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ESSENTIAL SPECTRAL RADIUS OF QUASICOMPACT
ENDOMORPHISMS OF LIPSCHITZ ALGEBRAS

A. GOLBAHARAN AND H. MAHYAR

ABSTRACT. We establish a formula for the essential
spectral radius of an endomorphism T of Lipschitz algebras
under a condition which is equivalent to the quasicompact-
ness of the endomorphism T . We also conclude a necessary
and sufficient condition for an endomorphism of these alge-
bras to be Riesz. Finally, we get a relation for the spectrum
and the set of eigenvalues of a quasicompact and Riesz endo-
morphism of these algebras.

1. Introduction. Let (X, d) be a compact metric space with infin-
itely many points and 0 < α ≤ 1. The Lipschitz algebra of order α,
Lip(X,α), is the algebra of all complex-valued functions f on X for
which

pα(f) = sup

{
|f(x)− f(y)|

dα(x, y)
: x, y ∈ X and x ̸= y

}
< ∞.

The subalgebra of those functions f with

lim
d(x,y)→0

|f(x)− f(y)|
dα(x, y)

= 0,(1.1)

is denoted by lip(X,α). These Lipschitz algebras were first studied
by Sherbert [12, 13]. The algebras Lip(X,α) for 0 < α ≤ 1 and
lip(X,α) for 0 < α < 1 are natural Banach function algebras on X
under the norm ∥f∥α = ∥f∥X+pα(f), where ∥f∥X = sup

x∈X
|f(x)|. Recall

that a function algebra A on a compact Hausdorff space X is called
natural if every nonzero complex homomorphism on A is an evaluation
homomorphism at some point of X [3, Definition 4.1.3]. We note that
Lip(X, 1) ⊆ lip(X,α) ⊆ Lip(X,α) (see [1, 7]).
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It is known that, if A is a natural Banach function algebra on a
compact Hausdorff space X and T is a unital endomorphism of A,
then there exists a self-map φ on X such that Tf = f ◦φ for all f ∈ A.
The converse does not hold in general. That is, given a continuous
self-map φ : X → X, the mapping T defined on A by Tf = f ◦ φ
does not in general take A into A. However, if φ is a self-map on
X such that, for every f ∈ A, f ◦ φ ∈ A, then T : f 7→ f ◦ φ is a
unital endomorphism of A. In each case, we say that T is induced
by φ. Thus, any unital endomorphism T of A can be regarded as a
composition operator Cφ, and conversely any composition operator on
A is a unital endomorphism. Sherbert in [12, Theorem 5.1] showed
that a linear map T on Lip(X,α) is a unital endomorphism if and only
if there exists a self-map φ : X → X such that Tf = f ◦ φ for all
f ∈ Lip(X,α) and d(φ(x), φ(y)) ≤ Cd(x, y) for some constant C > 0
and for all x, y ∈ X. In this case, the self-map φ is called Lipschitz
function, and we write

p(φ) = sup
x ̸=y

d(φ(x), φ(y))

d(x, y)
.

Kamowitz and Shenberg in [8] showed that an endomorphism T of
Lip(X,α) or of lip(X,α) induced by a self-map φ on X is compact if
and only if φ is a supercontraction, that is,

lim
d(x,y)→0

d(φ(x), φ(y))

d(x, y)
= 0.

In this note, we consider endomorphisms of Lipschitz algebras which
are quasicompact or Riesz. For convenience, we give the definition of
these notions.

Definition 1.1. Let E be an infinite dimensional Banach space.
We denote by B(E) and K(E) the Banach algebra of all bounded
linear operators and compact linear operators on E, respectively. The
essential norm ∥T∥e of T ∈ B(E) is the norm of T +K(E) in the Calkin
algebra B(E)/K(E), i.e.,

∥T∥e = ∥T −K(E)∥ = dist (T,K(E)) = inf{∥T −K∥ : K ∈ K(E)}.

The essential spectral radius re(T ) of T ∈ B(E) is given by the formula

re(T ) = lim
n→∞

(∥Tn∥e)1/n = lim
n→∞

∥Tn −K(E)∥1/n.
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The operator T ∈ B(E) is called Riesz if re(T ) = 0 and quasicompact
if re(T ) < 1.

Clearly, T is compact if and only if its essential norm is zero and T
is quasicompact if and only if ∥Tn∥e < 1 for some positive integer n.
Every Riesz operator is also quasicompact.

Recall that if T is an endomorphism of a Banach function algebra A
on X induced by the self-map φ : X → X, then Tn is an endomorphism
of A induced by the self-map φn : X → X for each n ∈ N, where φn is
the nth iterate of φ. We also set φ0 = id.

Some results have been obtained concerning quasicompact and
Riesz endomorphisms of certain Lipschitz subalgebras in [9, 10,
11]. Behrouzi [2] studied quasicompact and Riesz endomorphisms of
Lip(X,α) and gave an estimate for the essential spectral radius of an en-
domorphism of lip(X,α) under certain conditions. In this note, we as-
sume that T is an endomorphism of Lipschitz algebras either Lip(X,α)
or lip(X,α) induced by the self-map φ on X. We first show that the
essential spectral radius of T satisfies

re(T ) = lim
n→∞

p(φn)
α/n

when 0 < α < 1 and

re(T ) ≤ lim
n→∞

p(φn)
α/n

when α = 1, provided p(φn0) < 1 for some n0 ∈ N. We conclude
that the condition p(φn0) < 1 for some n0 ∈ N is sufficient for the
endomorphism T to be quasicompact. Also, this condition is necessary
for the quasicompactness of T , when X is connected. In addition,

we show that T is Riesz if limn→∞ p(φn)
1/n

= 0, and this is also a
necessary condition provided X is connected and 0 < α < 1. We
then generalize these results by establishing a formula for the essential
spectral radius re(T ) under a condition which is equivalent to the
quasicompactness of T without connectedness assumption on X. As
an immediate consequence of the latter result we obtain a necessary
and sufficient condition for the endomorphism T to be Riesz when
0 < α < 1. Moreover, when α = 1, this condition is also sufficient.
At the end, using the definition of Riesz point [6, page 217], we get a
relation for the spectrum and the set of eigenvalues of a quasicompact
and Riesz endomorphism of these algebras.
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2. Results. Let X be a compact metric space with infinitely many
points, and let the self-map φ : X → X be continuous. Then we have a
nested sequence φn+1(X) ⊆ φn(X) of nonempty compact sets, whence
the intersection ∩∞

n=1φn(X) is also nonempty. Moreover, if p(φn) → 0
as n → 0, then diam (φn(X)) → 0; hence, ∩∞

n=1φn(X) is a singleton,
say {x0}. Using Banach’s contraction principle, one can see that x0

is the unique fixed point of φ. Therefore, if one defines the constant
function θ : X → X by θ(x) = x0, then

d(φn(x), θ(x)) = d(φn(x), x0) = d(φn(x), φn(x0)) ≤ p(φn) diam(X),

for all x ∈ X. Hence,

lim
n→∞

sup
x∈X

d(φn(x), θ(x)) = lim
n→∞

sup
x∈X

d(φn(x), x0) = 0,

for some x0 ∈ X, if p(φn) → 0. Note also that, for n ∈ N and x, y ∈ X,
with φn(x) ̸= φn(y), we have φk(x) ̸= φk(y) for each k = 0, 1, . . . , n
and therefore,

d(φn(x), φn(y))

d(x, y)
=

n∏
k=1

d(φk(x), φk(y))

d(φk−1(x), φk−1(y))
≤ p(φ)n,

from which one obtains p(φn) ≤ p(φ)n for all n ∈ N. It follows that
p(φn) → 0 if p(φ) < 1. Conversely, if p(φn) → 0, then p(φn0) < 1 for
some positive integer n0.

Remark 2.1. Let (X, d) be a compact pointed metric space, that is,
a compact metric space with a base point e ∈ X. The Lipschitz space
Lip0(X,α) is the space of all Lipschitz functions f : X → C of order
α (0 < α ≤ 1) which are zero at the base point e ∈ X. The space
Lip0(X,α) is a Banach space under the Lipschitz norm pα(·). The
space lip0(X,α), 0 < α < 1, is the closed subspace consisting of those
functions f ∈ Lip0(X,α) that satisfy (1.1) (see [15]). Vargas et al. in
[14, Theorem 3.1] showed that, if φ : X → X is a base point preserving
Lipschitz mapping, then the essential norm of the composition operator
Cφ : lip0(X,α) → lip0(X,α) satisfies the lower estimate

lim
t→0

sup
0<d(x,y)<t

d(φ(x), φ(y))α

d(x, y)α
≤ ∥Cφ∥e.

Their proof is valid for the Banach algebras lip(X,α) and Lip(X,α)
with the norm ∥ · ∥α when 0 < α < 1. Using this fact, we obtain a
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formula for the essential spectral radius of a unital endomorphism of
Lipschitz algebras.

Considering p(φn) ≤ p(φ)n, and using the fact that p(φm+n) ≤
p(φm)p(φn), limn→∞ p(φn)

1/n exists and

lim
n→∞

p(φn)
1/n = inf

n
p(φn)

1/n

(see, for example [3, Proposition A.1.26(iii)]). Therefore, in the next
theorem we can replace limn→∞ p(φn)

1/n with infn p(φn)
1/n.

In the remainder of this paper, we regard L(α) as being either the
algebra Lip(X,α) for 0 < α ≤ 1 or the algebra lip(X,α) for 0 < α < 1.

Theorem 2.2. Let X be a compact metric space, 0 < α < 1 and
T an endomorphism of Lip(X,α) or of lip(X,α) induced by the self-
map φ on X. If p(φn0) < 1 for some positive integer n0, then
re(T ) = limn→∞ p(φn)

α/n.

Proof. By Remark 2.1, we have

lim
t→0

sup
0<d(x,y)<t

(
d(φn(x), φn(y))

d(x, y)

)α

≤ ∥Tn∥e,

for every n ∈ N. By the assumption that p(φn0) < 1 and by the

definition of essential spectral radius re(T ) = limn→∞ ∥Tn∥1/ne , for
given ε > 0, one can choose a positive integer j such that p(φj) < 1 and

∥T j∥1/je < re(T ) + ε/2. Fix a positive integer j with such a property.
It follows that

lim
t→0

sup
0<d(x,y)<t

(
d(φj(x), φj(y))

d(x, y)

)α/j

≤ ∥T j∥1/je < re(T ) +
ε

2
,

and therefore,

sup
0<d(x,y)<δ

(
d(φj(x), φj(y))

d(x, y)

)α/j

< re(T ) +
ε

2
,

for some δ > 0.

Furthermore, p(φkj) ≤ p(φj)
k < 1 and then d(φkj(x), φkj(y)) ≤

d(x, y) for each x, y ∈ X and for each positive integer k. Let n ∈ N,
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x, y ∈ X with 0 < d(x, y) < δ and φnj(x) ̸= φnj(y). Then 0 <
d(φkj(x), φkj(y)) < δ for each k, from which we obtain(

d(φnj(x), φnj(y))

d(x, y)

)α/(nj)

=

( n−1∏
k=0

d(φ(k+1)j(x), φ(k+1)j(y))

d(φkj(x), φkj(y))

)α/(nj)

=

n−1∏
k=0

(
d(φj(φkj(x), φj(φkj(y))

d(φkj(x), φkj(y))

)α/(nj)

≤
n−1∏
k=0

sup
0<d(u,v)<δ

(
d(φj(u), φj(v))

d(u, v)

)α/(nj)

= sup
0<d(x,y)<δ

(
d(φj(x), φj(y))

d(x, y)

)α/j

< re(T ) +
ε

2
.

Therefore,

sup
0<d(x,y)<δ

(
d(φnj(x), φnj(y))

d(x, y)

)α/(nj)

≤ re(T ) +
ε

2
,

for each n ∈ N.

Also, since

lim
n→∞

(
re(T ) +

ε

2

)(n−1)/n

= re(T ) +
ε

2
,

and limn→∞ p(φnj) = 0, there exists N ∈ N such that (re(T ) +

(ε/2))(n−1)/n < re(T )+ε for every n ≥ N , and p(φNj) < δ/(diam(X)).
It follows that

d(φNj(x), φNj(y)) <
δ

diam(X)
d(x, y) ≤ δ

for each x, y ∈ X.

Let n > N and x, y ∈ X with φnNj(x) ̸= φnNj(y). Then,(
d(φnNj(x), φnNj(y))

d(x, y)

)α/(nNj)



ENDOMORPHISMS OF LIPSCHITZ ALGEBRAS 1155

=

(
d(φnNj(x), φnNj(y))

d(φNj(x), φNj(y))

d(φNj(x), φNj(y))

d(x, y)

)α/(nNj)

≤
(
d(φ(n−1)Nj(φNj(x)), φ(n−1)Nj(φNj(y)))

d(φNj(x), φNj(y))

)α/(nNj)

≤
(

sup
0<d(x,y)<δ

(
d(φ(n−1)Nj(x), φ(n−1)Nj(y))

d(x, y)

)α/[(n−1)Nj])(n−1)/n

<

(
re(T ) +

ε

2

)(n−1)/n

< re(T ) + ε.

Therefore, p(φnNj)
α/(nNj) ≤ re(T ) + ε, for each n > N . Hence,

limn→∞ p(φn)
α/n = inf p(φn)

α/n ≤ re(T ).

For the converse inequality, using the well-known relations re(T
n) =

re(T )
n and p(φn) ≤ p(φ)n, one may assume that n0 = 1 and p(φ) < 1.

Then p(φn) → 0 and ∩∞
n=1φn(X) = {x0}, where x0 is the unique

fixed point of φ. Define rank one endomorphism S : L(α) → L(α) by
Sf = f ◦ θ = f(x0)1 for f ∈ L(α) where θ : X → X is the constant
function θ(x) = x0. Let n ∈ N and f ∈ L(α) with ∥f∥α ≤ 1. Then,

|Tnf(x)− Sf(x)| = |f(φn(x))− f(x0)| ≤ pα(f) d(φn(x), x0)
α

≤ ∥f∥αp(φn)
αd(x, x0)

α ≤ p(φn)
α(diam(X))α,

for each x ∈ X. Hence, ∥Tnf − Sf∥X ≤ p(φn)
α(diam(X))α. On the

other hand,

|(Tnf − Sf)(x)− (Tnf − Sf)(y)|
= |f(φn(x))− f(φn(y))|
≤ pα(f)d(φn(x), φn(y))

α ≤ p(φn)
αd(x, y)α,

for every x, y ∈ X. Thus, pα(T
nf − Sf) ≤ p(φn)

α. Therefore,

∥Tnf − Sf∥α = ∥Tnf − Sf∥X + pα(T
nf − Sf)

≤ (1 + (diam(X))α)p(φn)
α,

for all n ∈ N and f ∈ L(α) with ∥f∥α ≤ 1. Hence, ∥Tn − S∥ ≤
(1 + (diam(X))α)p(φn)

α for each n ∈ N. Therefore,

∥Tn∥e = ∥Tn −K(L(α))∥ ≤ ∥Tn − S∥ ≤ (1 + (diam(X))α)p(φn)
α,
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and then,
re(T ) = lim

n→∞
∥Tn∥1/ne ≤ lim

n→∞
p(φn)

α/n. �

Considering the last part of the proof of the previous theorem, we
note that the converse inequality is true even for α = 1. In fact, we
have the following proposition.

Proposition 2.3. Let X be a compact metric space, and let T be an en-
domorphism of Lip(X, 1) induced by the self-map φ on X. If p(φn0) <
1 for some positive integer n0, then re(T ) ≤ limn→∞ p(φn)

1/n.

It was shown in [2, Theorem 2.1] that an endomorphism T of
Lip(X,α) induced by a self-map φ on X is quasicompact if p(φn) → 0
and φn converges uniformly on X to the constant function θ(x) = x0

for some x0 ∈ X. Here, as a consequence of Theorem 2.2 and
Proposition 2.3, we obtain that p(φn0) < 1 for some n0 ∈ N is sufficient
for an endomorphism T of Lip(X,α) (0 < α ≤ 1) or of lip(X,α)
(0 < α < 1) to be quasicompact (Corollary 2.4 (i)). Also, the function
defined in the proof of the converse part of [2, Theorem 2.1] does not
belong to lip(X,α). As Corollary 2.4 (ii), defining a suitable function, a
slightly modified argument establishes the converse part of [2, Theorem
2.1] for the Lipschitz algebras Lip(X,α) (0 < α ≤ 1) and lip(X,α)
(0 < α < 1).

Corollary 2.4. Let X be a compact metric space and T an endomor-
phism of Lip(X,α), 0 < α ≤ 1 or of lip(X,α), 0 < α < 1 induced by
the self-map φ on X.

(i) If p(φn0) < 1 for some n0 ∈ N, then T is quasicompact.
(ii) If X is connected and T is quasicompact, then p(φn0

) < 1 for
some n0 ∈ N.

Proof.

(i) Let p(φn0) < 1 for some n0 ∈ N. Then by Theorem 2.2 and
Proposition 2.3, we have

re(T ) ≤ lim
n→∞

p(φn)
α/n = lim

k→∞
p(φkn0)

α/(kn0) ≤ p(φn0)
α/n0 < 1,

which implies that T is quasicompact.
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(ii) Let X be connected and T be quasicompact. Using [4, Theorem
1.2], there exists x0 ∈ X such that the operators Tn converge, in
operator norm, to a rank-one endomorphism S0 of L(α) defined
by S0(f) = f(x0)1. The point x0 is the unique fixed point of φ.

In the case α = 1, take β = 1; otherwise, choose any β ∈ (α, 1]. For
each y ∈ Y and n ∈ N, define

fn(x) =
d(x, φn(y))

β

(diam(X))β + (diam(X))β−α
,

for x ∈ X. Then fn ∈ L(α), ∥fn∥α ≤ 1 and

∥Tn − S0∥ ≥ ∥Tnfn − S0fn∥α ≥ pα(T
nfn − S0fn)

= pα(fn ◦ φn) ≥
|fn ◦ φn(x)− fn ◦ φn(y)|

d(x, y)α

=
1

(diam(X))β + (diam(X))β−α

d(φn(x), φn(y))
β

d(x, y)α
,

for every x, y ∈ X with x ̸= y and any β ∈ (α, 1] or β = α = 1. Taking
limit as β → α, we conclude that

∥Tn − S0∥ ≥ 1

(diam(X))α + 1

d(φn(x), φn(y))
α

d(x, y)α
,

for every x, y ∈ X with x ̸= y. Hence

∥Tn − S0∥ ≥ 1

(diam(X))α + 1
sup
x ̸=y

d(φn(x), φn(y))
α

d(x, y)α

=
1

(diam(X))α + 1
p(φn)

α.

Therefore, limn→∞ p(φn) = 0 and p(φn0) < 1 for some n0 ∈ N. �

From the proof of Corollary 2.4, one can obtain the following
interesting relation for any endomorphism T of L(α) induced by the
self-map φ on X:

max

{
1,

1

(diam(X))α + 1
p(φ)α

}
≤ ∥T∥ ≤ max{1, p(φ)α}.

In [2, Proposition 2.3], it was shown that an endomorphism T of
Lip(X,α) induced by a self-map φ on X is Riesz, if limn→∞ p(φn)

1/n =
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0.As an immediate consequence of Theorem 2.2 and Proposition 2.3 one
can get this result for the Lipschitz algebras Lip(X,α) and lip(X,α).
Also, using Theorem 2.2 and Corollary 2.4 (ii), one can show that the
condition limn→∞ p(φn)

1/n = 0 is necessary for the endomorphism T
of Lip(X,α) or of lip(X,α) to be Riesz whenever 0 < α < 1 and X is
connected.

Corollary 2.5. Let X be a compact metric space, and let T be an
endomorphism of Lip(X,α) (0 < α ≤ 1) or of lip(X,α) (0 < α < 1)
induced by the self-map φ on X.

(i) If limn→∞ p(φn)
1/n = 0, then T is Riesz.

(ii) If X is connected, 0 < α < 1 and T is Riesz, then limn→∞ p(φn)
1/n

= 0.

In the sequel, we generalize the above obtained results to possibly
unconnected metric spaces.

Theorem 2.6. Let X be a compact metric space, 0 < α < 1, and T
an endomorphism of Lip(X,α) or of lip(X,α) induced by the self-map
φ on X. If there exists a decomposition of X into a finite number
of mutually disjoint clopen subsets, say X1, X2, . . . , Xm, such that,
for each i ∈ {1, . . . ,m}, there exists ni ∈ N with φni(Xi) ⊆ Xi and
p(φni |Xi) < 1, then re(T ) = max1≤i≤m limn→∞ p(φnni |Xi)

α/(nni).

Proof. By Remark 2.1, we have

lim
t→0

sup
0<d(x,y)<t

x,y∈Xi

(
d(φn(x), φn(y))

d(x, y)

)α

≤ lim
t→0

sup
0<d(x,y)<t

x,y∈X

(
d(φn(x), φn(y))

d(x, y)

)α

≤ ∥Tn∥e,

for each i ∈ {1, 2, . . . ,m} and every n ∈ N. Similar to the proof of
Theorem 2.2, one can easily deduce that limn→∞ p(φnni |Xi)

α/(nni) =
infn p(φnni |Xi)

α/(nni) ≤ re(T ). Hence,

max
1≤i≤m

lim
n→∞

p(φnni |Xi)
α/(nni) ≤ re(T ).

We now show the converse inequality. By the hypotheses, we have
φkni(Xi) ⊆ Xi and p(φkni |Xi) < 1 for each positive integer k. There-
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fore, if we set n0 = n1n2 · · ·nm, then φn0(Xi) ⊆ Xi and p(φn0 |Xi) < 1
for each i ∈ {1, 2, . . . ,m}. As in the proof of Theorem 2.2, we may as-
sume that n0 = 1, and, in a similar way, we have limn→∞ p(φn|Xi) = 0
and

∩∞
n=1 φn(Xi) = {xi} for each i ∈ {1, . . . ,m}, where xi ∈ Xi is the

unique fixed point of φ|Xi . Define the continuous self-map θ : X → X
by θ(x) = xi, (x ∈ Xi) and consider the finite rank endomorphism
S : L(α) → L(α) by Sf = f ◦ θ =

∑m
i=1 f(xi)χXi , where χXi is the

characteristic function of Xi.

Let n ∈ N and f ∈ L(α) with ∥f∥α ≤ 1. Then

∥Tnf − Sf∥X ≤ (diam(X))α max
1≤i≤m

p(φn|Xi)
α.

Set µ = min1≤i<j≤m d(Xi, Xj). Then

|(Tnf − Sf)(x)− (Tnf − Sf)(y)|
d(x, y)α

≤ max
1≤i≤m

p(φn|Xi)
α,

when x, y belong to the same Xi, and

|(Tnf − Sf)(x)− (Tnf − Sf)(y)|
d(x, y)α

≤ 2

µα
(diam(X))α max

1≤i≤m
p(φn|Xi)

α,

when x, y are in the different Xi. Hence,

pα(T
nf − Sf) ≤

(
1 +

2

µα
(diam(X))α

)
max

1≤i≤m
p(φn|Xi)

α.

Therefore,

∥Tn − S∥ ≤
(
1 +

(
2

µα
+ 1

)
(diam(X))α

)
max

1≤i≤m
p(φn|Xi)

α,

for each n ∈ N. Whence,

∥Tn∥e ≤
(
1 +

(
2

µα
+ 1

)
(diam(X))α

)
max

1≤i≤m
p(φn|Xi)

α,

and then re(T ) ≤ max1≤i≤m limn→∞ p(φn|Xi)
α/n. �

Remark 2.7. Similar to Proposition 2.3, the inequality

re(T ) ≤ max
1≤i≤m

lim
n→∞

p(φnni |Xi)
α/(nni),

holds for α = 1.
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Now we would like to generalize Corollaries 2.4 and 2.5 for possibly
unconnected X. For this purpose, we shall need the following results
due to Feinstein and Kamowitz [5]. We recall that a complex algebra
A is semiprime if J = {0} is the only ideal in A such that the product
of every pair of elements in J is 0. Clearly, Banach function algebras,
in particular, Lipschitz algebras, are semiprime.

Lemma 2.8. [5, Lemma 3.1]. Let B be a unital commutative
semiprime Banach algebra, and let T be a bounded unital quasicom-
pact endomorphism of B. Suppose that

σ(T ) ⊆ {λ ∈ C : |λ| < 1} ∪ {1},

and that the eigenvalue 1 of T has multiplicity 1. Then the operators
Tn converge in operator norm to a rank-one unital endomorphism S of
B.

Theorem 2.9. [5, Theorem 3.2]. Let B be a unital commutative
semiprime Banach algebra, and let T be a bounded unital quasicompact
endomorphism of B. Then there exists an n ∈ N such that σ(Tn) ⊆
{λ ∈ C : |λ| < 1} ∪ {1}. For such n, the unital quasicompact
endomorphism Tn of B has the following properties:

(i) The eigenspace of Tn corresponding to eigenvalue 1 is a finite
dimensional, unital subalgebra of B isomorphic to Cm for some
m ∈ N, and hence spanned by m orthogonal idempotents, say
e1, e2, . . . , em.

(ii) Set Bi = eiB (1 ≤ i ≤ m). Then (under an equivalent norm)
each Bi is a commutative, unital semiprime Banach algebra, with
identity ei, and

B =
m⊕
i=1

Bi.

(iii) For 1 ≤ i ≤ m, Tn|Bi is a unital quasicompact endomorphism
of Bi, and Tn|Bi satisfies the conditions of Lemma 2.8. The
operators {T kn|Bi}∞k=1 converge in operator norm to a rank-1
unital endomorphism of Bi, say Si.

(iv) The operators {T kn}∞k=1 converge in operator norm to the rank-m
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endomorphism S of B given by

S(b) =
m∑
i=1

Si(bei) (b ∈ B).

We are now in a position to prove the generalization of Corollaries
2.4 and 2.5.

Theorem 2.10. Let X be a compact metric space and T be an en-
domorphism of Lip(X,α), 0 < α ≤ 1, or of lip(X,α), 0 < α < 1
induced by the self-map φ on X. Then T is quasicompact if and
only if there exists a decomposition of X into a finite number of
mutually disjoint clopen subsets, say X1, X2, . . . , Xm such that, for
each i ∈ {1, 2, . . . ,m}, there exists ni ∈ N with φni(Xi) ⊆ Xi and
p(φni |Xi) < 1.

Proof. If there exists a decomposition of X with such properties
in the statement, then by Theorem 2.6 and Remark 2.7, re(T ) ≤
max1≤i≤m limn→∞ p(φnni |Xi)

α/(nni) < 1. Hence, T is quasicompact.

Conversely, suppose that T is quasicompact. By Theorem 2.9 (i),
there exists n0 ∈ N such that {f : Tn0f = f} = {f : f ◦ φn0 = f} is a
finite dimensional, unital subalgebra of L(α) spanned by m orthogonal
idempotents, say e1, e2 . . . , em. Therefore, there exists a finite number
of mutually disjoint clopen subsets of X, say X1, X2 . . . , Xm with union
X and

{f : Tn0f=f}={f : f ◦ φn0 =f}=
{ m∑

i=1

λiχXi
: λ1, λ2, . . . , λm ∈ C

}
.

Then φn0(Xi) ⊆ Xi for each i ∈ {1, 2, . . . ,m}.
Set Li(α) = χXi

L(α). In fact, either Li(α) ≃ Lip(Xi, α) for

0 < α ≤ 1 or Li(α) ≃ lip(Xi, α) for 0 < α < 1. Also, by
Theorem 2.9 (iii), Tn0 |Li(α) is a quasicompact endomorphism of Li(α)
induced by the self-map φn0 |Xi , for each i ∈ {1, 2, . . . ,m}, and the
operators {Tnn0 |Li(α)}∞n=1 converge, in operator norm, to a rank-1
unital endomorphism of Li(α), say Si. Since Si is a rank-1 unital
endomorphism of Li(α), there exists xi ∈ Xi such that Si(f |Xi) =
f(xi)1 for f ∈ L(α), similar to the proof of Corollary 2.4, one can show
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that

∥Tnn0 − Si∥ ≥ 1

(diam(Xi))α + 1
p(φnn0 |Xi)

α.

Therefore, limn→∞ p(φnn0
|Xi

) = 0 and p(φni
|Xi

) < 1 for some ni ∈
N. �

Corollary 2.11. Let X be a compact metric space and T be an
endomorphism of Lip(X,α), 0 < α ≤ 1 or of lip(X,α), 0 < α < 1
induced by the self-map φ on X. Then, for 0 < α < 1, T is Riesz
if and only if there exists a decomposition of X into a finite number
of mutually disjoint clopen subsets, say X1, X2, . . . , Xm such that, for
each i ∈ {1, 2, . . . ,m}, there exists ni ∈ N with φni(Xi) ⊆ Xi and
limn→∞ p(φnni |Xi)

1/n = 0. Moreover, when α = 1, these conditions
also imply that T is Riesz.

Proof. If there exists a decomposition of X with such properties,
then one can say, limn→∞ p(φnni |Xi) = 0, whence p(φnni |Xi) < 1 for
some n ∈ N. Then using Theorem 2.6, Remark 2.7 and the hypothesis,
we have re(T ) ≤ max1≤i≤m limn→∞ p(φnni |Xi)

α/n = 0 which implies
that T is Riesz.

Conversely, suppose that T is a Riesz endomorphism. Then it is also
quasicompact and re(T ) = 0. Therefore, using Theorems 2.6 and 2.10,
the result is concluded. �

We conclude this paper by establishing some results about σ(T ) the
spectrum of T and σp(T ) the set of eigenvalues of T .

Theorem 2.12. Let X be a compact metric space, 0 < α < 1 and T
be a quasicompact endomorphism of Lip(X,α) or of lip(X,α) induced
by the self-map φ on X. Then

σp(T ) ⊆ {λ : |λ| ≤ re(T )} ∪ {λ : λn = 1},(2.1)

σ(T ) ⊆ {λ : |λ| ≤ re(T )} ∪ {λ : λn = 1},(2.2)

for some positive integer n. In particular, 1 is an isolated point of the
spectrum of T .
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Proof. According to the proof of Theorem 2.10 there exist positive
integer n and a finite number of mutually disjoint clopen subsets
of X, say X1, X2 . . . , Xm, with union X such that φn(Xi) ⊆ Xi

and limk→∞ p(φkn|Xi
) = 0, and so there is the unique fixed point

of φn|Xi
say xi, for each i ∈ {1, 2, . . . ,m}. Take any λ ∈ C with

λn ̸= 1. For each f ∈ ker(λI − T ), we have f ◦ φ=λf , and then
f(xi) = f ◦ φn(xi) = λnf(xi), which implies f(xi) = 0 for each
i ∈ {1, 2, . . . ,m}. If f is non-zero then there exists a point x ∈ Xi

for some i ∈ {1, 2, . . . ,m} such that f(x) ̸= 0 and, for each positive
integer k,

|λknf(x)| = |f ◦ φkn(x)− f ◦ φkn(xi)| ≤ d(x, xi)
αpα(f)p(φkn|Xi)

α,

and then

|λ||f(x)|1/(kn) ≤ (diam(X))αpα(f)
1/(kn)(p(φkn|Xi))

α/(kn).

Taking the limit as k → ∞,

|λ| ≤ lim
k→∞

p(φkn|Xi))
α/(kn) ≤ re(T ).

Hence, for each λ ∈ C with λn ̸= 1, if |λ| > re(T ), then ker(λI − T ) =
{0}, which implies (2.1).

Moreover, if |λ| > re(T ), then also ker(λI − T ) = {0}. Using [6,
Propositions 51.8 and 52.1], if |λ| > re(T ), then λ is a Riesz point of
T , and, by the definition of the Riesz point [6, page 217], the operator
λI − T is invertible, that is, λ /∈ σ(T ). Therefore, the relation (2.2)
follows. �

As an immediate consequence, we have

Corollary 2.13. Let X be a compact metric space, 0 < α < 1, and T
an endomorphism of Lip(X,α) or of lip(X,α) induced by the self-map
φ on X.

(i) If T is Riesz, then σ(T ) ⊆ {0} ∪ {λ : λn = 1} for some positive
integer n.

(ii) If T is quasicompact and σ(T ) ⊆ {0} ∪ {λ : |λ| = 1}, then T is
Riesz.
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We remark that, in Theorem 2.12 and Corollary 2.13, if we assume
the connectedness of X, we get n = 1. Therefore, by Corollary 2.13,
if X is a connected compact metric space and the endomorphism T is
Riesz, then σ(T ) = {0, 1}.
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