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UPPER AND LOWER BOUNDS FOR THE
NUMERICAL RADIUS WITH AN APPLICATION

TO INVOLUTION OPERATORS

AMER ABU-OMAR AND FUAD KITTANEH

ABSTRACT. New upper and lower bounds for the nu-
merical radii of Hilbert space operators are given. An appli-
cation to involution operators is also provided.

1. Introduction. Let B(H) denote the C∗-algebra of all bounded
linear operators on a complex Hilbert space H with inner product ⟨·, ·⟩.
For A ∈ B(H), let r(A), w(A) and ∥A∥ denote the spectral radius, the
numerical radius and the operator norm of A, respectively. Also, let
m(A) be the nonnegative number defined by

m (A) = inf
∥x∥=1

|⟨Ax, x⟩| .

Recall that w(A) = sup
∥x∥=1

|⟨Ax, x⟩|. It is well-known that, for every

A ∈ B(H),

(1.1) r(A) ≤ w(A)

with equality if A is normal. Moreover, w(·) defines a norm on B(H),
which is equivalent to the operator norm ∥ · ∥. In fact, for every
A ∈ B(H),

(1.2)
1

2
∥A∥ ≤ w (A) ≤ ∥A∥ .

The inequalities in (1.2) are sharp. The first inequality becomes an
equality if A2 = 0. The second inequality becomes an equality if A is
normal. Another basic fact about the numerical radius is the power
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inequality, which asserts that

(1.3) w (An) ≤ wn (A) for n = 1, 2, . . . .

For proofs and more facts about the numerical radius, we refer the
reader to [2, 3].

Kittaneh has shown in [5, 7], respectively, that, if A ∈ B(H), then

(1.4) w(A) ≤ 1

2

(
∥A∥+

∥∥A2
∥∥1/2)

and

(1.5)
1

4

∥∥∥|A|2 + |A∗|2
∥∥∥ ≤ w2(A) ≤ 1

2

∥∥∥|A|2 + |A∗|2
∥∥∥ .

Obviously, the inequality (1.4) is sharper than the second inequality in
(1.2), and the inequalities (1.5) refine the inequalities (1.2).

In Section 2, we establish a considerable improvement of the in-
equalities (1.2), which also refines the inequalities (1.4) and (1.5) of
Kittaneh.

In Section 3, we utilize the main result obtained in Section 2 to
compute the numerical radii of involution operators and compute the
operator norms of their real and imaginary parts.

2. Upper and lower bounds for the numerical radius. In order
to achieve our goal, we need the following three lemmas. The first
lemma is well known (see, e.g., [9]). It gives a useful characterization
of the numerical radius.

Lemma 2.1. Let A ∈ B(H). Then

(2.1) w(A) = sup
θ∈R

∥∥Re (eiθA)∥∥ .
The second lemma, which can be found in [4], gives estimations of

the operator norms of 2 × 2 operator matrices, regarded as operators
on H1 ⊕H2.
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Lemma 2.2. Let A ∈ B(H1), B ∈ B(H2,H1), C ∈ B(H1,H2) and
D ∈ B(H2). Then ∥∥∥∥[A B

C D

]∥∥∥∥ ≤
∥∥∥∥[∥A∥ ∥B∥

∥C∥ ∥D∥

]∥∥∥∥ .
Here B(Hj ,Hi) is the space of all bounded linear operators from Hj to
Hi.

The third lemma contains a special case of a more general inequality
for sums of positive operators that is sharper than the triangle inequal-
ity. See [6].

Lemma 2.3. Let A ∈ B(H). Then

(2.2)
∥∥∥|A|2 + |A∗|2

∥∥∥ ≤
∥∥A2

∥∥+ ∥A∥2 .

Now, we are ready to present our new improvement of the inequali-
ties (1.2).

Theorem 2.4. Let A ∈ B(H). Then

1

2

√∥∥∥|A|2 + |A∗|2
∥∥∥+ 2m (A2) ≤ w (A)(2.3)

≤ 1

2

√∥∥∥|A|2 + |A∗|2
∥∥∥+ 2w (A2).

Proof. Let x be a unit vector in H, and let ψ be a real number such
that e2iψ⟨A2x, x⟩ = |⟨A2x, x⟩|. Then we have

w (A) ≥
∥∥Re (eiψA)∥∥ =

1

2

∥∥eiψA+ e−iψA∗∥∥
=

1

2

∥∥(eiψA+ e−iψA∗)2
∥∥ 1

2

=
1

2

√∥∥∥|A|2 + |A∗|2 + 2Re (e2iψA2)
∥∥∥

≥ 1

2

√∣∣∣⟨(|A|2 + |A∗|2 + 2Re (e2iψA2))x, x
⟩∣∣∣
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=
1

2

√∣∣∣⟨(|A|2 + |A∗|2)x, x
⟩
+ 2 ⟨Re (e2iψA2)x, x⟩

∣∣∣
=

1

2

√∣∣∣⟨(|A|2 + |A∗|2)x, x
⟩
+ 2Re (e2iψ ⟨A2x, x⟩)

∣∣∣
=

1

2

√⟨
(|A|2 + |A∗|2)x, x

⟩
+ 2 |⟨A2x, x⟩|

≥ 1

2

√⟨
(|A|2 + |A∗|2)x, x

⟩
+ 2m(A2).

Thus,

w (A) ≥ 1

2
sup

∥x∥=1

√⟨(
|A|2 + |A∗|2

)
x, x

⟩
+ 2m (A2)

=
1

2

√∥∥∥|A|2 + |A∗|2
∥∥∥+ 2m (A2),

which proves the first inequality in (2.3).

To prove the second inequality in (2.3), note that, by Lemma 1, we
have

w (A) = sup
θ∈R

∥∥Re (eiθA)∥∥
=

1

2
sup
θ∈R

∥∥eiθA+ e−iθA∗∥∥
=

1

2
sup
θ∈R

∥∥(eiθA+ e−iθA∗)2
∥∥1/2

=
1

2
sup
θ∈R

∥∥∥|A|2 + |A∗|2 + 2Re (e2iθA2)
∥∥∥1/2

≤ 1

2

√∥∥∥|A|2 + |A∗|2
∥∥∥+ 2sup

θ∈R
∥Re (e2iθA2)∥

=
1

2

√∥∥∥|A|2 + |A∗|2
∥∥∥+ 2w(A2),

which proves the second inequality in (2.3) and completes the proof of
the theorem. �

Remark 2.5. Using the power inequality (1.3) and the second inequal-
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ity in (2.3), we have

w2 (A) ≤ 2w2 (A)− w
(
A2

)
≤ 1

2

∥∥∥|A|2 + |A∗|2
∥∥∥ ,

which shows that the second inequality in (2.3) is sharper than the
second inequality in (1.5). Obviously, the first inequality in (2.3) is
sharper than the first inequality in (1.5).

The following corollary shows that the second inequality in (2.3) is
sharper than the inequality (1.4).

Corollary 2.6. Let A ∈ B(H). Then

w (A) ≤ 1

2

√
∥A∥2 + ∥A2∥+ 2w (A2)

≤ 1

2

√
∥A∥2 + 3 ∥A2∥

≤ 1

2

(
∥A∥+

∥∥A2
∥∥1/2) .(2.4)

Proof. The first inequality in (2.4) follows directly from the second
inequality in (2.3) and Lemma 2.3. The second inequality in (2.4)
follows from the first inequality in (2.4) by noting that w(A2) ≤ ∥A2∥.

To prove the last inequality in (2.4), note that∥∥A2
∥∥ =

∥∥A2
∥∥1/2 ∥∥A2

∥∥1/2 ≤ ∥A∥
∥∥A2

∥∥1/2 ,
and so

1

2

√
∥A∥2 + 3 ∥A2∥ =

1

2

√
∥A∥2 + 2 ∥A2∥+ ∥A2∥

≤ 1

2

√
∥A∥2 + 2 ∥A∥ ∥A2∥1/2 + ∥A2∥

=
1

2

√(
∥A∥+ ∥A2∥1/2

)2

=
1

2

(
∥A∥+

∥∥A2
∥∥1/2) ,

as required. �
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3. The numerical radii of involution operators. Recall that an
operator A ∈ B(H) is said to be idempotent if A2 = A, 2-nilpotent if
A2 = 0 and an involution if A2 = I.

Furuta [1] has used the polar decomposition to compute the numer-
ical radii of idempotent and 2-nilpotent operators. In fact, Furuta has
proved the following theorem.

Theorem 3.1. Let A ∈ B(H). Then the following statements hold :

(i) If A is an idempotent operator such that A ̸= 0, then

w(A) = ∥ReA∥ =
1

2
(1 + ∥A∥)

and

∥ImA∥ =
1

2

(
∥A∥2 − 1

)1/2

.

(ii) If A is a 2-nilpotent operator such that A ̸= 0, then

w(A) = ∥ReA∥ = ∥ImA∥ =
1

2
∥A∥ .

It follows from the inequalities (2.3) that, if A ∈ B(H) is an
involution operator, then

(3.1) w (A) =
1

2

√∥∥∥|A|2 + |A∗|2
∥∥∥+ 2.

In this section, we apply relation (3.1) to compute the numerical
radii of involution operators, and compute the operator norms of their
real and imaginary parts. To achieve our goal, we need the following
lemma in which we compute the operator norms of certain 2×2 operator
matrices. A special case of this lemma has been proved by Paul and
Bag [8]. Our approach here is different from theirs.

Lemma 3.2. Let

A =

[
aI T
0 bI

]
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be an operator on the Hilbert space H = H1⊕H2, where T ∈ B(H2,H1),
and let a, b be complex numbers. Then

∥A∥ =
1√
2

√
|a|2 + |b|2 + ∥T∥2 +

√(
|a|2 + |b|2 + ∥T∥2

)2

− 4 |a|2 |b|2.

Proof. By Lemma 2, we have

(3.2) ∥A∥ ≤
∥∥∥∥[|a| ∥T∥

0 |b|

]∥∥∥∥ =

∥∥∥∥[|a| ∥T∥
0 |b|

] [
α
β

]∥∥∥∥
for some nonnegative real numbers α, β with α2 + β2 = 1. Let {xn}
and {yn} be two sequences of unit vectors in H1 and H2, respectively,
such that lim

n→∞
|⟨Tyn, xn⟩| = ∥T∥. For n ∈ N, let θn be a real number

such that a⟨Tyn, xn⟩ = eiθn |a||⟨Tyn, xn⟩|. Consider the sequence

{zn} =

{[
αeiθnxn
βyn

]}
.

It is easy to see that {zn} is a sequence of unit vectors in H1 ⊕H2 and

∥Azn∥ =

∥∥∥∥[αaeiθnxn + βTyn
βbyn

]∥∥∥∥
=

√
∥αaeiθnxn + βTyn∥2 + ∥βbyn∥2

=

√
α2 |a|2 + β2 ∥Tyn∥2 + 2αβRe (e−iθna ⟨Tyn, xn⟩) + β2 |b|2

=

√
α2 |a|2 + β2 ∥Tyn∥2 + 2αβ |a| |⟨Tyn, xn⟩|+ β2 |b|2

−→
√
α2 |a|2 + β2 ∥T∥2 + 2αβ |a| ∥T∥+ β2 |b|2 (as n→ ∞)

=

√
(α |a|+ β ∥T∥)2 + β2 |b|2

=

∥∥∥∥[|a| ∥T∥
0 |b|

] [
α
β

]∥∥∥∥ =

∥∥∥∥[|a| ∥T∥
0 |b|

]∥∥∥∥ .
Thus,

(3.3) ∥A∥ ≥
∥∥∥∥[|a| ∥T∥

0 |b|

]∥∥∥∥ .
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By the inequalities (3.2) and (3.3), we deduce that

∥A∥ =

∥∥∥∥[|a| ∥T∥
0 |b|

]∥∥∥∥ .
But,∥∥∥∥[|a| ∥T∥

0 |b|

]∥∥∥∥ =

∥∥∥∥[ |a| 0
∥T∥ |b|

] [
|a| ∥T∥
0 |b|

]∥∥∥∥1/2
(since ∥X∥ = ∥X∗X∥1/2)

= r1/2
([

|a| 0
∥T∥ |b|

] [
|a| ∥T∥
0 |b|

])
= r1/2

([
|a|2 |a| ∥T∥

|a| ∥T∥ |b|2 + ∥T∥2
])

=
1√
2

√
|a|2+|b|2+∥T∥2+

√(
|a|2+|b|2+∥T∥2

)2

−4 |a|2 |b|2,

which completes the proof of the lemma. �

Now, we apply relation (3.1) and Lemma 3.2 to prove the following
theorem.

Theorem 3.3. If A ∈ B(H) is an involution operator, then the
following relations hold :

(i) w(A) = 1
2 (∥A∥+ ∥A∥−1).

(ii) ∥ReA∥ = 1
2 (∥A∥+ ∥A∥−1) and ∥ImA∥ = 1

2 (∥A∥ − ∥A∥−1).

Proof. Since A2 = I, A can be represented, with respect to an
appropriate decomposition H = H1 ⊕H2, as

A =

[
I T
0 −I

]
,

where T ∈ B(H2,H1). By relation (3.1), we have

w(A) =
1

2

√∥∥∥|A|2 + |A∗|2
∥∥∥+ 2

=
1

2

(∥∥∥∥[ I 0
T ∗ −I

] [
I T
0 −I

]
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+

[
I T
0 −I

] [
I 0
T ∗ −I

]∥∥∥∥+ 2

)1/2

=
1

2

(∥∥∥∥[ I T
T ∗ T ∗T + I

]
+

[
TT ∗ + I −T
−T ∗ I

]∥∥∥∥+ 2

)1/2

=
1

2

(∥∥∥∥[TT ∗ + 2I 0
0 T ∗T + 2I

]∥∥∥∥+ 2

)1/2

=
1

2
(∥TT ∗ + 2I∥+ 2)

1/2
,

and so

(3.4) w(A) =
1

2

√
∥T∥2 + 4.

Also, by Lemma 3.2, we have

∥A∥ =
1√
2

√
2 + ∥T∥2 +

√
∥T∥4 + 4 ∥T∥2(3.5)

=
1

2

√
∥T∥2 + 4 +

1

2
∥T∥ .

From relations (3.4) and (3.5), we conclude that

w(A) =
1

2

(
∥A∥+ ∥A∥−1

)
,

which proves part (i).

To prove part (ii), note that

∥ReA∥ =

∥∥∥∥[ I T
2

T∗

2 −I

]∥∥∥∥
=

∥∥∥∥[ I T
2

T∗

2 −I

] [
I T

2
T∗

2 −I

]∥∥∥∥1/2
=

∥∥∥∥[TT∗

4 + I 0

0 T∗T
4 + I

]∥∥∥∥1/2
=

1

2

√
∥T∥2 + 4
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and

∥ImA∥ =

∥∥∥∥[ 0 T
2i

−T∗

2i 0

]∥∥∥∥
=

1

2
∥T∥ .

Thus,

∥ReA∥ = w(A) =
1

2

(
∥A∥+ ∥A∥−1

)
and

∥ImA∥ = ∥A∥ − w(A)

= ∥A∥ − 1

2

(
∥A∥+ ∥A∥−1

)
=

1

2

(
∥A∥ − ∥A∥−1

)
,

which proves part (ii) and completes the proof of the theorem. �

We remark here that the finite-dimensional version of part (i) in
Theorem 3.3 has been given in [8] using a completely different argu-
ment.
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