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AN ABELIAN GROUP ASSOCIATED WITH
TOPOLOGICAL DYNAMICS

KAZUHIRO KAWAMURA

ABSTRACT. For a continuous surjection T : X → X on
a compact metric space X and a unimodular continuous
weight on X, we consider a weighted composition operator
UT,w on the Banach space C(X) of complex-valued contin-
uous functions on X with the sup norm. The set WT of
all weights w, for which the operator UT,w has an eigen-
value with a unimodular eigenfunction, forms a topological
abelian group. The group WT admits a homomorphism WT

to the first integral Čech cohomology of the space X. The
image and the kernel of WT carry topological and ergodic
aspects of the dynamics T . A concrete description of ImWT

and KerWT is given for positively expansive eventually-onto
open maps (under an assumption on the induced homomor-

phism of the first Čech cohomology) and minimal rotations
on tori.

1. Introduction. For a compact metric space X, C(X) denotes the
Banach space of all complex-valued continuous functions on X with the
sup norm. For a continuous surjection T : X → X (referred to as a
discrete continuous dynamical system) and a continuous function w :
X → C (referred to as a weight function), a bounded linear operator,
called a weighted composition operator, UT,w : C(X) → C(X), is
defined by the following formula:

(1.1) (UT,wf)(x) = w(x) · f(T (x)) (f ∈ C(X) and x ∈ X).

Throughout the present paper, we assume that w is a unimodular
function, that is, a continuous function such that |w(x)| = 1 for each
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x ∈ X. This assumption, together with the surjectivity of T , make
UT,w : C(X)→ C(X) an isometric linear operator.

The operator UT,w may or may not have an eigenvalue. We con-
sider the set WT of all weights w, for which UT,w has an eigenvalue
with a unimodular eigenfunction. The set WT forms a topological
abelian group under pointwise multiplication, and it admits a contin-
uous homomorphism WT : WT → Ȟ1(X;Z) to the integral first Čech
cohomology of X with the discrete topology (see Section 2, Definition
2.1). The image ImWT is described by the homomorphisms induced
by T (see Theorem 2.2), while the kernel KerT is related to the space
of real continuous coboundaries of T (see Theorem 2.8 and Theorem
2.9). In this sense, WT carries topological and ergodic aspects of the
dynamics, T . While the framework presented here is applied to arbi-
trary continuous surjections, special attention will be paid to positively
expansive open maps which are eventually onto and minimal rotations
on tori, dynamical systems that have been studied by many authors.
A concrete description of ImWT and KerWT is available for such a T
(under an assumption on the induced homomorphism on the first Čech
cohomology), see Corollary 2.11.

The study of composition operators has a long history in ergodic
theory ([12, 21], etc.). The set up of the present paper is, of course,
very close to the one for the operators on L∞ spaces of suitable
probability measures. Still, the author hopes that the present approach
sheds light on the study of topological dynamics.

In the rest of this section, we fix notation, give some definitions and
recall some auxiliary results. Throughout, T denotes the unit circle of
the complex plane C: T = {z ∈ C | |z| = 1}. The n-dimensional torus
is denoted by Tn. For compact metric space X, C(X) (respectively,
CR(X)) denotes the Banach space of all complex-valued (respectively,
real-valued) continuous functions on X with the sup norm ∥ · ∥∞. For
two compact metric spaces X and Y , Map(X,Y ) denotes the space
of all continuous maps of X to Y with the sup metric. In particular,
C(X) = Map(X,C) and CR(X) = Map(X,R).

The Čech cohomology with integer coefficient is denoted by Ȟ∗(X;Z).
We only deal with the first cohomology and make use of the natural
isomorphism

Ȟ1(X;Z) ∼= [X,T],
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where [X,T] denotes the group of free homotopy classes of the maps
of X to T with pointwise multiplication as the additive operation.
When G is a compact topological group, there exists a canonical
isomorphism Ȟ1(G;Z) ∼= G∧ between the first Čech cohomology of G
and the character groupG∧ so that, for each continuous homomorphism
f : G → G, the induced homomorphism f∗ : Ȟ1(G;Z) → Ȟ1(G;Z)
is identified with the homomorphism f∧ : G∧ → G∧ defined by
f∧(χ) = χ ◦ f , χ ∈ G∧.

A continuous map T : X → T of a compact metric space (X, d) is
said to be positively expansive if there exists a constant c > 0 such that,
for each pair x, y of distinct points of X, there exists a non-negative
integer n such that d(Tn(x), Tn(y)) > c. The positive expansiveness
is a topological notion in that it does not depend on the choice of
the metric d. It is known that the positively expansive open map
T : X → X is a local homeomorphism: each point x of X has an open
neighborhood U such that T | U : U → T (U) is a homeomorphism. For
more details, see [1, 3, 8, 16, 17, 18], etc. A minimal map T : X → X
is a continuous map on X such that the orbit {Tn(x) | n ≥ 0} of x is
dense for each x ∈ X (see [9, 21], etc.). Also, we say that a map T
is eventually onto if each nonempty open set U admits a non-negative
integer k such that T k(U) = X.

The references [2, 21] are excellent expositions on the basics of
topological dynamics and ergodic theory.

2. The group WT . Let us start with a preliminary consideration.
Suppose, for a moment, that T : X → X is topologically transitive, that
is, there exists a point x0 ∈ X such that the orbit {Tn(x0) | n ≥ 0}
is dense in X. For a unimodular weight w, suppose that UT,w has an
eigenvalue λ with an eigenfunction f ∈ C(X). Since UT,w : C(X) →
C(X) is an isometry, we have |λ| = 1. By definition, we have

(2.1) w(x) · f(T (x)) = λ · f(x)

for each x ∈ X. Taking the moduli of both sides of (2.1), we see
|f(T (x))| = |f(x)|. In particular, we have |f(Tn(x0))| = |f(x0)| for
each non-negative integer n. Because of the denseness of the orbit
{Tn(x0) | n ≥ 0} and the continuity of f , we see that the function |f |
is a constant function: |f | ≡ |f(x0)|. Dividing both sides of (2.1) by
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|f(x0)|, we see that the map f := f/|f(x0)| ∈ Map(X,T) can be chosen
as an eigenfunction of λ.

The above observation leads us to the following definition.

Definition 2.1. Let T : X → X be a continuous surjection on a
compact metric space X. Let WT be the topological abelian group
defined by

WT = {w ∈ Map(X,T) |
there exist λ ∈ T and f ∈ Map(X,T) such that UT,wf=λ·f},

with pointwise multiplication and compact-open topology.

The group WT admits a natural homomorphism WT : WT →
Ȟ1(X;Z) as follows. For w ∈ WT , let [w] be the homotopy class in
[X,T] represented by w. Recalling the isomorphism Ȟ1(X;Z) ∼= [X,T],
the map defined by

WT (w) = [w] ∈ [X,T] ∼= Ȟ1(X;Z), w ∈ WT ,

is a homomorphism. With Ȟ1(X;Z) being endowed with the discrete
topology, we see easily that WT is a continuous homomorphism.

First, we examine the image ImWT ⊂ Ȟ1(X;Z).

Theorem 2.2. Let T : X → X be a continuous surjection with the
induced homomorphism T ∗ : Ȟ1(X;Z) → Ȟ1(X;Z). Then we have
ImWT = Im(T ∗ − id).

Proof. For each w ∈ WT , we take λ ∈ T and f ∈ Map(X,T) such
that w · (f ◦T ) = λ ·f (see (1.1)). Noticing that the multiplication map
mλ by λ:

mλ : T −→ T, mλ(z) = λz, z ∈ T,

is homotopic to idT, we obtain the following equality in Ȟ1(X;Z):

[w] + T ∗([f ]) = [f ]

which implies [w] ∈ Im(T ∗ − id).



AN ABELIAN GROUP 1461

Conversely, let w ∈ Map(X,T) be a map such that [w] = (T ∗− id)[g]
for some [g] ∈ Ȟ1(X;Z). In terms of homotopy, this means

w ≃ (g ◦ T ) · g−1.

Hence, there exists a function φ ∈ CR(X) such that w · (g−1 ◦ T ) · g =
exp(iφ). Let f = g−1. Then we have

(w · exp(−iφ)) · (f ◦ T ) = f.

Hence, w · exp(−iφ) ∈ WT . For 0 ≤ t ≤ 1, let wt = w · exp(−itφ).
Then (wt)0≤t≤1 is a homotopy between w and w · exp(−iφ). Thus, we
see [w] = [w · exp(−iφ)] ∈ ImWT .

This completes the proof. �

Example 2.3.

(1) For each integer n ≥ 2, let pn : T → T be the map defined by
pn(z) = zn, z ∈ T. The map pn is positively expansive, open and
eventually onto. By Theorem 2.2, we have ImWpn

∼= (n−1)Z ⊂ Z.
For example, the weight function w : T→ C defined by w(z) = z

belongs to Wp2 but does not belong to Wpn for each n ≥ 3.
(2) Let Σn be the n-adic solenoid. This is the inverse limit space

defined by

Σn = lim←(T pn←−−−− T pn←−−−− T pn←−−−− · · · )

with all bonding maps being equal to pn of (1) above. For each
integer m > n, p̂m : Σn → Σn defined by

p̂m(z1, z2, . . .) = (zm1 , z
m
2 , . . .)

is a positively expansive, open and eventually onto map. It is
known that Ȟ1(Σn;Z) ∼= { k

ni | i, k ∈ Z, i ≥ 0}. Applying
Theorem 2.2, we have

ImWp̂m = (m− 1)Ȟ1(Σn;Z) ∼=
{
(m− 1)k

ni
| i, k ∈ Z, i ≥ 0

}
.

(3) For a positive integer n ≥ 1, let A be an n×n integral matrix such
that each eigenvalue has modulus > 1. Then A induces a positively
expansive open map TA : Tn → Tn of n-dimensional torus Tn which
is eventually onto. For n ≥ 2, this is a higher dimensional analogue
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of (1). Noticing that

Ȟ1(Tn;Z) ∼= Zn and T ∗A = A : Ȟ1(Tn;Z)→ Ȟ1(Tn;Z),

we obtain, by Theorem 2.2, ImWTA = Im(A− idZn).
(4) Let G be a compact abelian metric group, and let T : G→ G be a

positively expansive open homomorphism on G which is eventually
onto. When G is a Lie group, such a map is topologically conjugate
to the map TA of (3) [19].

For a non-Lie-group example, see [1] in which positively expan-
sive open maps on solenoidal groups are characterized. Under the
identification of Ȟ1(G;Z) with the character group G∧, we see

ImWT = {(χ ◦ T ) · χ−1 | χ ∈ G∧}.

(5) Let µn be the universal Menger compactum [5] (cf., [7, 13]). By
[20, Corollary 2.3] (and its proof), µn admits a positively expansive
open map T : µn → µn which is eventually onto. The first
cohomology is given as follows:

Ȟ1(µn;Z) ∼=
{
⊕∞Z n = 1

0 n ≥ 2.

In particular, we see ImWT = 0 for each n ≥ 2.

Proposition 2.4. Let G be a compact connected abelian group. For
an element α of G, let rα : G → G be the rotation defined by
rα(x) = αx, x ∈ G. Then ImWrα = 0.

Proof. Every compact connected abelian metric group is the limit of
an inverse sequence of (finite dimensional) tori [11, Remark 2.35]. So,
let G = lim←(Gn, pn : Gn+1 → Gn) where each Gn is a torus and pn is
a continuous epimorphism. Let πn : G → Gn be the projection which
is a homomorphism, and let αn = πn(α) ∈ Gn. It is easy to see that
rα = lim← rαn . Since each rαn : Gn → Gn is homotopic to idGn , we
have r∗αn

= idGn
. Therefore, r∗α = lim→ r∗αn

= idȞ1(G;Z). Theorem 2.2
implies the desired conclusion. �

In order to examine the kernel of WT , we introduce the following.

Definition 2.5. Let T : X → X be a continuous map of a compact
metric space X. A real-valued continuous function f ∈ CR(X) is called
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a real continuous coboundary with respect to T if there exists a function
g ∈ CR(X) such that f = g ◦ T − g. The space of all continuous
coboundaries is denoted by CobR(T ).

Let C0(X;R) be the closed subspace of CR(X) defined by

C0(X;R) = {f ∈ CR(X) |
∫
X

f dm = 0

for each T -invariant probability measure m on X}.

It is well known that CobR(T ) is a dense subspace of C0(X;R). For a
proof, see [14, Lemma 1]. While in [14, Lemma 1], the surjection T is
assumed to be a homeomorphism, its proof can easily be modified to a
proof for general surjections.

The abelian group T is regarded as a subgroup of Map(X,T) by the
identification:

z 7−→ the constant function ≡ z.

Also, we consider the following subgroup exp(iCobR(T )) of Map(X,T):

exp(iCobR(T )) := {exp(iφ) | φ ∈ CobR(T )}.

Lemma 2.6. Assume that X is connected. Then we have T ∩
exp(iCobR(T )) = {1}.

Proof. Take a function f ∈ T∩exp(iCobR(T )), and let f = exp(i(φ◦
T − φ)) = exp(iθ) for some φ ∈ CR(X) and θ ∈ R. There exists a
function ν : X → Z such that φ ◦ T − φ = θ + 2πν. From this, we see
that the function ν is continuous and, by the connectedness of X, is a
constant function. By induction, we obtain

φ ◦ Tn − φ = n(θ + 2πν)

for each positive integer n. Then

|n(θ + 2πν)| ≤ ∥φ ◦ Tn∥∞ + ∥φ∥∞ = 2∥φ∥∞,

for each n. Hence, θ = −2πν, and hence φ ◦ T = φ, which implies
f ≡ 1.

This completes the proof. �
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Remark 2.7. The above lemma does not hold in general when X is
disconnected.

An easy example that illustrates the above remark is given below.

Let X = {1, 2, 3} be the three points set with the discrete topology
and let T : X → X be the map defined by T (i) = i + 1 (mod 3).
For the function g(i) = i/3, i = 1, 2, 3, define a coboundary φ by
φ = 2π(g ◦ T − g). Then we have

exp(iφ) ≡ exp(i(2π/3)) ̸= 1;

hence, exp(i(CobR(T ))) ∩ T ̸= {1}.
By making use of Lemma 2.6, the kernel of WT of some dynamics T

is described as follows:

Theorem 2.8. Let T : X → X be a continuous surjection on a compact
metric space X.

(i) Assume that the homomorphism T ∗ − idȞ1(X;Z) : Ȟ1(X;Z) →
Ȟ1(X;Z) is injective. Then we have

KerWT = T · exp(iCobR(T )).

In particular, if Ȟ1(X;Z) = 0, then the above equality holds.
(ii) Suppose moreover, that X is connected. Then we have an isomor-

phism
KerWT

∼= T⊕ exp(iCobR(T )).

Proof. In order to prove (i), first let φ be a real continuous cobound-
ary of T and ω ∈ T. Take a function α ∈ CR(X) such that φ = α◦T−α,
and define f := exp(−iα). Then, for each x ∈ X, we have

ω · exp(iφ) · (f ◦ T ) = ω · exp(iφ) · exp(−i(α ◦ T ))(2.2)

= ω · exp(−iα) = ω · f.

Hence, w := ω ·exp(iφ) is an element ofWT such that w ≃ exp(iφ) ≃ 0.
Thus, we see w ∈ KerWT .

Conversely, take an arbitrary w ∈ KerWT . Then w ≃ 0, and there
exists a function φ ∈ CR(X) such that w = exp(iφ). Let λ = exp(iθ)



AN ABELIAN GROUP 1465

be an eigenvalue of UT,w with an eigenfunction f ∈ Map(X,T). The
equation w · (f ◦ T ) = λ · f is re-written as

(2.3) exp[i(φ(x)− θ)] · f(T (x)) = f(x) (x ∈ X).

Let η(x) = φ(x)− θ. Noticing [exp(iη)] = 0 ∈ Ȟ1(X;Z), we obtain the
following equality in Ȟ1(X;Z):

T ∗([f ]) = [exp(iη)] + T ∗([f ]) = [f ].

Since T ∗ − id is injective, we obtain [f ] = 0 ∈ Ȟ1(X;Z), and thus
f ≃ 0 : X → T. Hence, there exists a function α ∈ CR(X) such
that f = exp(iα). Substituting this into equation (2.3), we obtain an
integer-valued function ν : X → Z such that

η(x) + α(T (x))− α(x) = 2πν(x)

for each x ∈ X. Let ψ = −(α◦T −α). The function ψ is a coboundary
of T . Now we see that the function w has the desired form as follows:

w = exp(iφ) = exp(iθ) exp(iη)

= exp(iθ) exp(iψ) exp(2πiν)

= exp(iθ) exp(iψ) = λ exp(iψ).

Therefore, we obtain the equality KerWT = T · exp(iCobR(T )), as
desired.

(ii) is a direct consequence of (i) and Lemma 2.6. This completes
the proof. �

Theorem 2.8 applies to the dynamics of Example 2.3. Rotations
on tori (Proposition 2.4) require a separate argument. Recall from
Proposition 2.4 that Wrα = KerWrα . An explicit description of the
group structure of Wrα for a general compact abelian metric group is
not known to the author.

Theorem 2.9. Let rα : Tn → Tn be the rotation on the n-dimensional
torus by an element α ∈ Tn. Then we have an isomorphism

Wrα
∼= T⊕ exp(iCobR(rα)).

Proof. Let α = (α1, . . . , αn) ∈ Tn with αi ∈ T, i = 1, . . . , n. In view
of Lemma 2.6, it suffices to prove that Wrα = T · exp(iCobR(rα)).
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The inclusion Wrα ⊃ T · exp(iCobR(rα)) is proved in exactly the
same way as the one of (2.2) in Theorem 2.8. So the reverse inclusion

(2.4) Wrα ⊂ T · exp(iCobR(rα))

remains to be shown. Let w ∈ Wrα , and take λ ∈ T and f ∈
Map(Tn,T) such that

(2.5) w · (f ◦ rα) = λ · f.

The induced homomorphism f♯ : π1(Tn) ∼= Zn → π1(T) ∼= Z has the
form:

f♯(k1, . . . , kn) =
n∑

i=1

µiki, (k1, . . . , kn) ∈ Zn

for some µ = (µ1, . . . , µn). Let pµ : Tn → T be the map defined by

pµ(z) =

n∏
i=1

(zi)
µi , z = (z1, . . . , zn) ∈ Tn.

Then we see that f ≃ pµ, and hence there exists a function ξ ∈ CR(X)
such that f = pµ · exp(iξ). For each z = (z1, . . . , zn) ∈ Tn, we have

w(z) · f(rα(z)) = w(z) · pµ(rα(z)) · exp(iξ(rα(z)))
= w(z) · pµ(α1z1, . . . , αnzn) · exp(iξ(rα(z)))

= w(z) ·
n∏

j=1

(αjzj)
µj · exp(iξ(rα(z)))

= w(z) ·
n∏

j=1

(αj)
µj ·

n∏
j=1

(zj)
µj · exp(iξ(rα(z)))

= w(z) ·
n∏

j=1

(αj)
µj · pµ(z) · exp(iξ(rα(z))),

which, by (2.5), is equal to λ · f(z) = λ · pµ(z) · exp(iξ(z)). It follows
from this that

w(z) ·
n∏

i=1

(αi)
µi · exp(iξ(rα(z))) = λ exp(iξ(z)).
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Hence, we see that the weight w is written as

(2.6) w =
(
λ

n∏
i=1

(αi)
−µi

)
· exp(−i(ξ ◦ rα − ξ)),

and thus it belongs to the right hand side of (2.4).

This completes the proof. �

Theorem 2.8 and Theorem 2.9 reduce the description of KerWT to
the detection of the real continuous coboundaries. The detection of
coboundaries of a dynamical system is the subject of extensive study.
We apply a few of those results to give a description of KerWT . It
should be pointed out that the same problem has been studied in
[4] on composition operators on L2 spaces induced by an invertible
ergodic transformation τ on a probability space (X,µ). In [4], the
weight function w ∈ Map(X,T), for which the composition operator
Uτ,w : L2(X,µ) → L2(X,µ) has an eigenfunction g ∈ Map(X,T), is
called a projective coboundary of τ .

Proposition 2.10. Let T : X → X be a continuous surjection on a
compact metric space X. Suppose that either of the following conditions
(i) or (ii) holds:

(i) The map T is minimal.
(ii) (a) There exists a probability measure ν with full support so that

T is ν-ergodic, and
(b) The map T is a local homeomorphism which is eventually

onto.

Then, for a continuous function f ∈ CR(X), f ∈ CobR(T ) if and only
if

sup
n

∥∥∥∥ n∑
j=0

f ◦ T j

∥∥∥∥
∞
<∞.

Proof. The conclusion under assumption (i) is a classical theorem
due to Gottschalk-Hedlund [9], (see also [12, Theorem 2.9.4]). To
derive the conclusion under assumption (ii), let f ∈ CR(X) be a
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function such that

sup
n

∥∥∥∥ n∑
j=0

f ◦ T j

∥∥∥∥
∞
<∞.

By [6, Theorem 2], there exists a function g ∈ L∞(X, ν) such that
f = g ◦T − g, ν-almost everywhere. Since T is a local homeomorphism
which is eventually onto, we may apply [15, Theorem 6] to find a
continuous function G ∈ CR(X) such that f = G ◦ T −G.

This completes the proof. �

Our conclusions on positively expansive, open and eventually onto
maps and minimal rotations on tori are summarized as follows.

Corollary 2.11.

(i) Let T : X → X be a positively expansive open surjection which is
eventually onto such that the homomorphism
T ∗ − idȞ1(X;Z) : Ȟ

1(X;Z)→ Ȟ1(X;Z) is injective. Then we have
isomorphisms

Im(WT ) ∼= Im(T ∗ − id)

and

Ker(WT ) ∼= T⊕ exp(iCobR(T )),

where CobR(X) = {f ∈ CR(X) | supn ∥
∑n

j=0(f ◦ T j)∥∞ <∞}.
(ii) Let rα : Tn → Tn be a minimal rotation on the n-dimensional

torus Tn by an element α ∈ Tn. Then we have an isomorphism

Wrα
∼= T⊕ exp(iCobR(rα)),

where CobR(rα) = {f ∈ CR(Tn) | supn ∥
∑n

j=0(f ◦ rjα)∥∞ <∞}.

The referee and the author have conjectured that a positively ex-
pansive open surjection T : X → X of a compact metric space X
always induces the homomorphism T ∗ : Ȟ1(X;Z) → Ȟ1(X;Z) with
T ∗ − idȞ1(X;Z) being injective, yet the author has not been able to
establish this.
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