By Theorem 6.1, f(z) has an M-terminating PPC-fraction representa-
tion (1.14)

o= Lz

1 + 3.+ 6  +
(7.3) 512 !
(1 — ‘61VI—1| )Z 1
+ Sa1 + Oz

It follows from equations (7.1) and (7.3) and Theorem 5.4 that the
monic Mth degree Szeg6 polynomial with respect to ¥ is given by

ij —e ’LUJJ)

(7.4) par(2) = Qanrpa(2) = (2 — 1)*

H'::]~

where Q2p74+1(2) is the (2M +1)th denominator of M-terminating PPC-
fraction (7.3).

The frequency analysis problem can be solved by determining the
critical points €*“7 on the unit circle; that is, by finding the zeros of
pr(2).

Let N be an integer greater than M, and let {xn(m)}>°, be defined
by

B(t,,) form=0,1,2,...,N —1,
0 for m < 0orm > N.

(7.5) X (m) = {
An absolutely continuous distribution function ¢¥n(0) € Uy (—m, ) is
determined, up to an additive constant, by

2
, —n<0<m.

N-1 4
(7.6) Wn(®) = | 3 xn(m)em?
m=0

For k =0, +1, £2,..., the moments ,ung) with respect to ¥y () can
be computed by the auto-correlation coefficient formulas

w _ 1"
(7.7) = %/_ﬂ *0 qyp v (6) Z xn(m)xn(m+k).

Since the trigonometric moment problem for { u,(CN)}iOOO has a solution
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¥y (0) (Theorem 3.1), there exists a corresponding PPC-fraction

(N)
PO (7 U B
v 200 1
-~ A
(1105 ) =
+ 5 +
where
(7.8b) s >0, M <1, sMec, n=1,2,3,...,
NN ()
™ ) M
1N v v "
e P k=123,
T, (N)| - : :
N N N
/L(—k) N(_k).u T U(fl)
N N N
00
RO RCO RO
(7.80) TON) =" 0 MR k=1,2,3,....
NN N
NN

We let P, (¢¥n; z) and Qp,(¢n; z) denote the nth numerator and denom-
inator of the PPC fraction (7.8a). Then p,(¢¥n; 2) = Qan+1(¥n; 2) and
i (Yn; 2) = Qan(¥n; z) are the nth Szegd polynomial and reciprocal
polynomial with respect to ¥y (), and they satisfy the recurrence re-
lations

(7.9a) po(¥n; 2) = po(UnN; 2) =1,
(7.9b) pu(¥n;2) = 2pn_1(¥n; 2)+0 ol (Uni2), n=1,2,3,...,

(7.9¢) py(n:2) =05 2pn_1(bn:2)+ph_ 1 (ni2), n=1,2,3,....

It was shown in [29] that, with M > 1 fixed, the distribution
function ¥y (0) converges in the weak star topology, as N — oo, to
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the step function (0), that is,

(7.10) lmlgjéi/ﬂiwé%dwNW) L7 ey av(o)

N—oo 2N J_ 2 J_,
I
= > lay[Ph(e™),
j=—I
for every function h(z) continuous on the unit circle |z| = 1. Thus,

it is not surprising that, with fixed n > M, the zeros of p,(¥n;2) of
greatest moduli converge, as N — oo, to the critical points e’ on
the unit circle. A proof of this result (Theorem 7.1) was given in two
separate papers [35, 58].

Let

(7.11) A JELE2 L ifag =0
' [0, %1, 42, ..., £1] if ag > 0.

Theorem 7.1. Let {xn(m)}>>___ be an N-terminating signal of the
form (1.25). Let n be a fized integer such that

0 ifCJéO:O

n>M: =21+ 1L, L= :
1 if ag > 0.

Then

(A) For each N > M, there exist M zeros z;j(n,N) of pn(¥n;2)
that satisfy
(7.12) J\}gnoo zj(n,N) = e“i e A.

(B) There exists a constant k, such that 0 < K, < 1 and the
remaining n — M zeros of p,(V¥n; 2) satisfy

(7.13) |zj(n,N)| < kp <1, forall N > M.

It follows that M of the zeros of p,(¢¥n;z) converge to the critical
points €™’ as N — oo, while the remaining (uninteresting) zeros are
bounded away from the unit circle. Hence, for each N > M, it suffices
to use the M zeros of p,, (¢n; z) with greatest moduli as approximations
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of the critical points. We note that, if n > M, then imy_,c0 pn(¥n; 2)
may not exist [58].

Our proof of Theorem 7.1 makes use of the following three lemmas.

Lemma 7.2. For each m =0, £1, 2, ...,

1 1
— ) el
(7.14) 7 Hm um—i—O(N), as N — oo.

Proof. Applying equation (1.25) in equation (7.7) yields
Ne—m—-1 - I I ‘ .
(7.15) ,u%v) = Z |: Z Z aja;(wj-i-wn)kezmwn )

k=0 Llj=—In=—I

By summing over k in equation (7.15), the terms with fixed j and n
such that w; # —w,, yield geometric series that can be expressed as

iy o) (V12 80[5 (@) + wn) (N = m))
sin[2(w;j + wy)]

(7.16) Ajn(m,N) = ajane

Since the sine term in the denominat