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THE BOUNDARY BEHAVIOR OF
HOLOMORPHIC FUNCTIONS

STEVEN G. KRANTZ

ABSTRACT. We study the boundary behavior of Hardy
space functions on a domain in Cn. We prove Fatou-type
theorems using a new paradigm that avoids some of the
difficult calculations in earlier work. Our results apply to a
strictly broader class of domains.

1. Introduction. The study of the boundary behavior of holomor-
phic functions dates back to the work of Fatou in 1906. He proved
that a bounded, holomorphic function on the disc has boundary limits
almost everywhere through nontangential approach regions.

Later work extended Fatou’s results to the Hp spaces, 0 < p < ∞.
The work of Littlewood and others showed that these results were
sharp.

Beginning in 1969, Koranyi [13, 14] and others showed us that the
situation in several complex variables is quite different. For, on domains
in Cn with n > 1, we can allow the tangential boundary approach
(at least in certain directions) for a Fatou-type theorem. Specifically,
Koranyi showed that, on the unit ball B in Cn, we can use approach
regions of the form

Aα(P ) ≡ {z ∈ B : |1− z · P | < α(1− |z|)},

P ∈ ∂B, α > 1, for the boundary limits in a Fatou theorem.

There has been great interest in the last 40 years in determining
the sharp form of the Fatou theorem for a generic domain in Cn. The
monograph [7] will in fact tell the full story of this research program.
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Many of the results in several complex variables have been quite
difficult and technical to prove. Thus, one finds it discouraging to
attempt to consider more general contexts.

The purpose of the present work is to present a more abstract, softer
approach to these matters. We can recover the results on domains of
finite type in C2 and also present new results on more general domains
in Cn. The techniques here are very geometric and therefore appealing
on philosophical grounds. They are inspired by ideas first presented in
[15, 16] and also on an important but little-known covering theorem
of Besicovitch (see [8, subsection 2.8.14] and [17]).

2. Spaces of homogeneous type. Our goal here is to formulate
and prove a version of the Fatou theorem in Cn that avoids a lot of
nasty calculation of the approach regions and the accompanying balls
in the boundary. The methodology is rather abstract but can easily
be specialized down to particular situations and particular domains.
In this way, we recover the known results in the subject, and point to
some new ones as well.

One of the main points of our construction is to render the boundary
of a smoothly bounded, pseudoconvex domain in Cn as a space of
homogeneous type in the sense of Coifman and Weiss [6]. This, of
course, is an important device in the harmonic analysis of a space (see
[21]).

Here it is worth reviewing what pseudoconvexity is. Let Ω ⊆ Cn be
a smoothly bounded domain, and let ρ be a defining function for Ω (see
[15]). Thus, Ω = {z ∈ Cn : ρ(z) < 0}. If P ∈ ∂Ω, then we say that
w ∈ TP (∂Ω) if

m∑
j=1

∂ρ

∂zj
(P )wj = 0.

This defines the complex tangent space to ∂Ω at P . We say that Ω is
Levi pseudoconvex at P if, for each w ∈ TP (∂Ω), it holds that

n∑
j,k=1

∂2ρ

∂zj∂zk
(P )wjwk ≥ 0.

The domain is strongly pseudoconvex at P if the inequality is strict for
w ̸= 0.
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In what follows, we shall be working with a fixed, smoothly bounded,
Levi pseudoconvex domain Ω⊆Cn.

Recall that the Szegő kernel S(z, ζ) is the canonical reproducing
kernel for the Hardy spaceH2(Ω) (see [15, Chapter 1]). We will assume
in what follows that S extends to be continuous on (Ω×Ω)\△, where△
is the boundary diagonal. (Pseudolocality of the ∂b-Neumann problem
is sufficient for this last condition to hold. Here pseudolocality simply
means that Nbφ is smooth where ever φ is smooth. One simply applies

the Kohn formula P = I − ∂
∗
bNb∂b to the Dirac delta mass (see [9]).

Here, ∂b is the boundary version of the classical ∂ operator. For the
latter, see [15]. For the former, see [4, 9].)

Definition 2.1. Let Ω be as above and P ∈ ∂Ω. Let r > 0. For
P ∈ ∂Ω, define the ball as

β(P, r) = {ζ ∈ ∂Ω : |S(P, ζ)| > 1/r} ∪ {P}.

(The addition of {P} here is somewhat redundant.)

If ζ1, ζ2 are points of ∂Ω, then let us say the δ(ζ1, ζ2) < 2r if there
is a ball β(P, r), with P ∈ ∂Ω, such that ζ1 ∈ β(P, r) and ζ2 ∈ β(P, r).
We can define δ(ζ1, ζ2) by taking an obvious infimum.

If ζ1 and ζ2 are points of ∂Ω, then a chain from ζ1 to ζ2 is a sequence
of points p0, p1, . . . , pk such that p0 = ζ1 and pk = ζ2.

Definition 2.2. If ζ1, ζ2 ∈ ∂Ω, then we set

d(ζ1, ζ2) = inf

{ k∑
j=1

δ(pj−1, pj) : {pj}kj=0 is a chain from ζ1 to ζ2
}
.

It is automatic that d is a metric. In particular, the triangle
inequality follows just from definition chasing.

Definition 2.3. If P ∈ ∂Ω, then define the boundary ball

B(P, r) = {ζ ∈ ∂Ω : d(P, ζ) < r}

for r > 0.
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Recall now [6] the concept of a space of homogeneous type:

Definition 2.4. Let X be a topological space equipped with a collec-
tion of balls B(P, r) and a measure µ. Here, P ∈ X and 0 < r < ∞.
Assume that each B(P, r) is an open set. We say that X is a space of
homogeneous type if:

(a) 0 < µ(B(P, r)) < ∞ for every P ∈ X and r > 0;
(b) there is a C1 > 0 so that µ(B(P, 2r)) ≤ C1 · µ(B(P, r)) for every

P ∈ X and r > 0 (this is sometimes called the doubling property);
(c) there is a C2 > 0 so that if B(Q, s) ∩ B(P, r) ̸= ∅ and s ≥ r.

Then B(Q,C2s) ⊇ B(P, r) (this is sometimes called the enveloping
property).

Equipping ∂Ω as above with surface measure σ (i.e., (2n − 1)-
dimensional Hausdorff measure), we wish to claim that ∂Ω with the
balls B(P, r) forms a space of homogeneous type. Property (a) is
obvious, as any open set in ∂Ω has positive, finite measure. Property
(c) is also clear, because the balls B(P, r) come from a metric (just use
the triangle inequality). Verification of property (b) requires a bit of
work.

We need to observe that ∂Ω, equipped with the metric d, is a
directionally limited metric space in the sense of Federer [8]. This
means that there is an a priori constant K so that, if S(P, r) is a sphere
in ∂Ω of radius r, then there can be at most K points in S(P, r) that
are spaced at least r apart. This assertion follows because the Cauchy
estimates give us an a priori upper bound on the boundary growth of
the Szegő kernel, hence a lower bound on the size of the balls β(P, r).
See [8]for more on the concept of directionally limited metric space.

As a consequence, the Besicovitch covering theorem (and, in par-
ticular, the proof of the Besicovitch covering theorem) is valid on ∂Ω
with the metric and balls as indicated, see Section 3 below.1 So we
know that, if B(P, r) is a fixed ball in ∂Ω, then there are at most K ′

pairwise disjoint balls B(Pj , r) which touch B(P, r). By the triangle
inequality, all these balls are contained in B(P, 3r). Further, if x is a
point of B(P, 3r) that is not contained in B(P, r) nor in any B(Pj , r)
then B(x, r) will intersect one of those balls. As a result,

B(P, 3r) ⊆ ∪K′

j=1B(Pj , 2r).
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We see therefore that

µ(B(P, 3r) ≤
[ K′∑

j=1

µ(B(Pj , 2r))

]
.

This is a version of property (b). Thus, we have:

Modified axioms for a space of homogeneous type.

(a) 0 < µ(B(P, r)) < ∞ for every P ∈ X and r > 0;
(b’) Given a ball B(P, r), we can find pairwise disjoint balls

B(Pj , r), j = 1, 2, . . . ,K ′, lying in B(P, 3r), such that

B(P, 3r) ⊆ ∪K′

j=1B(Pj , 2r);

(c) there is a C2 > 0 so that, if B(Q, s) ∩ B(P, r) ̸= ∅ and s ≥ r,
then B(Q,C2s) ⊇ B(P, r).

While a bit more technical, these axioms will suffice for the results that
we wish to prove below.

So we see that ∂Ω is a space of homogeneous type with the modified
axioms.

3. A covering theorem. Because we have a directionally limited
metric space, we can use standard arguments (again see [8]) to prove
the following covering lemma of Besicovitch:

Proposition 3.1. There is a number M > 0 with the following
property. Let B(P1, r1), B(P2, r2), . . . , B(Pk, rk) be balls in our metric
space X with the property that no ball contains the center of any other
(given a covering, it is always possible to extract a refinement with this
property). Here k is an arbitrary positive integer. Then our collection
of balls can be partitioned into a union of at most M subfamilies so
that each subfamily is pairwise disjoint.

Remark 3.2. Our Proposition 3.1 is phrased a bit differently from
Federer’s Theorem 2.8.14. He formulates the hypothesis in the language
of “directionally limited,” while we give the condition more explicitly
in terms of the centers of the balls.
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Now a standard argument shows that the Hardy-Littlewood maximal
function

Mf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f(t)| dt

is weak-type (1, 1) (see [6] for this concept). The operatorM is trivially
bounded on L∞. By Marcinkiewicz interpolation, we find that M is
bounded on Lp for 1 < p ≤ ∞.

4. The sub-mean value property. Given a holomorphic function
f satisfying a Hardy-type integrability condition on any smoothly
bounded domain in Cn, it is a standard fact (see [15, page 347]) that
the function has a radial boundary limit function f∗ almost everywhere.
So, we can manipulate and compare f with the boundary function f∗.

The key device for mediating between the holomorphic function f
on the interior of Ω and the boundary function f∗ is a mean-value or
sub-mean value property on discs or polydiscs. This idea is explicated
quite clearly in [1] or [15, subsection 8.6]. Here, we develop a slight
variant of this idea.

We now note the following. If z is a point of Ω with Euclidean
distance δ(z) from the boundary, then Cauchy estimates (or the mean
value property) show that |S(z, z)| ≤ Cδ(z)−n. On the other hand, S
blows up at an integer rate and that rate must be at least −n because
S is a reproducing kernel (a lesser rate would make the Szegő integral a
smoothing operator). As a result, it is easy to see that the totally real
(or complex normal) extent or size of a ball B(P, r) in the boundary
is of size r. So, the variation in these balls as we move from boundary
point to boundary point is in the complex tangential extent.

Fix α > 1. On a tubular neighborhood U of ∂Ω, let π : U → ∂Ω
be the Euclidean normal projection. Given a point P ∈ ∂Ω and δ > 0
sufficiently small, we consider the set of points

Gδ = Gδ(P ) ≡ {z ∈ Ω : dist (z, ∂Ω) = δ, π(z) ∈ B(P, αδ)}

(see Section 5 below for further discussion). For each z ∈ Gδ, there
is either a complex normal curve γz passing through z and lying in
Gδ, or perhaps a union of complex normal curves which contains z.
Now, it is a simple matter to fatten up each such curve into two
asymptotically complex one-complex-dimensional half discs d1z and d2z.
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This idea is explained cogently in [18]; the proof just depends on the
power series. So we have a topological disc dz which is the union of two
asymptotically complex half discs. We may take the normal extent of
this disclike object to be δ/3.

A direct calculation shows that, for each such disc dz, we may write

|f(z)| ≤ C

(area of dz)

∫
dz

|f(ζ)| dA(ζ).

Let Dz be the union of all the dz for z ∈ Gδ. The curves γz foliate
Gδ, and we may use the coarea formula (see [8]) to integrate out over
the curves and find that

|f(z)| ≤ C · 1

(volume of Dz)

∫
Dz

|f(ζ)| dV (ζ).

This will be our submean value property which plays the same role as
the penultimate line [15, page 359].

5. Boundary behavior. Given a point P ∈ ∂Ω and α > 1,
we define an approach region (for calculating the boundary limits of
holomorphic functions) as follows. Let U be a tubular neighborhood of
∂Ω, and let π be the usual Euclidean normal projection from U to ∂Ω.
For each P ∈ ∂Ω, let νP be the Euclidean outward unit normal. Let δ0
be such that the segment from P − δ0νP to P + δ0νP lies in U for each
P ∈ ∂Ω.

Fix α > 1. Let Gδ be as before. Now set

Aα(P ) = ∪0<δ<δ0Gδ.

Then Aα will be an approach region at the point P .

Example 5.1. Let Ω be the unit disc in the complex plane. In that
context, the Szegő kernel is well known and the balls β and B are easily
calculated. As a result, we can determine the approach regions Aα to
be the traditional nonisotropic approach regions.

Example 5.2. In the case where Ω is the unit ball in Cn, the Szegő
kernel is well known to be

S(z, ζ) = cn · 1

(1− z · ζ)n
.
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Thus, the balls β(P, r) and B(P, r) are easily calculated to be the usual
nonisotropic balls that go back to Koranyi [13, 14] and Stein [21]. See
also [15]. And the approach region Aα is the nonisotropic approach
region originally defined by Koranyi in [13].

Example 5.3. In the case where Ω is a finite type domain in C2, the
balls and approach regions constructed here are just the same as those
defined by Nagel/Stein/Wainger in [19].

Now we have the usual isotropic Hardy-Littlewood maximal func-
tion M from classical analysis (constructed from nonisotropic bound-
ary balls) and we have the new, nonisotropic maximal function M that
we have constructed here. The two can be used together, as in [1] (see
[15] for the details) to obtain the following theorem of Fatou type:

Theorem 5.4. Let Ω⊆Cn be a smoothly bounded, pseudoconvex do-
main in Cn with the property that Nb is pseudolocal. Let f be an Hp

(i.e., a Hardy space) function on Ω, 1 ≤ p ≤ ∞. Then, for almost
every point P in ∂Ω, the limit

lim
Aα∋z→P

f(z)

exists.

This is the main result of the present paper. While the proof follows
standard lines, as may be found in [15, Chapter 8], the construction
of the ingredients of the proof is new here.

6. Some examples. There is a natural ontology of examples to
examine.

First, there is the case of Ω the unit ball B in Cn. Of course, the
ball is strongly pseudoconvex, and it is well known that the operator
Nb is pseudolocal on B. So, Theorem 5.4 applies in this case.

The case of smoothly bounded, strongly pseudoconvex domains is
similar. The reference [9] is a good source for information about the
pseudolocality of Nb.
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The next level of complexity is finite type domains in C2. The study
of those domains goes back to the foundational paper [11] of Kohn.
And that paper establishes the pseudolocality of Nb for such domains.

Finally, we may consider finite type domains in Cn. It is known
(see [12]) that Nb is pseudolocal on domains of finite Kohn ideal type
(there are several notions of finite type in higher dimensions, and we
cannot explain all the details here). It is also the case that Boas [3]
has proved that, on domains of finite D’Angelo type, the Szegő kernel
extends smoothly to the boundary off the diagonal.

Thus, we have a wide variety of domains to which our main theorem
applies. In practice, as in the case of the finite type domains in Cn, it
may be rather difficult to calculate the actual geometric shape of the
approach regions. The case of finite type domains in C2 can be handled
using the rather difficult and delicate estimates of Catlin [5]. So, our
approach is broad and abstract, but may be tricky to use in practice.

7. Concluding remarks. The point of view in this paper is to
set up the machinery for the study of the boundary behavior of
holomorphic functions in an axiomatic fashion. We endeavor to avoid
the specific calculations needed to study the disc, the ball, strongly
pseudoconvex domains, finite type domains, and so forth. Instead,
these particular situations arise as special cases. And other cases,
heretofore unexplored, also fit into our paradigm.

We hope in future papers to expand this program to other aspects
of complex harmonic analysis.
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ENDNOTES

1. One of the charming features of the Besicovitch covering theorem
is that there is no measure involved in either its statement or its proof.
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