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GORENSTEIN CATEGORIES G(X ,Y ,Z )
AND DIMENSIONS

XIAOYAN YANG

ABSTRACT. Let A be an abelian category and X ,Y ,Z
additive full subcategories of A . We introduce and study the
Gorenstein category G(X ,Y ,Z ) as a common generalization
of some known modules such as Gorenstein projective (injec-
tive) modules [5], strongly Gorenstein flat modules [3] and
Gorenstein FP-injective modules [4], and prove the stabil-
ity of G(X ,Y ,Z ). We also establish Gorenstein homological
dimensions in terms of the category G(X ,Y ,Z ).

1. Introduction and preliminaries. Let A be an abelian cate-
gory and C an additive full subcategory of A . Sather-Wagstaff, Sharif
and White [10] introduced the Gorenstein category G(C ) which is de-
fined as

(1.1)

G(C ) = {A is an object of A | there is an exact sequence of objects

in C · · · −→ C1 −→ C0 −→ C0 −→ C1 −→ · · ·
which is both HomA (C ,−)-exact and HomA (−,C )-exact,

such that A ∼= Im (C0 → C0)}.

This definition unifies the following notions: modules of Gorenstein
dimension zero [1], Gorenstein projective (injective) modules [5], V -
Gorenstein projective (injective) modules [6], and so on. It is well
known that Gorenstein projective (injective) modules have nice prop-
erties when the ring in question is n-Gorenstein (a ring R is called
n-Gorenstein if R is a left and right Noetherian ring with self-injective
dimension at most n for an integer n ≥ 0 on either side). Also there
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are many results of a homological nature which may be generalized
from Noetherian to coherent rings. To this end, Ding, Li and Mao
[3] introduced and studied the strongly Gorenstein flat R-modules as
the modules of the form Im δ0 for some exact sequence of projective
R-modules

P : · · · −→ P1
δ1−→ P0

δ0−→ P 0 δ0−→ P 1 δ1−→ · · ·

such that the complex HomR(P,Q) is exact for each flat R-module Q.
Bennis and Ouarghi [2] proved that some results in [3] remain true
in the above definition whenever Q is considered to be in any class of
modules containing all projective modules.

In this paper, we investigate the objects that arise from an itera-
tion of this construction. Let A be an abelian category and X ,Y ,Z
additive full subcategories of A . We introduce the Gorenstein subcat-
egory G(X ,Y ,Z ) of A , which unifies the following notions: strongly
Gorenstein flat modules [3], Gorenstein FP-injective modules [4], X -
Gorenstein projective modules [2], Y -Gorenstein injective modules [9]
and the Gorenstein category G(C ) [10]. We give some general charac-
terizations of the Gorenstein subcategory G(X ,Y ,Z ) and prove the
stability of G(X ,Y ,Z ). We also establish Gorenstein homological
dimensions in terms of the Gorenstein subcategory G(X ,Y ,Z ).

Let A be an abelian category and C a full subcategory of A . An
exact sequence in A is called HomA (C ,−)-exact if it remains still
exact after applying the functor HomA (C ,−). Let M be an object of
A . An exact sequence · · · → C1 → C0 → M → 0 in A with all Ci

in C is called a proper C -resolution of M if it is HomA (C ,−)-exact.
Dually, the notions of a HomA (−,C )-exact sequence and a coproper
C -coresolution of M are defined.

For M , X -pd(M) is defined as inf {n ≥ 0 | there is an exact
sequence 0 → Cn → · · · → C0 → M → 0 in A with all Ci in C },
and set X -pd(M) infinity if no such integer exists. We also define
Y -id(M) dually, and set

res X̂ = the subcategory of objects M of A with X -pd(M) < ∞,

cores Ŷ = the subcategory of objects N of A with Y -id(N) < ∞.

Let X ,Y be two additive full subcategories of A . Write X ⊥ Y if
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Ext≥1
A (X,Y ) = 0 for each object X ∈ X and each object Y ∈ Y . We

denote

X ⊥ = {A ∈ A | Ext1A (X,A) = 0, for all X ∈ X },
⊥Y = {B ∈ A | Ext1A (B, Y ) = 0, for all Y ∈ Y }.

Given a class F of objects in A and an object X ∈ A , a mor-
phism φ : F → X with F ∈ F is called an F -precover of X if
HomA (F ′, F ) → HomA (F ′, X) → 0 is exact for all F ′ ∈ F . If, more-
over, any f such that φf = φ is an automorphism of F , we say that
φ : F → X is an F -cover. F -preenvelopes and F -envelopes are de-
fined dually.

2. Gorenstein subcategory G(X ,Y ,Z ) of A . Let A be an
abelian category and X ,Y ,Z additive full subcategories of A .
In this section, we introduce and study the Gorenstein subcate-
gory G(X ,Y ,Z ) of A and prove the stability of the subcategory
G(X ,Y ,Z ).

Definition 2.1. The Gorenstein subcategory G(X ,Y ,Z ) of A is
defined as

G(X ,Y ,Z ) = {A is an object of A | there is an exact

sequence of objects in X · · · −→ X1 −→ X0 −→ X0 −→ X1 −→ · · · ,
which is both HomA (Y ,−)-exact and

HomA (−,Z )-exact, such that A ∼= Im (X0 → X0)}.

Remark 2.2.

(1) It is clear that each object in X is in G(X ,Y ,Z ). If

X : · · · −→ X1 −→ X0 −→ X0 −→ X1 −→ · · ·

is a HomA (Y ,−) and HomA (−,Z ) exact sequence of objects in
X , then by symmetry, all the images, the kernels and the cokernels
of X are in G(X ,Y ,Z ).

(2) If X = Y = Z = C , then the subcategory G(X ,Y ,Z ) is exactly
the Gorenstein category G(C ) in [8, 10].
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(3) If A is the category of R-modules and X = Y is the class
of projective R-modules, then the subcategory G(X ,Y ,Z ) is
exactly the class of Z -Gorenstein projective modules in [2]. In
particular, if Z is the class of flat R-modules, then the subcategory
G(X ,Y ,Z ) is exactly the class of strongly Gorenstein flat modules
in [3].

(4) If A is the category of R-modules and X = Z is the class of
injective R-modules, then the subcategory G(X ,Y ,Z ) is exactly
the class of Y -Gorenstein injective modules in [9]. In particular,
if Y is the class of FP-injective R-modules, then the subcategory
G(X ,Y ,Z ) is exactly the class of Gorenstein FP-injective mod-
ules in [4].

In what follows, we always assume that X ⊆ Y and X ⊆ Z . The
following result investigates the behavior of the object in G(X ,Y ,Z )
in short exact sequences.

Theorem 2.3. Given a both HomA (Y ,−)-exact and HomA (−,Z )-
exact sequence

(2.1) 0 −→ A −→ B −→ C −→ 0

in A . If any two of A,B and C are in G(X ,Y ,Z ), then so is the
third.

Proof. Assume that A,C are in G(X ,Y ,Z ). Then there exist both
HomA (Y ,−)-exact and HomA (−,Z )-exact sequences of objects in
X :

XA : · · · −→ X−2
A −→ X−1

A −→ X0
A −→ X1

A −→ · · ·
with A ∼= Im (X−1

A −→ X0
A),

XC : · · · −→ X−2
C −→ X−1

C −→ X0
C −→ X1

C −→ · · ·
with C ∼= Im—,(X−1

C −→ X0
C).

Since X ⊆ Y and X ⊆ Z , we have the sequence (2.1) is both
HomA (X ,−)-exact and HomA (−,X )-exact. Thus, there is an exact
sequence of objects in X :

XB : · · · −→X−2
A ⊕X−2

C −→X−1
A ⊕X−1

C −→X0
A⊕X0

C−→X1
A⊕X1

C−→· · ·
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such that B ∼= Im (X−1
A ⊕ X−1

C → X0
A ⊕ X0

C). It follows by the
fundamental lemma of homological algebra that the sequence XB is
both HomA (Y ,−)-exact and HomA (−,Z )-exact. This implies that
B is in G(X ,Y ,Z ).

Assume that B,C are in G(X ,Y ,Z ). Then there exist both
HomA (Y ,−)-exact and HomA (−,Z )-exact sequences of objects in
X :

XB : · · · −→ X−2
B −→ X−1

B −→ X0
B −→ X1

B −→ · · ·
with B ∼= Im (X−1

B −→ X0
B),

XC : · · · −→ X−2
C −→ X−1

C −→ X0
C −→ X1

C −→ · · ·
with C ∼= Im (X−1

C −→ X0
C).

By [8, Theorem 3.8], we have both HomA (Y ,−)-exact and HomA (−,
Z )-exact sequence 0 → A → X0

B → X0
C ⊕ X1

B → X1
C ⊕ X2

B → · · · .
Consider the both HomA (Y ,−)-exact and HomA (−,Z )-exact short
exact sequence 0 → B−1 → X−1

B → B → 0. We have the following
pullback diagram:

0

��

0

��
B−1

��

B−1

��
0 // C ′

��

// X−1
B

��

// C // 0

0 // A

��

// B

��

// C // 0

0 0.

A simple diagram chasing argument shows that the second row and
the first column in the above diagram are both HomA (Y ,−)-exact and
HomA (−,Z )-exact. Consider both HomA (Y ,−)-exact and HomA (−,
Z )-exact short exact sequence 0 → C−1 → X−1

C → C → 0. We have
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the following commutative diagram:

0 // C−1

��

// X−1
C

��

// C // 0

0 // C ′ // X−1
B

// C // 0.

Then we obtain both HomA (Y ,−)-exact and HomA (−,Z )-exact se-
quence 0 → C−1 → C ′ ⊕ X−1

C → X−1
B → 0, and so we get both

HomA (Y ,−)-exact and HomA (−,Z )-exact sequence · · · → X−4
C →

X−3
C → X−2

C ⊕X−1
B → C ′ ⊕X−1

C → 0 by the preceding proof.

Consider the exact sequence 0 → X−1
C → C ′⊕X−1

C → C ′ → 0. Then
[8, Theorem 3.6] yields both HomA (Y ,−)-exact and HomA (−,Z )-
exact sequence · · · → X−4

C → X−3
C ⊕X−1

C → X−2
C ⊕X−1

B → C ′ → 0.
Applying [8, Theorem 3.6] again for the first column in the first
diagram, we get both HomA (Y ,−)-exact and HomA (−,Z )-exact
sequence · · · → X−4

C ⊕X−3
B → X−3

C ⊕ X−1
C ⊕ X−2

B → X−2
C ⊕ X−1

B →
A → 0. Therefore, the following exact sequence of objects in X

XA : · · · −→ X−4
C ⊕X−3

B −→ X−3
C ⊕X−1

C

⊕X−2
B −→ X−2

C ⊕X−1
B −→ X0

B −→ X0
C

⊕X1
B −→ · · ·

is both HomA (Y ,−)-exact and HomA (−,Z )-exact, such that A ∼=
Im(X−2

C ⊕X−1
B → X0

B). It follows that A is in G(X ,Y ,Z ).

Assume that A,B are in G(X ,Y ,Z ). Then there exist both
HomA (Y ,−)-exact and HomA (−,Z )-exact sequences of objects in
X :

XA : · · · −→ X−2
A −→ X−1

A −→ X0
A −→ X1

A −→ · · ·
with A ∼= Im (X−1

A −→ X0
A),

XB : · · · −→ X−2
B −→ X−1

B −→ X0
B −→ X1

B −→ · · ·
with B ∼= Im (X−1

B −→ X0
B).

By [8, Theorem 3.6], we have both HomA (Y ,−)-exact and HomA (−,
Z )-exact sequence · · · → X−3

B ⊕X−2
A → X−2

B ⊕X−1
A → X−1

B → C → 0.
Consider both HomA (Y ,−)-exact and HomA (−,Z )-exact short exact
sequence 0 → B → X0

B → B1 → 0. We have the following pushout
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diagram:

0

��

0

��
0 // A // B

��

// C

��

// 0

0 // A // X0
B

��

// A′

��

// 0

B1

��

B1

��
0 0.

A simple diagram chasing argument shows that the second row and the
third column in the above diagram are both HomA (Y ,−)-exact and
HomA (−,Z )-exact. Consider both HomA (Y ,−)-exact and HomA (−,
Z )-exact short exact sequence 0 → A → X0

A → A1 → 0. We have the
following commutative diagram:

0 // A // X0
B

��

// A′

��

// 0

0 // A // X0
A

// A1 // 0.

Then we obtain both HomA (Y ,−)-exact and HomA (−,Z )-exact se-
quence 0 → X0

B → A′ ⊕ X0
A → A1 → 0, and so we get both

HomA (Y ,−)-exact and HomA (−,Z )-exact sequence 0 → A′⊕X0
A →

X1
A ⊕X0

B → X2
A → X3

A → · · · by the preceding proof.

Consider the exact sequence 0 → A′ → A′ ⊕X0
A → X0

A → 0. Then
[8, Theorem 3.8] yields both HomA (Y ,−)-exact and HomA (−,Z )-
exact sequence 0 → A′ → X1

A ⊕ X0
B → X0

A ⊕ X2
A → X3

A → · · · .
Applying [8, Theorem 3.8] again for the third column in the first
diagram, we get both HomA (Y ,−)-exact and HomA (−,Z )-exact
sequence 0 → C → X1

A ⊕X0
B → X0

A ⊕X2
A ⊕X1

B → X3
A ⊕X2

B → · · · .
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Therefore, the following exact sequence of objects in X

XC : · · · −→ X−2
B ⊕X−1

A −→ X−1
B −→ X1

A

⊕X0
B −→ X0

A ⊕X2
A ⊕X1

B −→ X3
A ⊕X2

B −→ · · ·

is both =⇒ HomA (Y ,−)-exact and =⇒ HomA (−,Z )-exact, such that
C ∼==⇒ Im (X−1

B → X1
A⊕X0

B). It follows that C is in G(X ,Y ,Z ). �

Lemma 2.4. Assume that A is in G(X ,Y ,Z ). If X ⊥Y , then

Ext≥1
A (Y,A) = 0 for any Y ∈ cores Ŷ . Also if X ⊥Z , then

Ext≥1
A (A,Z) = 0 for any Z ∈ res Ẑ .

Proof. It is easy. �

Corollary 2.5. Given a short exact sequence of objects in A

0 −→ A −→ B −→ C −→ 0.(2.2)

(i) Assume that X ⊥Y ,X ⊥Z . If A,C are in G(X ,Y ,Z ), then B
is in G(X ,Y ,Z );

(ii) Assume that X ⊥Z . If C is in G(X ,Y ,Z ) and the sequence
(2.2) is HomA (Y ,−)-exact, then A is in G(X ,Y ,Z ) if and only
if B is in G(X ,Y ,Z );

(iii) Assume that X ⊥Y . If A is in G(X ,Y ,Z ) and the sequence
(2.2) is HomA (−,Z )-exact, then C is in G(X ,Y ,Z ) if and only
if B is in G(X ,Y ,Z ).

Proof.

(i) Since A,C are in G(X ,Y ,Z ) and X ⊥Y ,X ⊥Z , it follows that

Ext≥1
A (Y,A) = 0 = Ext≥1

A (C,Z) for any Y ∈ Y and Z ∈ Z . So
the sequence (2.2) is both HomA (Y ,−)-exact and HomA (−,Z )-
exact. Thus, Theorem 2.3 implies that B is in G(X ,Y ,Z ).

(ii) Since C is in G(X ,Y ,Z ) and X ⊥Z , we get Ext≥1
A (C,Z) = 0

for any Z ∈ Z , and so the sequence (2.2) is HomA (−,Z )-exact.
Hence, Theorem 2.3 shows our desired result.

(iii) Since A is in G(X ,Y ,Z ) and X ⊥Y , we get Ext≥1
A (Y,A) = 0

for any Y ∈ Y , and so the sequence (2.2) is HomA (Y ,−)-exact.
Hence, Theorem 2.3 shows our desired result. �
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Corollary 2.6. ([10,Theorem4.12]). Assume that X ⊥X .

(i) If X is closed under taking kernels of epimorphisms, then so is
G(X ).

(ii) If X is closed under taking cokernels of monomorphisms, then so
is G(X ).

Let C be a class of objects in A . Assume that A has enough
projective objects and injective objects. We call C projectively resolving
[7] if (1) it contains all projective objects; (2) for every short exact
sequence 0 → C ′ → C → C ′′ → 0 with C ′′ ∈ C , the conditions C ′ ∈ C
and C ∈ C are equivalent. An injectively resolving class is defined
dually.

Corollary 2.7. If Z is a class of R-modules that contains all projective
R-modules, then the class of Z -Gorenstein projective R-modules is
projectively resolving. In particular, the class of strongly Gorenstein
flat R-modules and the class of Gorenstein projective R-modules are
projectively resolving.

Corollary 2.8. If Y is a class of R-modules that contains all injective
R-modules, then the class of Y -Gorenstein injective R-modules is in-
jectively resolving. In particular, the class of Gorenstein FP-injective
R-modules and the class of Gorenstein injective R-modules are injec-
tively resolving.

Theorem 2.9. The subcategory G(X ,Y ,Z ) is closed under direct
summands.

Proof. Let A1 ⊕ A2 = A be in G(X ,Y ,Z ). Then there exist both
HomA (Y ,−)-exact and HomA (−,Z )-exact sequence of objects in X :

XA : · · · −→ X−2
A −→ X−1

A −→ X0
A −→ X1

A −→ · · ·
with A ∼= Im (X−1

A −→ X0
A).

Consider the both HomA (Y ,−)-exact and HomA (−,Z )-exact short
exact sequence 0 → A−1 → X−1

A → A → 0. We have the following
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pullback diagram:

0

��

0

��
A−1

��

A−1

��
0 // D

��

// X−1
A

��

// A1
// 0

0 // A2

��

// A

��

// A1
// 0

0 0.

A simple diagram chasing argument shows that the middle row is
both HomA (Y ,−)-exact and HomA (−,Z )-exact. Similarly, we have
both HomA (Y ,−)-exact and HomA (−,Z )-exact sequence 0 → D′ →
X−1

A → A2 → 0. Consider the exact sequence 0 → Ai → A → Aj → 0
for i, j = 1, 2. Then [8, Theorem 3.6] yields both HomA (Y ,−)-exact
and HomA (−,Z )-exact sequences X−1

A ⊕ X−2
A → X−1

A → A1 → 0

and X−1
A ⊕ X−2

A → X−1
A → A2 → 0. Again, [8, Theorem 3.6]

provides both HomA (Y ,−)-exact and HomA (−,Z )-exact sequences
X−1

A ⊕X−2
A ⊕X−3

A → X−1
A ⊕X−2

A → X−1
A → A1 → 0 and X−1

A ⊕X−2
A ⊕

X−3
A → X−1

A ⊕ X−2
A → X−1

A → A2 → 0. Continuing this process, we
get both HomA (Y ,−)-exact and HomA (−,Z )-exact sequences

· · · −→ X−1
A ⊕X−2

A ⊕X−3
A −→ X−1

A

⊕X−2
A −→ X−1

A −→ A1 −→ 0,

· · · −→ X−1
A ⊕X−2

A ⊕X−3
A −→ X−1

A

⊕X−2
A −→ X−1

A → A2 −→ 0.

Dually, repeated applications of [8, Theorem 3.8] yields both HomA (Y ,
−)-exact and HomA (−,Z )-exact sequences

0 −→ A1 −→ X0
A −→ X0

A ⊕X1
A −→ X0

A ⊕X1
A ⊕X2

A −→ · · · ,
0 −→ A2 −→ X0

A −→ X0
A ⊕X1

A −→ X0
A ⊕X1

A ⊕X2
A −→ · · · .

Consequently, A1 and A2 are in G(X ,Y ,Z ). �
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Set G1(X ,Y ,Z ) = G(X ,Y ,Z ), and inductively set Gn+1(X ,Y ,
Z ) = G(Gn(X ,Y ,Z ), Gn(Y ),Gn(Z )) for any n ≥ 1, where Gn(Y ) =
G(Gn−1(Y )) and G0(Y ) = Y . Let C be an additive full subcategory of
A . Huang [8] provided a method to construct a proper C -resolution
(respectively, coproper C -coresolution) of one term in a short exact
sequence in A from those of the other two terms. By using these con-
structions, he answered affirmatively an open question on the stability
of the Gorenstein category G(C ) posed by Sather-Wagstaff, Sharif and
White [10]. Now we get the following result.

Theorem 2.10. Gn(X ,Y ,Z ) = G(X ,Y ,Z ) for any n ≥ 1.

Proof. It is easy to see that X ⊆ G1(X ,Y ,Z ) ⊆ G2(X ,Y ,Z ) ⊆
· · · is an ascending chain of additive subcategories of A .

Let M be an object in G2(X ,Y ,Z ), and

· · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·

both HomA (G(Y ),−)-exact and HomA (−,G(Z ))-exact sequences in
G1(X ,Y ,Z ) with M ∼= Im (G0 → G0). Then for any j ≥ 0, there
exist both HomA (Y ,−)-exact and HomA (−,Z )-exact sequences:

· · · −→ Xi
j −→ · · · −→ X1

j −→ X0
j −→ Gj −→ 0,

0 −→ Gj −→ Y j
0 −→ Y j

1 −→ · · · −→ Y j
i −→ · · ·

with all Xi
j and Y j

i in X . By [8, Corollary 3.7 and 3.9], we get exact
sequences:

· · · −→
n⊕

j=0

Xn−j
j −→ · · · −→ X1

0 ⊕X0
1 −→ X0

0 −→ M −→ 0,

0 −→ M −→ Y 0
0 −→ Y 0

1 ⊕ Y 1
0 −→ · · · −→

n⊕
j=0

Y j
n−j −→ · · · ,
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which are both HomA (Y ,−)-exact and HomA (−,Z )-exact. So

· · · −→
n⊕

j=0

Xn−j
j −→ · · · −→ X1

0 ⊕X0
1 −→ X0

0

−→ Y 0
0 −→ Y 0

1 ⊕ Y 1
0 −→ · · · −→

n⊕
j=0

Y j
n−j −→ · · ·

is an exact sequence in X with M ∼= Im(X0
0 → Y 0

0 ), and hence M is in
G1(X ,Y ,Z ) and G2(X ,Y ,Z ) ⊆ G1(X ,Y ,Z ). This implies that
G2(X ,Y ,Z ) = G1(X ,Y ,Z ). By using induction on n we easily get
the assertion. �

Corollary 2.11. ([8, Theorem 4.1]). Gn(X ) = G(X ) for any n ≥ 1.

Corollary 2.12. If Z is a class of R-modules that contains all projec-
tive R-modules, then the class of Z -Gorenstein projective R-modules
is stable. Dually, if Y is a class of R-modules that contains all injec-
tive R-modules, then the class of Y -Gorenstein injective R-modules is
stable.

3. Gorenstein homological dimensions. In this section, we es-
tablish Gorenstein homological dimensions in terms of the Gorenstein
category G(X ,Y ,Z ).

Proposition 3.1. Assume that X = Y , X ⊥Z and every object in A
has an epic X -precover. Consider the following HomA (X ,−)-exact
sequences

0 −→ Kn −→ Gn−1 −→ · · · −→ G0 −→ M −→ 0,

0 −→ K̃n −→ G̃n−1 −→ · · · −→ G̃0 −→ M −→ 0

in A , where each Gi and G̃i are in G(X ,Y ,Z ) = G(X ,Z ). Then

Kn is in G(X ,Z ) if and only if K̃n is in G(X ,Z ).

Proof. In view of our assumption, there exists a HomA (X ,−)-exact
sequence:

0 −→ Ln −→ Xn−1 −→ · · · −→ X0 −→ M −→ 0,
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where each Xi is in X . Then we get the following commutative
diagrams:

0 // Ln

��

// Xn−1

��

// · · · // X0

��

// M // 0

0 // Kn
// Gn−1

// · · · // G0
// M // 0,

0 // Ln

��

// Xn−1

��

// · · · // X0

��

// M // 0

0 // K̃n
// G̃n−1

// · · · // G̃0
// M // 0.

From these two diagrams, we have the following HomA (X ,−)-exact
sequences:

0 −→ Ln −→ Kn ⊕Xn−1 −→ · · ·
−→ G1 ⊕X0 −→ G0 −→ 0,

0 −→ Ln −→ K̃n ⊕Xn−1 −→ · · ·

−→ G̃1 ⊕X0 −→ G̃0 −→ 0.

IfKn is in G(X ,Z ), then Corollary 2.5 implies that Ln is in G(X ,Z ),

and so K̃n is also in G(X ,Z ). Similarly, if K̃n is in G(X ,Z ), then
Kn is in G(X ,Z ). �

Definition 3.2. Assume X = Y , X ⊥Z and every object in A
has an epic X -precover. We say that an object M of A has
G(X ,Z )-projective dimension less than or equal to n, denoted by
G(X ,Z )-pd(M) ≤ n, if there exists a HomA (X ,−)-exact sequence

0 −→ Gn −→ Gn−1 −→ · · · −→ G0 −→ M −→ 0

in A with each Gi in G(X ,Z ). If no such finite sequence exists, define
G(X ,Z )-pd(M) = ∞; otherwise, if n is the least such integer, define
G(X ,Z )-pd(M) = n.

Proposition 3.3. Assume that X = Y , X ⊥Z and every ob-
ject in A has an epic X -precover. Let M be an object in A with
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G(X ,Z )-pd(M) = n. Then there exist HomA (X ,−)-exact sequences

0 −→ H −→ G −→ M −→ 0,

0 −→ M −→ H ′ −→ G′ −→ 0,

with G in G(X ,Z ), X -pd(H) ≤ n − 1 and G′ in G(X ,Z ),
X -pd(H ′) ≤ n.

Proof. We will prove the desired result by induction on n. If n = 0,
then M is in G(X ,Z ). Thus, there exists a HomA (X ,−)-exact
sequence

0 −→ 0 −→ M −→ M −→ 0.

We also have a HomA (X ,−)-exact sequence

0 −→ M −→ X −→ G′ −→ 0,

with X in X and G′ in G(X ,Z ).

Now, let n = 1, and let 0 → L1 → L0 → M → 0 be a HomA (X ,−)-
exact sequence with each Li in G(X ,Z ). By the case n = 0, we know
that there is a HomA (X ,−)-exact sequence 0 → L1 → X0 → H0 → 0
with X0 in X and H0 in G(X ,Z ). Consider the following pushout
diagram:

0

��

0

��
0 // L1

//

��

L0

��

// M // 0

0 // X0

��

// G0

��

// M // 0

H0

��

H0

��
0 0.

A simple diagram chasing argument shows that the second row and
the second column in the above diagram are HomA (X ,−)-exact. But
L0,H0 are in G(X ,Z ), so Corollary 2.5 implies that G0 is in G(X ,Z ).
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Thus, we have a HomA (X ,−)-exact sequence 0 → X0 → G0 → M →
0 with X0 in X and G0 in G(X ,Z ).

Also, there is a HomA (X ,−)-exact sequence 0 → G0 → X1 →
G1 → 0 with X1 in X and G1 in G(X ,Z ). Consider the following
pushout diagram:

0

��

0

��
X0

��

X0

��
0 // G0

��

// X1

��

// G1
// 0

0 // M

��

// H1

��

// G1
// 0

0 0.

From the middle column, we know that X -pd(H1) ≤ 1. Thus, we
have a HomA (X ,−)-exact sequence 0 → M → H1 → G1 → 0 with
X -pd(H1) ≤ 1 and G1 in G(X ,Z ).

Suppose n > 1. Then we have a HomA (X ,−)-exact sequence
0 → Gn → · · · → G1 → G0 → M → 0 with each Gi in G(X ,Z ).
Let K1 = Im (G1 → G0). Then we have HomA (X ,−)-exact sequences
0 → K1 → G0 → M → 0 and 0 → Gn → · · · → G1 → K1 → 0, i.e.,
G(X ,Z )-pd(K1) = n− 1.

By the induction hypothesis, there is a HomA (X ,−)-exact sequence
0 → K1 → H → G → 0 with X -pd(H) ≤ n − 1 and G in G(X ,Z ).
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Consider the following pushout diagram:

0

��

0

��
0 // K1

//

��

G0

��

// M // 0

0 // H

��

// G

��

// M // 0

Ḡ

��

Ḡ

��
0 0.

Note that the middle column is HomA (X ,−)-exact. Then Corol-
lary 2.5 implies thatG is in G(X ,Z ). Thus, there exists a HomA (X ,−)-
exact sequence 0 → G → X → G′ → 0 with X in X and G′ in
G(X ,Z ). Consider the following pushout diagram:

0

��

0

��
0 // H // G

��

// M

��

// 0

0 // H // X

��

// H ′

��

// 0

G′

��

G′

��
0 0.

Since X ∈ X and X -pd(H) ≤ n − 1, we get X -pd(H ′) ≤ n by the
middle row. A simple diagram chasing argument shows that the first
row and the third column in the above diagram are HomA (X ,−)-
exact. Therefore, the first row and the third column are the desired
exact sequences. �

Theorem 3.4. Assume that X = Y , X ⊥Z and every object in
A has an epic X -precover. Let M be an object in A with finite
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G(X ,Z )-projective dimension. Then the following are equivalent for
a nonnegative integer n:

(i) G(X ,Z )-pd(M) ≤ n;
(ii) There is a HomA (X ,−)-exact sequence 0 → G → Xn−1 → · · · →

X0 → M → 0 with each Xi in X and G in G(X ,Z );
(iii) M has a proper G(X ,Z )-resolution of length n;
(iv) There is a HomA (X ,−)-exact sequence 0 → Xn → · · · → X1 →

G → M → 0 with each Xi in X and G in G(X ,Z );
(v) There is a HomA (X ,−)-exact sequence 0 → Xn → · · · →

Xi+1 → G → Xi−1 → · · · → X0 → M → 0 with each Xi in
X and G in G(X ,Z );

(vi) ExtiA (M,Z) = 0 for all i > n and all Z ∈ Z ;

(vii) ExtiA (M,L) = 0 for all i > n and all L ∈ res Ẑ ;

(viii) Extn+1
A (M,L) = 0 for all L ∈ res Ẑ .

Furthermore, we have that

G(X ,Z )-pd(M) = sup{i ∈ N | ExtiA (M,L) ̸= 0 for some L ∈ res Ẑ }

= sup{i ∈ N | ExtiA (M,Z) ̸= 0 for some Z ∈ Z }.

Proof. The case n = 0 is trivial. We may assume n ≥ 1.

(i) ⇒ (ii). By (i), there exists a HomA (X ,−)-exact sequence 0 →
N → G0 → M → 0 with G in G(X ,Z ) and G(X ,Z )-pd(N) ≤ n− 1.
For G, there exists a HomA (X ,−)-exact sequence 0 → G′

0 → X0 →
G0 → 0 with G′

0 in G(X ,Z ) and X0 in X . Then we have the following



2060 XIAOYAN YANG

pullback diagram:

0

��

0

��
G′

0

��

G′
0

��
0 // H

��

// X0

��

// M // 0

0 // N

��

// G0

��

// M // 0

0 0.

A simple diagram chasing argument shows that the first column is
HomA (X ,−)-exact. For N , there exists a HomA (X ,−)-exact se-
quence 0 → K → G1 → N → 0 with G1 in G(X ,Z ) and
G(X ,Z )-pd(K) ≤ n − 2. Then we have the following pullback di-
agram:

0

��

0

��
K

��

K

��
0 // G′

0
// G

��

// G1

��

// 0

0 // G′
0

// H

��

// N

��

// 0

0 0.

A simple diagram chasing argument shows that the second row and
the second column are HomA (X ,−)-exact; thus, G is in G(X ,Z ) by
Corollary 2.5 and G(X ,Z )-pd(H) ≤ n− 1. It follows that we have a
HomA (X ,−)-exact sequence 0 → H → X0 → M → 0 with X0 in X
and G(X ,Z )-pd(H) ≤ n − 1. By repeating this process, we have a
HomA (X ,−)-exact sequence 0 → G → Xn−1 → · · · → X0 → M → 0
with each Xi in X and G in G(X ,Z ).
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(ii) ⇒ (iii). Suppose M satisfies (ii). For G in (ii), there is both
a HomA (X ,−)-exact and HomA (−,Z )-exact sequence 0 → G →
X0 → · · · → Xn−1 → G′ → 0 with each Xi in X and G′ in G(X ,Z ).
Since X ⊆ Z , we have the following commutative diagram:

0 // G // X0

��

// · · · // Xn−1

��

// G′

��

// 0

0 // G // Xn−1
// · · · // X0

// M // 0.

Then we have a HomA (X ,−)-exact sequence

X : 0 −→ X0 −→ Xn−1 ⊕X1 −→ · · ·
−→ X1 ⊕Xn−1 −→ X0 ⊕G′ −→ M −→ .

But each cokernel of X except M has a finite X -resolution, so X is
HomA (G(X ,Z ),−)-exact by Lemma 2.4. Therefore, X is a proper
G(X ,Z )-resolution of M of length n.

(ii) ⇒ (iv). Note that X in the proof of (ii) ⇒ (iii) is just the desired
exact sequence.

(iii) ⇒ (i), (iv) ⇒ (i) and (vi) ⇒ (i) are obvious.

(i) ⇒ (v) is immediate by the equivalence of (i) and (iv).

(i) ⇒ (vi). By assumption, there exists a HomA (X ,−)-exact
sequence 0 → Gn → Gn−1 → · · · → G0 → M → 0 with each Gi

in G(X ,Z ). So Extn+j
A (M,Z) ∼= ExtjA (Gn, Z) = 0 for all j ≥ 1 and

all Z ∈ Z by Lemma 2.4.

(vi) ⇒ (vii) follows from the usual dimension shifting argument.

(vii) ⇒ (viii) is clear.

(viii) ⇒ (i). By hypothesis, let G(X ,Z )-pd(M) = m < ∞. If
m ≤ n, there is nothing to prove. So we assume m > n. Then there is
a HomA (X ,−)-exact sequence 0 → Xm → · · · → X1 → G → M → 0
with each Xi in X and G in G(X ,Z ) by the equivalence of (i) and
(iv). Let Ki = coker (Xi+1 → Xi) for 1 ≤ i ≤ m − 1. If n = 0, then

Extn+j
A (M,K1) = 0 by (viii) since X ⊆ Z . Thus, the exact sequence

0 → K1 → G → M → 0 is split, and M is in G(X ,Z ), as desired.

Let n ≥ 1. Since X -pd(Kn+1) < ∞, we have that Ext1A (Kn,Kn+1) ∼=
Extn+1

A (M,Kn+1) = 0 by Lemma 2.4 and (viii). So the exact sequence
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0 → Kn+1 → Xn → Kn → 0 splits. Thus, Kn is in G(X ,Z ) and (i)
follows.

The last claim is an immediate consequence of the equivalences of
(i), (vi) and (vii). �

Proposition 3.5. Assume that X = Y , X ⊥Z and every object in A
has an epic X -precover. Then every object in A with finite G(X ,Z )-
projective dimension has a special G(X ,Z )-precover.

Proof. Let M be an object in A with finite G(X ,Z )-projective
dimension. Then Proposition 3.3 yields an exact sequence 0 → H →
G → M → 0 with G in G(X ,Z ) and X -pd(H) ≤ G(X ,Z )-pd(M)−
1. Now, if G′ is in G(X ,Z ), then Ext1A (G′,H) = 0 which shows that
G → M is a special G(X ,Z )-precover of M . �

Corollary 3.6. ([9, Proposition 3.16]). Assume that Z is a class
of R-modules that contains all projective R-modules. Then every R-
module with finite Z -Gorenstein projective dimension has a special
Z -Gorenstein projective precover.

The dual results are given by the next results.

Proposition 3.7. Assume that X = Z , X ⊥Y and every object in
A has a monic X -preenvelope. Consider the following HomA (−,X )-
exact sequences:

0 −→ M −→ G0 −→ · · · −→ Gn−1 −→ Hn −→ 0,

0 −→ M −→ G̃0 −→ · · · −→ G̃n−1 −→ H̃n −→ 0

in A , where each Gi and G̃i are in G(X ,Y ,Z ) = G(X ,Y ). Then

Hn is in G(X ,Y ) if and only if H̃n is in G(X ,Y ).

Definition 3.8. Assume X = Z , X ⊥Y and every object in A
has a monic X -preenvelope. We say that an object N of A has
a G(X ,Y )-injective dimension less than or equal to n, denoted by
G(X ,Y )-id(N) ≤ n, if there exists a HomA (−,X )-exact sequence

0 −→ N −→ G0 −→ · · · −→ Gn−1 −→ Gn −→ 0
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in A with each Gi in G(X ,Y ). If no such finite sequence exists, define
G(X ,Y )-id(N) = ∞; otherwise, if n is the least such integer, define
G(X ,Y )-id(N) = n.

Proposition 3.9. Assume that X = Z , X ⊥Y and every object
in A has a monic X -preenvelope. Let N be an object in A with
G(X ,Y )-id(N) = n. Then there exist HomA (−,X )-exact sequences

0 −→ N −→ G −→ H −→ 0,

0 −→ G′ −→ H ′ −→ N −→ 0

with G in G(X ,Y ), X -id(H) ≤ n−1 and G′ in G(X ,Z ), X -id(H ′) ≤
n.

Proposition 3.10. Assume that X = Z , X ⊥Y and every object in
A has a monic X -preenvelope. Let N be an object in A with finite
G(X ,Y )-injective dimension. Then the following are equivalent for a
nonnegative integer n:

(i) G(X ,Y )-id(N) ≤ n;
(ii) There is a HomA (−,X )-exact sequence 0 → N → X0 → · · · →

Xn−1 → G → 0 with each Xi in X and G in G(X ,Y );
(iii) N has a coproper G(X ,Y )-coresolution of length n;
(iv) There is a HomA (−,X )-exact sequence 0 → N → G → X1 →

· · · → Xn → 0 with each Xi in X and G in G(X ,Y );
(v) There is a HomA (−,X )-exact sequence 0 → N → X0 → · · · →

Xi−1 → G → Xi+1 → · · · → Xn → 0 with each Xi in X and G
in G(X ,Z );

(vi) ExtiA (Y,N) = 0 for all i > n and all Y ∈ Y ;

(vii) ExtiA (L,N) = 0 for all i > n and all L ∈ cores Ŷ ;

(viii) Extn+1
A (L,N) = 0 for all L ∈ cores Ŷ ;
Furthermore, we have that

G(X ,Y )-id(N) = sup{i ∈ N | ExtiA (L,N) ̸= 0 for some L ∈ cores Ŷ }

= sup{i ∈ N | ExtiA (Y,N) ̸= 0 for some Y ∈ Y }.

Proposition 3.11. Assume that X = Z , X ⊥Y , and every object
in A has a monic X -preenvelope. Then every object in A with finite
G(X ,Y )-injective dimension has a special G(X ,Y )-preenvelope.
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Corollary 3.12. ([9, Proposition 2.17]). Assume that Y is a class
of R-modules that contains all injective R-modules. Then every R-
module with finite Y -Gorenstein injective dimension has a special Y -
Gorenstein injective preenvelope.
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