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THE GOERITZ MATRIX AND SIGNATURE
OF A TWO BRIDGE KNOT

MICHAEL GALLASPY AND STANISLAV JABUKA

ABSTRACT. According to a formula by Gordon and
Litherland [5], the signature σ(K) of a knot K can be
computed as σ(K) = σ(G) − µ, where G is the Goeritz
matrix of a projection D of K and µ is a “correction
term,” read off from the projection D. In this article, we
consider the family of two bridge knots Kp/q and compute
the signature of the Goeritz matrices of their “standard
projections,” Dp/q , by explicitly diagonalizing the Goertiz
matrix over the rationals. We give applications to signature
computations and concordance questions.

1. Introduction.

1.1. Definitions and results. Given a collection of nonzero integers
c1, . . . , cn ∈ Z, the associated two bridge knot/link K[c1,c2,...,cn] is the
isotopy class of the knot diagram D[c1,...,cn] as in Figure 1. To the
ordered collection (c1, . . . , cn) we associate a rational number p/q by
means of its continued fraction expansion:

(1.1) [c1, . . . , cn] := c1 −
1

c2 −
1

. . . −
1

cn−1 −
1

cn

and write p/q = [c1, . . . , cn]. It is a remarkable theorem of Conway
[3] that, if two continued fractions [c1, . . . , cn] and [d1, . . . , dm] yield
the same rational number p/q, then the two knots/links K[c1,...,cn]
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and K[d1,...,dm] are isotopic. This justifies the notation Kp/q instead
of K[c1,...,cn], which we shall employ when convenient.

c1 c1

c2 c2

c3 c3

cn cn

Case of n odd. Case of n even.

Figure 1. The two bridge knot/link associated to the nonzero integers
c1, . . . , cn ∈ Z. The meaning of each box containing an integer is as in
Figure 2. Throughout this article, we shall use the symbol D[c1,...,cn] to
denote this particular projection of the knot/link K[c1,...,cn].

Before stating our main results, we pause to define the notion of
a canonical representation of a continued fraction (see [7, subsection
1.2]). Given the equation [c1, . . . , cn] = pn/qn, the choice of integers
pn, qn is of course not unique. However, we define a canonical choice of
pn and qn for each [c1, . . . , cn], by induction on n, as follows. If n = 1,
then set p1 = c1 and q1 = 1. Suppose the canonical representations
of all continued fractions of length n − 1 have been defined. Then we
declare pn and qn, the canonical representation of [c1, . . . , cn], as given
by

pn = c1p
′
n−1 − q′n−1 and qn = p′n−1,

where p′n−1 and q′n−1 are the canonical representatives of [c2, . . . , cn].
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−3 = 2 =

Figure 2. Each of the boxes from Figure 1, containing an integer c and
two incoming/outgoing strings, represents a pair of parallel strands with |c|
half-twists. Our convention is that c > 0 corresponds to right-handed and
c < 0 to left-handed half-twists.

To make our definition plausible, note that

[c1, . . . , cn] = c1 −
1

[c2, . . . , cn]
= c1 −

1

p′n−1/q
′
n−1

=
c1p

′
n−1 − q′n−1

p′n−1

=
pn
qn

.

From here on out, whenever we write [c1, . . . , cn] = p/q, we shall take p
and q to be the canonical representatives of [c1, . . . , cn] without explicit
mention.

Remark 1.1. Since [c1, . . . , cn] = [c1, . . . , cn ± 1,±1], we can always
assume, without loss of generality, that a knot Kp/q equals K[c1,...,cn]

with n odd.

The Goeritz form G = G(D) associated to a particular projection D
of the knot K is a symmetric, bilinear, non-degenerate form G :
ZN×ZN → Z whereN depends on the diagramD (for the benefit of the
reader, we recount the definition of the Goeritz formG in Section 2). By
means of choosing a basis for ZN , we will allow ourselves to view G as
an N ×N symmetric non-degenerate matrix, referred to as the Goeritz
matrix. As such, it can be diagonalized over the rationals, that is, there
exists a matrix P ∈ GlN (Q) such that P τGP = Diag (a1, . . . , aN ). We
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shall capture such a statement by writing

P τGP = ⟨a1⟩ ⊕ ⟨a2⟩ ⊕ · · · ⊕ ⟨aN ⟩,

where ⟨a⟩ should be thought of as a matrix representative of a bilinear
form on a one-dimensional rational vector space. With this in mind,
our main result is contained in the next theorem.

Theorem 1.2. Let K = K[c1,...,cn] be the two bridge knot/link asso-
ciated to the collection (c1, . . . , cn) of ordered, nonzero integers, and
assume that n is odd (see Remark 1.1). Let G be the Goeritz matrix of
K associated to its projection D[c1,...,cn] as in Figure 1.

Then there is a matrix P ∈ GlN (Q), where N = |c1| + |c3| + · · · +
|cn| − 1, with detP = ±1, such that

P τGP =
⊕

i=1,3,5,...,n

(
⊕|ci|−1

k=1 ⟨−Sign (ci)
k+1
k ⟩

)
⊕

⊕
i=2,4,...,n−1

⟨
pi+1

ci+1 pi−1

⟩
.

Here pm is the numerator of the canonical representation of [c1, . . . , cm] =
pm/qm, m ≤ n. Accordingly, the signature σ(G) of the Goeritz ma-
trix G is given by

σ(G) =
∑

i=1,3,...,n

(Sign (ci)− ci) +
∑

i=2,4,...,n−1

Sign

(
pi+1

ci+1 pi−1

)
.

By the Gordon-Litherland formula [5], the signature σ(K) of a
knot K can be computed as

σ(K) = σ(G)− µ,

where G = G(D) is the Goeritz matrix of K associated to a diagram D,
and µ = µ(D) is a “correction term,” also read off from D (we provide
a detailed description of µ in Section 2).

Definition 1.3. A continued fraction [c1, . . . , cn] shall be called an
even continued fraction if n is odd and if each c2i is even for i =
1, . . . , (n− 1)/2.
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Each two bridge knot Kp/q can be represented by a diagram
D[c1,...,cn] with [c1, . . . , cn] an even continued fraction. This has already
been noted by Burde and Zieschang in [1, Proposition 12.17], but we
give an alternative algorithm in Section 4. We recount the details of the
Burde-Zieschang algorithm in Section 4 and draw comparisons to our
algorithm in Examples 4.5 and 4.6. The benefit of working with even
continued fractions [c1, . . . , cn] is that the associated correction term
µ(D[c1,...,cn]) vanishes (Lemma 4.1), leading to the following effective
signature computation for two bridge knots.

Corollary 1.4. Let [c1, . . . , cn] be an even continued fraction expansion
of p/q. Then

(1.2)

σ(Kp/q) =
∑

i=1,3,...,n

(Sign (ci)− ci) +
∑

i=2,4,...,n−1

Sign

(
pi+1

ci+1 pi−1

)
.

In this formula, pi/qi are the canonical representatives of [c1, . . . , ci],
i ≤ n.

Remark 1.5. Our orientation conventions are such that the right-
handed trefoil K3/1 has signature −2, which is the opposite convention
of those used in [1, 11].

Remark 1.6. The aforementioned Proposition 12.17 in [1] gives an
algorithm for finding a unique even continued fraction expansion for
q/p (with q odd and with 0 < q < p), of the form

(1.3)
q

p
=

1

c1 +
1

c2 +
1

. . . +
1

cn

with n odd, and with c2, c4, . . . , cn−1 all even (in our notation this would
give the even continued fraction expansion p/q = [c1,−c2, c3,−c4, c5, . . . ,
−cn−1, cn]). We shall write [c1, . . . , cn]BZ for the continued fraction
expansion (1.3) to distinguish it from the one in (1.1) and refer to it
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as the Burde-Zieschang even continued fraction expansion, or Burde-
Zieschang expansion, for short. Burde and Zieschang in [1, Exercise
E12.5 ] ask the reader to verify the signature formula (changed here to
reflect our orientation convention, see Remark 1.5)

(1.4) σ(Kp/q) = Sign (cn)−
( ∑

i=1,3,...,n

ci

)
.

While this formula is simpler than equation (1.2), it does not hold for
general even continued fraction expansions. The difference∑

i=2,4,...,n−1

[
Sign (ci−1) + Sign

(
pi+1

ci+1pi−1

)]
between the right-hand sides of (1.2) and (1.4) is easily seen not to van-
ish for all even continued fraction expansions, compare to Example 4.6
(but for the Burde-Zieschang expansion, each term

Sign (ci−1) + Sign

(
pi+1

ci+1pi−1

)
, i = 1, 3, . . . , n− 2

of this sum vanishes separately).

Another advantage of using Corollary 1.4 over equation (1.4) for
signature computations of two bridge knots becomes apparent when
starting with an even continued fraction expansion associated to a
collection of integer c1, . . . , cn, rather than with a rational number
p/q. There is no a priori way of telling whether the integers c1, . . . , cn
constitute a Burde-Zieschang expansion, and so to use (1.4), one would
first have to find the rational number q/p associated to [c1, . . . , cn]BZ ,
compute its associated Burde-Zieschang expansion [d1, . . . , dm]BZ and
then use equation (1.4). In contrast, when using formula (1.2), these
intermediate steps are not necessary, and one can compute the signature
directly from [c1, . . . , cn].

In summary, our signature formula (1.2) generalizes that of Burde
and Zieschang in that it applies to all even continued fraction expan-
sions and reduces to (1.4) for the Burde Zieschang expansion.

1.2. Applications to signature computations. The primary util-
ity of Theorem 1.2 and Corollary 1.4 is an effective and speedy al-
gorithm for computing signatures of two-bridge knots. A formula for
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computing the signature of Kp/q can be found in Murasugi’s book [11],
by which one

(i) forms the sequence {0, q, 2q, 3q, . . . , (p− 1)q},
(ii) writes jq = 2ℓjp + rj for j = 0, . . . , p − 1, and with ℓj ∈ Z,

rj ∈ {−p+ 1, . . . , p− 1},
(iii) forms the new sequence {0, r1, r2, . . . , rp−1},
(iv) and computes the signature σ(Kp/q) as the number of positive

entries minus the number of negative entries in the sequence from
(iii).

Strictly speaking, Murasugi’s algorithm assumes that 0 < q < p
and that q is odd, both of which can always be achieved for any two
bridge knot. A Mathematica program realizing Murasugi’s signature
computation can be downloaded from the second author’s web page.

The formula for σ(K[c1,...,cn]) provided by Theorem 1.2 and Corol-
lary 1.4 is rather different in nature, relying on the coefficients of the
continued fraction expansion of p/q rather than p and q themselves.
This can lead to significantly shorter computations in some examples.
For instance, considering the knotsK3023/151 andK52587/4825 and using
the even continued fraction expansions

3023/151 = [20,−50, 3] and 52587/4825 = [11, 10, 9, 8, 7],

Corollary 1.4 readily yields

σ(K3023/151) = [(Sign (20)− 20) + (Sign (3)− 3)] + Sign

(
p3

3 · p1

)
= −21 + Sign

(
−3023

3 · 20

)
= −22.

σ(K52587/4825) = [(Sign (11)− 11) + (Sign (9)− 9) + (Sign (7)− 7)]

+ Sign

(
p3

9 · p1

)
+ Sign

(
p5

7 · p3

)
= −24 + Sign

(
970

9 · 11

)
+ Sign

(
52587

7 · 970

)
= −22.

In comparison, the algorithm from [11] described above requires form-
ing lists of remainders with 3023 and 52587 entries, respectively, and
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counting the number of positive/negative elements. The advantage of
our approach becomes more prominent the larger |p| is.

We also point to the paper [4] by Curtis and Taylor for another
signature formula, one that uses the Jones polynomial and boundary
slopes as input.

Recall that an oriented knot is a knot with a chosen string orien-
tation. On a projection of the knot this is indicated by decorating it
with an arrow, Figure 3. Two oriented knots K1 and K2 can be joined
into a connected sum, yielding a new knot denoted by K1#K2. This
is accomplished by removing an unknotted open arc Ii from Ki and
joining the boundary points of K1 − I1 to those of K2 − I2 in a way
that respects the orientation on each knot, see Figure 4.

Figure 3. Example of an oriented knot, in this case of the knot 1013 from
the knot tables [2].

K1 I1 K2I2 K1 K2

︸ ︷︷ ︸

K1#K2

Figure 4. The connected sum K1#K2 of two oriented knots K1 and K2.
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An oriented knot K is called smoothly slice (or slice for brevity) if it
is the oriented boundary of a smoothly and properly embedded 2-disk
in the 4-ball D4. Two oriented knots K1 and K2 are called concordant
if −K1#K2 is slice (where −K1 is the reverse mirror ofK1). The notion
of concordance is an equivalence relation, and its equivalence classes,
under the operation # of connect summing, form an Abelian group C
called the concordance group. The concordance group C is a central
object in low-dimensional topology with relevance and applications to
the theory of 3-manifolds and smooth 4-manifolds. Even so, it remains
rather poorly understood (see [6] for a survey of recent results); not
even the possible types of torsion elements of C are known.

While the subgroup of C generated by two bridge knots is not known,
Lisca [9, 10] was able to obtain a complete list of slice two bridge
knots as well as a complete list of slice knots among twofold sums
K1#K2 of two bridge knots. Beyond this, little is known about when
a sum K1# · · ·#Kn of two bridge knots is slice. Since slice knots
have signature zero and σ(K1# · · ·#Kn) = σ(K1) + · · · + σ(Kn),
Theorem 1.2 and Corollary 1.4 provide a computable obstruction to
the sliceness of K1#K2# · · ·#Kn. Here are a few examples illustrating
this principle.

Example 1.7. Consider the knots K1 = K35/13, K2 = K283/317 and
K3 = K1193/145. Then neither of the knots

(±K1)#(±K2)#(±K3)

can be slice. Since 35/13 = [3, 4, 2, 2, 2], 283/317 = [1, 10, 2, 2, 12] and
1193/145 = [9, 2, 2, 2, 4, 2,−6], Corollary 1.4 shows that

σ(K35/16) = −2, σ(K283/317) = −10, σ(K1193/145) = −4,

from which the claim follows.

Example 1.8. Let K1 = K187/213, K2 = K1451/131 and K3 = K715/23.
Then the knot K1#(n ·K2)#(m ·K3) cannot be slice for any choice of
m,n ∈ Z. Here n · K stands for the n-fold connected sum of K with
itself.
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Using Corollary 1.4, we obtain the signature of K1, K2 and K3:

187
213 =[1, 8,−6,−2,−2,−2,−2] =⇒ σ(K1) = 6,
1451
131 =[11,−14,−2,−2,−2,−2,−2,−2,−2,−2,−2] =⇒ σ(K2) =−10,
715
23 =[31,−12,−2] =⇒ σ(K3) =−30.

Thus, the signature of K1#(n ·K2)#(m ·K3) is 6− 10(n+ 3m) which
is nonzero for any choice of n,m ∈ Z.

1.3. Organization. The remainder of this article is organized as
follows. Section 2 reviews the definitions of the Goeritz matrix G and
the correction term µ associated to a knot diagram D. Section 3 is
devoted to the proof of Theorem 1.2 while the final Section 4 addresses
Corollary 1.4. Section 4 also provides an explicit algorithm for finding
an even continued fraction expansion for any given two bridge knot.

2. The Goeritz matrix G and the correction term µ. This
section elucidates the definitions of the Goeritz matrix G = G(D) and
the correction term µ = µ(D), both associated to a projection D of a
knot K. Our exposition follows the introductory section from [5].

Let K be an oriented knot, and let D be a projection of K. We color
the regions of D black and white, giving it a checkerboard pattern. Our
convention is that the unbounded region of D receive a white coloring,
see Figure 5 for an example.

D

e0e1e2e3e4

Figure 5. The checkerboard black-and-white coloring of the regions of this
diagram D of the knot K = 86 from the knot tables [2]. Observe that
D = D[2,−3,3], showing that K is the two bridge knot K23/10.
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To each crossing pi in the diagram D, we associate two pieces of
data, the sign of the crossing η(pi) and the type of the crossing τ(pi),
both of which are defined in Figure 6.

η(p) = 1 η(p) = −1 τ(p) = I τ(p) = II

Figure 6. The functions η and τ assign to a double point p the values ±1
and types I/II, respectively. Note that η(p) only depends on over/under-
crossing information about p while τ(p) only depends on the orientation of
the diagram D near p.

Let {e0, . . . , eN} be a labeling of the white regions in the checker-
board pattern of D, with the convention that e0 labels the unbounded
region, and let ZN+1 be the free Abelian group generated by these
symbols. Then the pre-Goeritz form PG is a bilinear symmetric form
PG : ZN+1 × ZN+1 → Z whose associated matrix [gij ] with respect to
the ordered basis {e0, . . . , eN}, is given by

gij =


−

∑
p∈ei∩ej

η(p); i ̸= j

−
∑
k ̸=i

gik; i = j.

The sum
∑

p∈ei∩ej
η(p) is over all double points p that connect the

two white regions ei and ej in the diagram D. The Goeritz form G is
obtained by restricting the form PG to ZN × ZN where ZN ⊂ ZN+1

is obtained by discarding the Z summand generated by e0. Since this
construction relies on the choice of a basis of ZN , namely, {e1, . . . , eN},
we can, and often shall, think of G as a symmetric N × N square
matrix (with integer entries), called the Goeritz matrix. It follows from
the work in [5] that | detG| = detK so that G is in fact a regular
matrix.
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For simplicity of notation, we adopt the following convention which
will substantially simplify our computations in the next section:

(2.1) G(a, b) = ⟨a, b⟩ for all a, b ∈ ZN .

For example, the Goeritz matrix associated to the diagram D and
the basis {e1, e2, e3, e4} from Figure 5 is given by

G =


−2 1 0 0
1 −5 1 0
0 1 −2 1
0 0 1 −2

 .

We leave it as an exercise to show that the signature of this matrix is
σ(G) = −4, and its determinant is detG = 23.

The correction term µ = µ(D) associated to an oriented knot
diagram D is computed as

µ =
∑

τ(p)=II

η(p).

In the above, the sum is taken over all double points p of D that are
of type II. For example, for the diagram D from Figure 5, one finds
µ = −2 (the only type II crossings are those adjacent to the region e1).

With these understood, the following is proved in [5].

Theorem 2.1 (Gordon-Litherland [5]). Given any oriented diagram
D of a knot K, the signature σ(K) of K can be computed as

σ(K) = σ(G)− µ.

Here G and µ are the Goeritz matrix and the correction term associated
to D.

Returning to the example from Figure 5, we compute the signature
of the knot K = 86 by means of the above theorem:

σ(86) = σ(G)− µ = −4− (−2) = −2.

Alternatively, since the knot 86 is the two bridge knotK23/10(= K23/33)
(see Figure 5) and since 23/33 = [1, 4, 2, 2, 4], Corollary 1.4 also shows
that σ(K23/10) = −2.
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3. The proof of Theorem 1.2. This section is devoted to the proof
of Theorem 1.2. We first compute the Goeritz matrix associated to the
specific diagram D = D[c1,...,cn] utilized in Figure 1 and then proceed
to diagonalize it by employing the Gram-Schmidt process.

Let n > 0 be an odd integer (compare Remark 1.1), let c1, . . . , cn be a
collection of nonzero integers, and let K = K[c1,...,cn] be the associated
two bridge knot. Let D = D[c1,...,cn] be the diagram of K as in Figure 7
(see also Figure 1).

}

}

}

e
0

e
1

1

e
1

2

e
2

e
3

1

e
3

2

e
3

3

e
3

4

e
0

c1 = 3

c2 = −3

c3 = −5

Figure 7. The two bridge knot K47/14 where 47/14 = [3,−3,−5].

Give D a checkerboard coloring and label its white regions as



1132 MICHAEL GALLASPY AND STANISLAV JABUKA

e0, e2, . . . , en−1 and e11, . . . , e
1
|c1|−1, . . . , e

n
1 , . . . , e

n
|cn|−1, where the labels

are chosen as:

e0 = unbounded white region,

e2i = white region adjacent to the c2i half-twists,

e2i+1
1 , . . . , e2i+1

|c2i+1|−1 = white regions adjacent to the c2i+1 half-twists.

These account for all white regions of D showing that there is exactly

N + 1 = |c1|+ |c3|+ · · ·+ |cn|

of them (we express this number asN+1 since the region e0 is discarded
eventually when passing from the pre-Goertiz to the Goeritz matrix).
The ordering of this basis for ZN that we prefer to use is

{e0, e11, . . . , e1|c1|−1, e
3
1, . . . , e

3
|c3|−1, . . . , e

n
1 , . . . , e

n
|cn|−1, e

2, e4, . . . , en−1}.

Recall our convention (2.1) by which we write ⟨a, b⟩ for G(a, b).
With this in mind, it is easy to see, by consulting Figure 7, that (with
ϵi = Sign (ci))

⟨eik, e
j
ℓ⟩ =

 −2ϵi; i = j and |k − ℓ| = 0,
ϵi; i = j and |k − ℓ| = 1,
0; i ̸= j or |k − ℓ| ≥ 2,

⟨ei, ejℓ⟩ =

 −ϵi−1; j = i− 1 and ℓ = |ci−1| − 1,
−ϵi+1; j = i+ 1 and ℓ = 1,

0; otherwise,

⟨ei, ej⟩ =
{

ci − ϵi−1 − ϵi+1; i = j,
0; i ̸= j.

(3.1)

The above relations capture the Goeritz matrix G associated to the
diagram D = D[c1,...,cn]:
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G =





















































. . . 0 . . . 0

. . . 0 . . . 0

ǫ1X|c1|−1 . . . 0
... . . .

...

. . . 0 . . . 0

. . . ǫ1 . . . 0

...
...

...
...

...
. . .

...
...

...
...

...
...

. . .
...

. . . 0 . . . ǫn

. . . 0 . . . 0

0 . . . ǫnX|cn|−1

... . . .
...

. . . 0 . . . 0

. . . 0 . . . 0

0 0 . . . 0 ǫ1 . . . 0 0 . . . 0 0 c2 − ǫ1 − ǫ3 . . . 0

...
... . . .

...
... . . .

...
... . . .

...
... . . .

. . .
...

0 0 . . . 0 0 . . . ǫn 0 . . . 0 0 0 . . . cn−1 − ǫn−2 − ǫn





















































,

Figure 8.

The symbol Xm, utilized in the description of G, denotes the m × m
square matrix

Xm =



−2 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
0 0 1 −2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · −2 1
0 0 0 0 · · · 1 −2


.

We now turn to the task of diagonalizing G. We do so by thinking
of G : ZN × ZN → Z as a bilinear form, one whose matrix description
(Figure 8 ) is a facet of having chosen the basis

(3.2) E = {e11, . . . , e1|c1|−1, e31, . . . , e
3
|c3|−1, . . . , en1 , . . . , e

n
|cn|−1,

e2, e4, . . . , en−1}

for ZN . Our task then becomes to find a new basis for ZN , one with
respect to which G has a diagonal matrix representative. The new basis
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(3.3) F = {f1
1 , . . . , f

1
|c1|−1, f3

1 , . . . , f
3
|c3|−1, . . . , f

n
1 , . . . , f

n
|cn|−1,

f2, f4, . . . , fn−1}

will be obtained in several steps, outlined in Lemmas 3.1–3.4, each of
which follows the Gram-Schmidt procedure. By way of nomenclature,
we shall say that a, b ∈ ZN are orthogonal if ⟨a, b⟩ = 0 (that is if
G(a, b) = 0). A subset A ⊂ ZN is orthogonal if ⟨a, b⟩ = 0 for all
a, b ∈ A.

Lemma 3.1. For any choice of i ∈ {1, 3, 5, . . . , n} and k ∈ {1, . . . , |ci|−
1}, let f i

k be defined as

(3.4) f i
k =

ϵi
k
(ei1 + 2ei2 + 3ei3 + · · ·+ keik).

Then the set {f i
k}

i=1,3,...,n
k=1,...,|ci|−1 is orthogonal and

⟨f i
k, f

i
k⟩ = −ϵi

k + 1

k
.

Proof. Since ⟨eik, e
j
ℓ⟩ = 0 whenever i ̸= j, it follows that ⟨f i

k, f
j
ℓ ⟩ = 0

for all i ̸= j. When i = j, pick two indices k < ℓ from {1, . . . , |ci| − 1}.
Then

kℓ · ⟨f i
k, f

i
ℓ⟩ =

⟨ k∑
r=1

reir,
ℓ∑

s=1

seis

⟩

= ⟨ei1, ei1+2ei2⟩+
k∑

r=2

(⟨reir, (r−1)eir−1+reir+(r+1)eir+1⟩

= ϵi

k∑
r=2

r(r − 1)− 2r2 + r(r + 1)

= 0.

Similarly, computing ⟨f i
k, f

i
k⟩ gives

k2 · ⟨f i
k, f

i
k⟩ =

⟨ k∑
r=1

reir,
k∑

s=1

seis

⟩
= ⟨ei1, ei1 + 2ei2⟩+ ⟨keik, (k − 1)eik−1 + keik⟩
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+
k−1∑
r=2

(⟨reir, (r − 1)eir−1 + reir + (r + 1)eir+1⟩

= ϵi(k(k − 1)− 2k2)

= −ϵik(k + 1),

as claimed. �

Before proceeding, we remark that the relations (3.1) and the defi-
nition of f i

k (3.4) imply the following

(3.5) ⟨f i
k, e

j⟩ =

 1; j = i+ 1 and k = |ci| − 1,
1
k ; j = i− 1 and k = 1, . . . , |ci| − 1,
0; otherwise.

We define the remaining elements f2, f4, . . . , fn−1 ∈ ZN for the basis
F from (3.3) in two steps. The next lemma first defines elements

f̂2, . . . , f̂n−1, each of which is orthogonal to the previously defined f i
k

and with ⟨f̂ i, f̂ j⟩ = 0 whenever |i − j| ≥ 4. These f̂ i shall then be
further modified in Lemma 3.3 to obtain the desired f i.

Lemma 3.2. For j = 2, 4, 6, . . . , n− 1, we define f̂ j as

f̂ j = ej +
|cj−1| − 1

cj−1
f j−1
|cj−1|−1 +

|cj+1|−1∑
k=1

ϵj+1

k + 1
f j+1
k .

Then, each f̂ j is orthogonal to the set {f i
k}

i=1,3,...,n
k=1,...,|ci|−1, and additionally

⟨f̂ i, f̂ j⟩ =


cj − 1

cj−1
− 1

cj+1
; j = i,

1
ci±1

; j = i± 2,

0; otherwise.

Proof. All of these are direct computations, some of which make
implicit use of the formulas from (3.5). To begin with, note that

⟨f̂ j , f i
k⟩ = 0 whenever i ̸= j ± 1. For i = j − 1, we similarly have

that ⟨f̂ j , f j−1
k ⟩ = 0 if k ̸= |cj−1| − 1, while if k = |cj−1| − 1 then

⟨f̂ j , f j−1
|cj−1|−1⟩ =

⟨
ej +

1

cj−1
f j−1
|cj−1|−1 +

|cj+1|−1∑
k=1

ϵj+1

k + 1
f j+1
k , f j−1

|cj−1|−1

⟩
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= ⟨ej , f j−1
|cj−1|−1⟩+

1

cj−1
⟨f j−1

|cj−1|−1, f
j−1
|cj−1|−1⟩

= 1 +

(
|cj−1| − 1

cj−1
· (−ϵj−1)

|cj−1|
|cj−1| − 1

)
= 0.

Turning to the same computation with i = j + 1, we find

⟨f̂ j , f j+1
ℓ ⟩ =

⟨
ej +

|cj−1| − 1

cj−1
f j−1
|cj−1|−1 +

|cj+1|−1∑
k=1

ϵj+1

k + 1
f j+1
k , f j+1

ℓ

⟩

= ⟨ej , f j+1
ℓ ⟩+

|cj+1|−1∑
k=1

ϵj+1

k + 1
⟨f j+1

k , f j+1
ℓ ⟩

=
1

ℓ
+

ϵj+1

ℓ+ 1
⟨f j+1

ℓ , f j+1
ℓ ⟩

=
1

ℓ
+

ϵj+1

ℓ+ 1
· (−ϵj+1)

ℓ+ 1

ℓ
= 0.

These last two calculations verify that f̂ j is orthogonal to f i
k for any

choice of i, k. From the definition of f̂ j , it follows that ⟨f̂ j , f̂ i⟩ = 0
whenever |j− i| > 2. When i = j−2, the following computation proves
one of the remaining claims of the lemma:

⟨f̂ j , f̂ j−2⟩

=
⟨
ej +

|cj−1|−1
cj−1

f j−1
|cj−1|−1 +

∑|cj+1|−1
k=1

ϵj+1

k+1 f j+1
k ,

ej−2 +
|cj−3|−1

cj−3
f j−3
|cj−3|−1 +

∑|cj−1|−1
k=1

ϵj−1

k+1 f j−1
k

⟩
=

⟨
ej ,

ϵj−1

|cj−1|f
j−1
|cj−1|−1

⟩
+
⟨

|cj−1|−1
cj−1

f j−1
|cj−1|−1, e

j−2
⟩

(3.6)

+
⟨

|cj−1|−1
cj−1

f j−1
|cj−1|−1,

ϵj−1

|cj−1|f
j−1
|cj−1|−1

⟩
= 1

cj−1
+ 1

cj−1
− 1

cj−1

= 1
cj−1

.
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The very last computation is that of ⟨f̂ i, f̂ i⟩, to which we now turn.

⟨f̂ i, f̂ i⟩ = ⟨ei, ei⟩+ (|ci−1| − 1)2

c2i−1

⟨f i−1
|ci−1|−1, f

i−1
|ci−1|−1⟩

+

|ci+1|−1∑
k=1

1

(k + 1)2
⟨f i+1

k , f i+1
k ⟩

+ 2
|ci−1| − 1

ci−1
⟨ei, f i−1

|ci−1|−1⟩+ 2

|ci+1|−1∑
k=1

ϵi+1

k + 1
⟨ei, f i+1

k ⟩

= ⟨ei, ei⟩ − |ci−1| − 1

ci−1
− ϵi+1

|ci+1|−1∑
k=1

1

k(k + 1)

+ 2
|ci−1| − 1

ci−1
+ ϵi+1

|ci+1|−1∑
k=1

2

k(k + 1)

= ⟨ei, ei⟩+ ϵi−1
|ci−1| − 1

|ci−1|
+ ϵi+1

|ci+1|−1∑
k=1

1

k(k + 1)

= (ci − ϵi−1 − ϵi+1) + ϵi−1

(
1− 1

|ci−1|

)
+ ϵi+1

(
1− 1

|ci+1|

)
= ci − 1

ci−1
− 1

ci+1
.

This completes the proof of the lemma. �

Lemma 3.3. Define the sequence λ2j ∈ Q, j ≥ 1 recursively as

λ2 = c2 −
1

c1
− 1

c3

and

λ2j =

(
c2j −

1

c2j−1
− 1

c2j+1

)
− 1

c22j−1 · λ2j−2
, j ≥ 2.
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Using this sequence, we define the vectors f j, for j = 2, 4, . . . , n−1, as

f2 = f̂2 and f j = f̂ j − 1

cj−1 · λj−2
f j−2 for j ≥ 4.

Then the set {f i
k, f

j}i=1,3,...,n; j=2,4,...,n−1
k=1,2,...,|ci|−1 is orthogonal and ⟨f j , f j⟩ =

λj.

Proof. The proof of this lemma is a tedious computation. It should
be clear that f j is orthogonal to f i

k for any choices of i, j, k. To verify
the claim about ⟨f j , f i⟩, we proceed by induction on j (and assume
that i ≤ j).

Since f2 = f̂2, it follows from Lemma 3.2 that ⟨f2, f2⟩ = λ2. Taking
j = 4, we obtain

⟨f4, f2⟩ =
⟨
f̂4 − 1

c3 · λ2
f2, f̂2

⟩
= ⟨f̂4, f̂2⟩ − 1

c3 · λ2
⟨f̂2, f̂2⟩

=
1

c3
− 1

c3 · λ2
λ2

= 0.

⟨f4, f4⟩ =
⟨
f̂4 − 1

c3 · λ2
f̂2, f̂4 − 1

c3 · λ2
f̂2

⟩
= ⟨f̂4, f̂4⟩ − 2

c3 · λ2
⟨f̂4, f̂2⟩+ 1

(c3 · λ2)2
⟨f̂2, f̂2⟩

=

(
c4 −

1

c3
− 1

c5

)
− 2

(c3)2 · λ2
+

1

(c3 · λ2)2
λ2

=

(
c4 −

1

c3
− 1

c5

)
− 1

(c3)2 · λ2

= λ4.

For the step of induction, we suppose the lemma to be true for all
2i, 2j ≤ 2m−2 and turn to computing ⟨f2m, f2i⟩ (with i ≤ m). Firstly,
suppose that 2i ≤ 2m− 4:

⟨f2m, f2i⟩ =
⟨
f̂2m − 1

c2m−1 · λ2m−2
f2m−2, f2i

⟩
= 0.
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Next, let’s take 2i = 2m− 2:

⟨f2m, f2m−2⟩ =
⟨
f̂2m − 1

c2m−1 · λ2m−2
f2m−2, f2m−2

⟩
= ⟨f̂2m, f2m−2⟩ − 1

c2m−1 · λ2m−2
⟨f2m−2, f2m−2⟩

=

⟨
f̂2m, f̂2m−2 − 1

c2m−3 · λ2m−4
f̂2m−4

⟩
− 1

c2m−1

=
1

c2m−1
− 1

c2m−1

= 0.

It remains to address the case of 2i = 2m:

⟨f2m, f2m⟩ =
⟨̂
f2m− 1

c2m−1 · λ2m−2
f2m−2, f̂2m− 1

c2m−1 · λ2m−2
f2m−2

⟩
= ⟨f̂2m, f̂2m⟩ − 2

c2m−1 · λ2m−2
⟨f2m−2, f̂2m⟩(3.7)

+
1

(c2m−1 · λ2m−2)2
⟨f2m−2, f2m−2⟩

=

(
c2m − 1

c2m−1
− 1

c2m+1

)
− 2

(c2m−1)2 · λ2m−2

+
λ2m−2

(c2m−1 · λ2m−2)2

=

(
c2m − 1

c2m−1
− 1

c2m+1

)
− 1

(c2m−1)2 · λ2m−2

= λ2m.

With this, the lemma is proved. �

For the next lemma, the reader is asked to recall the definition of
the canonical representation of the continued fraction [c1, . . . , cn] by
the rational number pn/qn (discussed in the introduction of Section 1).

Lemma 3.4. Let c1, c2, . . . , cn (with n odd) and λi, i = 2, 4, . . . , n− 1
be as in Lemma 3.3. For i = 1, 2, . . . , n, let us introduce the relatively
prime integers pi, qi as the numerator and denominator of the canonical
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representation of [c1, . . . , ci]:

[c1, c2, . . . , ci] =
pi
qi
.

Then
λ2i =

p2i+1

c2i+1 · p2i−1
for each i ∈ {1, 2, . . . , n−1

2 }.

Proof. We start by noting the following recursive relations connect-
ing the various pi and qi (see [7, Theorem 1]):

pn = cnpn−1 − pn−2 and qn = cnqn−1 − qn−2.

Let us set µ2i = p2i+1/(c2i+1 · p2i−1). To show that λ2i = µ2i, it suffices
to demonstrate that µ2i satisfies the recursion relation

µ2 = c2 −
1

c1
− 1

c3

and

µ2i =

(
c2i −

1

c2i−1
− 1

c2i+1

)
− 1

c22i−1 · µ2i−2

from Lemma 3.3. The first of these equations is evident (since p1 = c1
and p3 = c1c2c3 − c1 − c3). The second is established using the noted
recursive relation for pi:

µ2i =
p2i+1

c2i+1 p2i−1
=

c2i+1 p2i − p2i−1

c2i+1 p2i−1
=

p2i
p2i−1

− 1

c2i+1

=
c2i p2i−1 − p2i−2

p2i−1
− 1

c2i+1

= c2i −
1

c2i+1
− p2i−2

p2i−1

= c2i −
1

c2i+1
− c2i−1 p2i−2

c2i−1 p2i−1

= c2i −
1

c2i+1
− p2i−1 + p2i−3

c2i−1p2i−1

= c2i −
1

c2i+1
− 1

c2i−1
− 1

c22i−1 ·
p2i−1

c2i−1 p2i−3
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= c2i −
1

c2i+1
− 1

c2i−1
− 1

c22i−1 · µ2i−2
.

This completes the proof of the lemma. �

Lemmas 3.1–3.4 provide a proof of Theorem 1.2. Namely, since the
basis

F={f1
1 , . . . , f

1
|c1|−1, f

3
1 , . . . , f

3
|c3|−1, . . . , f

n
1 , . . . , f

n
|cn|−1,f

2, f4, . . . , fn−1}

is orthogonal with respect to the “inner product” ⟨·, ·⟩ provided by
G (according to Lemma 3.3), it follows that the matrix represent-
ing G with respect to the basis F is diagonal and its entries are
{⟨f1

1 , f
1
1 ⟩, . . . , ⟨fn−1, fn−1⟩}. These latter quantities have been com-

puted (Lemma 3.1 and Lemmas 3.3, 3.4) and are

⟨f i
k, f

i
k⟩ = −ϵi

k + 1

k
and ⟨f2j , f2j⟩ = p2i+1

c2i+1 p2i−1
.

This proves Theorem 1.2 after observing that the transition matrix P
from the old basis E (3.2) to the new basis F (3.3) of ZN , is upper
triangular with ±1 entries on the diagonal.

4. Proof of Corollary 1.4 and existence of even continued
fractions.

Lemma 4.1. Let D[c1,...,cn] be the standard projection associated to an
even continued fraction expansion [c1, . . . , cn]. Then µ(D[c1,...,cn]) = 0.

The result of this lemma has can be deduced from [1, Remark 12.27]
and the fact that the correction term vanishes for orientable Seifert
surfaces. As the proof of the lemma is rather elementary we include it
here for completeness and for the benefit of the reader.

Proof. Consider the surface bounding D[c1,...,cn] from Figure 9. It is
easy to see that if [c1, . . . , cn] is an even continued fraction expansion,
then the said surface is orientable and becomes a Seifert surface for
D[c1,...,cn]. The lemma now follows in conduction with the observation
from [5] that the correction term associated to an orientable surface
vanishes. �
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Figure 9. This is the diagram D[3,−2,−4,−2,−2] of the two bridge knot
K61/17 associated to the even continued fraction expansion 61/17 =
[3,−2,−4,−2,−2]. The oriented Seifert surface is formed by the shaded
regions. The darker shaded regions represent one side of the surface, the
lighter shaded regions the other.

Corollary 1.4 is now a direct consequence of Lemma 4.1 and Theo-
rem 1.2.

As the usefulness of Corollary 1.4 rests on the existence of even
continued fractions [c1, . . . , cn], we devote the rest of this section to
describing two algorithms for finding such expansions. The first of
these is a recount of the algorithm described by Burde and Zieschang
in [1, Proposition 12.17].

Algorithm 4.2 (The Burde-Zieschang algorithm). Proposition 12.17
in [1] describes an algorithm for finding an even continued fraction
expansions for a rational number q/p = [c1, . . . , cn]BZ with 0 < q < p
and with q odd (recall the symbol [c1, . . . , cn]BZ from Remark 1.6).
The integers c1, . . . , cn, of which c2, c4, . . . , cn−1 are even, are the
results of a generalized Euclidean algorithm, uniquely determined by
the requirements:

(i) Set r0 = p and r1 = q, and consider the equation

(4.1) ri−1 = ciri + ri+1

for i = 1, . . . , n.
(ii) Use equation (4.1), with ri−1, ri known, to determine ci and ri+1

subject to the conditions:
• r2i > 0 for all i = 1, . . . , (n− 1)/2.
• c2i is even for all i = 1, . . . , (n− 1)/2.
• |ri| < |ri−1| for all i = 1, . . . , n− 1 and |rn| ≤ |rn−1|.
• If |rn| = |rn−1| then cncn−1 > 0.
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Effectively, using equation (4.1) with ri−1 and ri known, one chooses
ri+1 as follows, depending on the parity of i:

• If i is odd, pick ri+1 as the modulus of ri−1 with respect to ri
(that is, ri+1 ∈ {0, . . . , q−1} and ri−1−ri+1 is divisible by ri),
and set ci = (ri−1 − ri+1)/ri.

• If i is even, consider the two possibilities for ri+1, namely, the
modulus of ri−1 with respect to ri, and that same modulus mi-
nus ri. For each possibility for ri+1, compute the corresponding
ci as ci = (ri−1 − ri+1)/ri. Of these two possibilities, pick the
one that yields an even ci.

The algorithm ends when ri becomes zero for an even coefficient i.

A Mathematica implementation of this algorithm can be found on
the second author’s web page.

The second algorithm below is due to the authors. After describing
it, we look at examples comparing the two methods.

Algorithm 4.3. Let p, q ∈ Z be two relatively prime, non-zero integers.
Then the algorithm outlined below shows that either

p

q
or

p

p+ q

possesses an even continued fraction expansion. For convenience, and
without loss of generality, assume that q > 0. Our algorithm then
proceeds in four steps.

Step 1. If p/q is an integer, let c1 = p/q and note that p/q = [c1]
is an even continued fraction expansion of p/q, at which point the
algorithm terminates.

Step 2. If p/q is not an integer, let ε−1 = Sign (p), and replace
p by |p| so that p/q > 0. For uniformity of notation, we introduce
the abbreviations r−1 = p and r0 = q. Find integers c1, r1 from the
equation ε−1r−1 = c1r0 ± r1, subject to the condition 0 ≤ r1 < r0. The
sign is chosen so as to make c1 odd, and we set ε0 = ∓1 to keep track
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of our sign choice. Notice that we obtain
(4.2)
p

q
=

ε−1r−1

r0
=

c1r0 ± r1
r0

= c1 ±
r1
r0

= c1 −
1

∓r0/r1
= c1 −

1

ϵ0 · (r0/r1)
.

Step 3. This step inductively repeats Step 2 until the remainder rn
becomes zero. The one significant difference between Step 2 and Step 3
is that c1 was chosen odd in Step 2, while we will choose cn, n ≥ 2, to
be even in Step 3. Specifically, in the nth step, having previously found
c1, . . . , cn−1, ε−1, . . . , εn−2 and r−1, . . . , rn−1, the equation

(4.3) εn−2rn−2 = cnrn−1 ± rn

uniquely determines integers rn and cn subject to cn being even and
0 ≤ rn < rn−1 (this can be arranged as along as rn ̸= 0). Set
εn−1 = ∓1, that is set it to the opposite sign of the one appearing
in equation (4.3).

By induction on n, it is easy to see that the formula

(4.4)
p

q
= c1 −

1

c2 −
1

. . . −
1

cn−1 −
1

cn −
1

ϵn−1 ·
(
rn−2

rn−1

)
holds whenever rn ̸= 0. This follows from (4.2) which serves as the
basis of induction, and from equation (4.3) applied to the induction
hypothesis:

(4.5)
p

q
= c1 −

1

c2 −
1

. . . −
1

cn−1 −
1

ϵn−2 ·
(
rn−2

rn−1

)
·

If rn = 0, then the parity of cn may not be chosen at will, but rather
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is determined by equation (4.3). In that case, relation (4.5) (with the
help of (4.3)) leads to

(4.6)
p

q
= c1 −

1

c2 −
1

. . . −
1

cn−1 −
1

cn

= [c1, . . . , cn].

Since the sequence r0, r1, r2, . . . is a strictly decreasing sequence of
non-negative integers, this process yields rn = 0 after finitely many
iterations, at which point we have produced a continued fraction expan-
sion of p/q as in (4.6). We point out that c1 is odd and ci even for
i ≥ 2 with the possible exception of cn. Note also that ci ̸= 0 for all i
since ri−2 < ri−1 for i ≥ 2 and since c1 was chosen to be odd.

Step 4. We consider the continued fraction expansion [c1, . . . , cn]
from Step 3. If n is odd, this continued fraction expansion is even and
the algorithm terminates. If n is even and cn is odd, we change to the
continued fraction expansion [c1, . . . , cn±1,±1] of p/q which is an even
continued fraction expansion, and the algorithm terminates. Finally, if
n is even and cn is even, then the continued fraction expansion

[1, 1 + c1, c2, . . . , cn],

is even, and its value is

[1, 1 + c1, . . . , cn] = 1−
1

1 + c1 −
1

. . . −
1

cn−1 −
1

cn
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= 1−
1

1 +


c1 −

1

. . . −
1

cn−1 −
1

cn


= 1− 1

1 +
p

q

=
p

p+ q
,

completing the algorithm.

A Mathematica implementation of Algorithm 4.3 can also be ob-
tained on the second author’s web page.

Corollary 4.4. Each two bridge knot Kp/q can be represented by a
diagram D[c1,...,cn] where [c1, . . . , cn] is an even continued fraction.

Proof. If 0 < q < p and q is odd, the Burde-Zieschang al-
gorithm 4.2 may be used to obtain the Burde-Zieschang expan-
sion q/p = [c1, . . . , cn]BZ . Then the continued fraction expansion
[c1,−c2, c3,−c4, c5, . . . ,−cn−1, cn] is an even continued fraction expan-
sion for p/q. Alternatively, Algorithm 4.3 yields an even continued
fraction expansion for either p/q or p/(p+ q), proving the corollary
once again after observing that the knots Kp/q and Kp/(p+q) are iso-
topic, see [11]. �

Numerical experimentation shows that many times Algorithms 4.2
and 4.3 produce the same even continued fraction expansion, or at least
expansions of equal length. There are, however, exceptions when one
algorithm performs better than the other, in the sense of yielding a
shorter continued fraction expansion.
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Example 4.5. Consider the relatively prime integers p = 122, 227 and
q = 11, 113. Algorithms 4.2 and 4.3 applied to p and q give

11, 113

122, 227
= [3, 2,−1,−2, 1, 2,−4]BZ ,

122, 227

11, 113
= [3,−2,−2,−4,−4].

Formula (1.4) for the Burde-Zieschang expansion, and formula (1.2) for
the second expansion, each yield signature −10 for K122227/11113.

Example 4.6. For p = 137 and q = 37, Algorithms 4.2 and 4.3 yield

37

137
= [10, 2,−1,−692,−1,−2, 1, 2, 2]BZ ,

137

37
= [11, 694,−2,−4, 2],

each giving the value 0 for the signature of K137/37. We note that
formula (1.4), when applied to the second (non Burde-Zieschang ex-
pansion) yields the incorrect result for the signature of K137/37 of 2
(compare with Remark 1.6).
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