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NOTE ON IGUSA’S CUSP FORM OF WEIGHT 35

TOSHIYUKI KIKUTA, HIROTAKA KODAMA AND SHOYU NAGAOKA

ABSTRACT. A congruence relation satisfied by Igusa’s
cusp form of weight 35 is presented. As a tool to confirm
the congruence relation, a Sturm-type theorem for the case
of odd-weight Siegel modular forms of degree 2 is included.

1. Introduction. In [5], Igusa gave a set of generators of the graded
ring of degree 2 Siegel modular forms. In these generators, there are
four even-weight forms φ4, φ6, χ10, χ12, and only one odd-weight form,
χ35. Here φk is the normalized Eisenstein series of weight k, and χk is
a cusp form of weight k.

The purpose of this paper is to introduce a strange congruence rela-
tion of the odd-weight cusp form X35, which is a suitable normalization
of χ35 (for the precise definition, see subsection 2.2).

Main result. Denote by a(T ;X35) the T -th Fourier coefficient of the
cusp form X35. If T satisfies det (T ) ̸≡ 0 (mod 23), then

a(T ;X35) ≡ 0 (mod 23),

or equivalently,
Θ(X35) ≡ 0 (mod 23),

where Θ is the theta operator on Siegel modular forms (for the precise
definition, see subsection 2.4).

This result shows that almost all the Fourier coefficients a(T ;X35)
are divisible by 23.
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2. Preliminaries.

2.1. Notation. First we confirm the notation. Let Γn = Spn(Z) be
the Siegel modular group of degree n and Hn the Siegel upper-half
space of degree n. We denote by Mk(Γn) the C-vector space of all
Siegel modular forms of weight k for Γn, and Sk(Γn) is the subspace of
cusp forms.

Any F (Z) in Mk(Γn) has a Fourier expansion of the form

F (Z) =
∑

T∈Ln

a(T ;F )qT , qT := e2πitr(TZ), Z ∈ Hn,

where T runs over all elements of Ln, and

Λn := {T = (tij) ∈ Symn(Q) | tii, 2tij ∈ Z},
Ln := {T ∈ Λn | T is semi-positive definite}.

In this paper, we deal mainly with the case of n = 2. For simplicity,
we write

T = (m,n, r) for T =

(
m r

2
r
2 n

)
∈ Λ2.

For a subring R of C, let Mk(Γn)R ⊂ Mk(Γn) denote the R-module
of all modular forms whose Fourier coefficients lie in R.

2.2. Igusa’s generators. Let

M(Γ2) =
⊕
k∈Z

Mk(Γ2)

be the graded ring of Siegel modular forms of degree 2. Igusa [5] gave a
set of generators of the ring M(Γ2). The set consists of five generators

φ4, φ6, χ10, χ12, χ35,

where φk is the normalized Eisenstein series on Γ2 and χk is a cusp
form of weight k. Moreover he showed that the even-weight generators
φ4, φ6, χ10 and χ12 are algebraically independent. Later, he extended
the result to the integral case ([6]). Namely, he gave a minimal set of
generators over Z of the ring

M(Γ2)Z =
⊕
k∈Z

Mk(Γ2)Z.
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The set of generators consists of 15 modular forms including the
following forms:

X4 := φ4, X6 := φ6,

X10 := −2−2χ10, X12 := 22 · 3χ12,

X35 := 22iχ35.

Of course, these forms have rational integral Fourier coefficients under
the following normalization:

a((0, 0, 0);X4) = a((0, 0, 0);X6) = 1

a((1, 1, 1);X10) = a((1, 1, 1);X12) = 1

a((2, 3,−1);X35) = 1.

2.3. Order and the p-minimum matrix. We define a lexicograph-
ical order “≻” for two different elements T = (m,n, r) and T ′ =
(m′, n′, r′) of Λ2 by

T ≻ T ′ ⇐⇒(1) tr (T ) > tr (T ′)

or

(2) tr (T ) = tr (T ′), m > m′

or

(3) tr (T ) = tr (T ′), m = m′, r > r′.

Let p be a prime and Z(p) the local ring consisting of p-integral rational
numbers. For F ∈ Mk(Γ2)Z(p)

, we define the p-minimum matrix mp(F )
of F by

mp(F ) := min{T ∈ L2 | a(T ;F ) ̸≡ 0 (mod p)},

where the “min” is defined in the sense of the above order. If F ≡ 0
(mod p), then we define mp(F ) = (∞).
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Remark 2.1. The p-minimum matrices of Igusa’s generators are

mp(X4) = mp(X6) = (0, 0, 0),

mp(X10) = mp(X12) = (1, 1,−1),

mp(X35) = (2, 3,−1),

for any prime number p.

The following properties are essential.

Lemma 2.2. (1) T1 ≻ T2, S1 ≻ S2 implies T1 + S1 ≻ T2 + S2.
(2) T1 ≻ T2 implies T1 ± S ≻ T2 ± S.
(3) T + S = T ′ + S′, T ≻ T ′ implies S ≺ S′.
(4) mp(F ·G) = mp(F ) +mp(G).

Proof. (1), (2) Trivial.

(3) We use (2) without notice. By the assumption T + S = T ′ + S′,
we have T−T ′ = S′−S. Then 02 ≺ T−T ′ = S′−S because of T ≻ T ′.
Hence, S ≺ S′.

(4) Let mp(F ) = T0 and mp(G) = T ′
0. Then, for all T ≺ T0

(respectively, T ≺ T ′
0), a(T ;F ) ≡ 0 (mod p) and a(T0;F ) ̸≡ 0 (mod p)

(respectively, a(T ;G) ≡ 0 (mod p) and a(T ′
0;G) ̸≡ 0 (mod p)). Now,

recall that the T -th Fourier coefficient a(T ;F ·G) of F ·G is given by

a(T ;F ·G) =
∑

S,S′∈L2

S+S′=T

a(S;F )a(S′;G).

If T ≺ T0 + T ′
0, then T = S + S′ ≺ T0 + T ′

0, and hence S ≺ T0

or S′ ≺ T ′
0 because of (1). In this case, a(S;F ) ≡ 0 (mod p) or

a(S′;G) ≡ 0 (mod p). Therefore, a(S;F )a(S′;G) ≡ 0 (mod p) for
each S, S′ with S + S′ ≺ T0 + T ′

0. This implies a(T ;F ) ≡ 0 (mod p)
for all T ≺ T0 + T ′

0.

In order to complete the proof of (4), we need to prove that a(T0 +
T ′
0;F · G) ̸≡ 0 (mod p). If S + S′ = T0 + T ′

0, then we have by (3)
that S ≺ T0, S′ ≻ T ′

0 or S ≻ T0, S′ ≺ T ′
0 or S = T0, S′ = T ′

0.
In the first two cases, since a(S;F ) ≡ 0 (mod p) or a(S′;G) ≡ 0
(mod p), we get a(S;F )a(S′;G) ≡ 0 (mod p). In the third case,
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a(T0;F )a(T ′
0;G) ̸≡ 0 (mod p). Thus, a(T0 + T ′

0;F · G) ̸≡ 0 (mod p),
namely, mp(F ·G) = T0 + T ′

0. This completes the proof of (4). �

Sturm-type theorem. A Sturm-type theorem for the Siegel modular
forms was first given by Poor and Yuen in [7]. Recently Choi, Choie and
the first author [4] investigated such a problem in the case of degree 2
and proved some theorems.

We introduce the statement of this theorem for the case of level 1.

Theorem 2.3 (Choi, Choie and Kikuta [4]). Let p be a prime with
p ≥ 5 and k an even positive integer. For F ∈ Mk(Γ2)Z(p)

with Fourier
expansion

F =
∑
T∈L2

a(T ;F )qT ,

we assume that a((m,n, r);F ) ≡ 0 (mod p) for all m, n, r such that
0 ≤ m, n ≤ k/10 and 4mn− r2 ≥ 0. Then F ≡ 0 (mod p).

We rewrite this theorem for later use:

Theorem 2.4. Let p be a prime with p ≥ 5. Assume that F ∈
Mk(Γ2)Z(p)

satisfies mp(F ) ≻ ([k/10], [k/10], r0) for the maximum

r0 ∈ Z such that ([k/10], [k/10], r0) ∈ L2. Then mp(F ) = (∞), i.e.,
F ≡ 0 (mod p).

Proof. The assertion follows immediately from the inclusion
(2.1){

T ∈L2

∣∣∣T ≼
([

k

10

]
,

[
k

10

]
, r0

)}
⊃
{
(m,n, r) ∈ L2

∣∣∣m,n ≤ k

10

}
. �

Remark 2.5. In general, the converse of inclusion (2.1) is not true.
For example, ([k/10] + 1, 0, 0) ≺ ([k/10], [k/10], r0) (for k ≥ 20). We
need a statement of this type to aid the proof of the next proposition.

In order to prove our main result, we need a Sturm-type theorem
for the odd-weight case:



968 T. KIKUTA, H. KODAMA AND S. NAGAOKA

Proposition 2.6. Let p be a prime with p ≥ 5 and k an odd positive
integer. For F ∈ Mk(Γ2)Z(p)

, we assume that

mp(F ) ≻
([

k − 35

10

]
+ 2,

[
k − 35

10

]
+ 3, r0 − 1

)
,

where r0 ∈ Z is the maximum number such that([
k − 35

10

]
,

[
k − 35

10

]
, r0

)
∈ L2.

Then mp(F ) = (∞), namely, F ≡ 0 (mod p).

Remark 2.7. When F ∈ Mk(Γ2)Z(p)
is of odd weight, X35 · F ∈

Mk+35(Γ2)Z(p)
is of even weight. Using Theorem 2.3 directly, we have

the following statement: If a((m,n, r);F ) ≡ 0 (mod p) for all m, n and
r such that 0 ≤ m, n ≤ k+35

10 and 4mn− r2 ≥ 0, then F ≡ 0 (mod p).

For our purposes, however, the estimation of Proposition 2.6 is better
than this estimation.

Proof of Proposition 2.6. First note that

Mk(Γ2)Z(p)
= X35Mk−35(Γ2)Z(p)

for odd k. Hence, there existsG ∈ Mk−35(Γ2)Z(p)
such that F = X35·G.

Using Lemma 2.2 (4), we get mp(F ) = mp(X35) + mp(G). Since
mp(X35) = (2, 3,−1), we have

mp(G) = mp(F )− (2, 3,−1) ≻
([

k − 35

10

]
,

[
k − 35

10

]
, r0

)
.

It should be noted that Lemma 2.2 (2) is used to get the last inequality.
Since G is of even weight, we can apply Theorem 2.4 to G. This shows
that F = X35 ·G ≡ 0 (mod p). �

2.4. Theta operator. In [8], Serre used the theta operator θ on
elliptic modular forms to develop the theory of p-adic modular forms:

θ = q
d

dq
: f =

∑
a(t; f)qt 7−→ θ(f) :=

∑
t · a(t; f)qt.

Later the operator was generalized to the case of Siegel modular forms:

Θ : F =
∑

a(T ;F )qT 7−→ Θ(F ) :=
∑

det (T ) · a(T ;F )qT
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(e.g., cf., [3])). Moreover, the following fact was proven:

Theorem 2.8 (Böcherer-Nagaoka [3]). Assume that a prime p satisfies
p ≥ n+ 3. Then, for any Siegel modular form F in Mk(Γn)Z(p)

, there

exists a Siegel cusp form G in Sk+p+1(Γn)Z(p)
satisfying

Θ(F ) ≡ G (mod p).

Example 2.9. Under the notation in subsection 2.2, we have

Θ(X6) ≡ 4X12 (mod 5).

3. Main result. On the basis of the previous preparation, we can
now describe our main result.

Theorem 3.1. Let a(T ;X35) denote the Fourier coefficient of X35. If
det (T ) ̸≡ 0 (mod 23), then

a(T ;X35) ≡ 0 (mod 23),

or, equivalently,
Θ(X35) ≡ 0 (mod 23).

Proof. Our proof mainly depends on Proposition 2.6 and numerical
calculation of the Fourier coefficients of X35. If we use the theta
operator, this assertion is equivalent to showing that

Θ(X35) ≡ 0 (mod 23).

From Theorem 2.8, there exists a Siegel cusp form G ∈ S59(Γ2)Z(23)

such that
Θ(X35) ≡ G (mod 23).

Therefore, the proof is reduced to showing that

(3.1) G ≡ 0 (mod 23).

We now apply Proposition 2.6 to the form G. It then suffices to show
that

a((m,n, r);G) ≡ 0 (mod 23) for T = (m,n, r)

with tr (T ) = m+ n ≤ 10.
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Since a((m,n, r);G) = −a((n,m, r);G) for the odd-weight form G, this
statement is equivalent to

a((m,n, r);Θ(X35)) ≡ 0 (mod 23) for T = (m,n, r)

with tr (T ) = m+ n ≤ 9.

We then write down the first part the Fourier expansion ofX35 following
the order introduced in subsection 2.3. For this, we set

qjk := exp (2πizjk) for Z =

(
z11 z12
z12 z22

)
∈ H2.

The terms corresponding to T = (m,n, r) with tr(T ) = m+ n ≤ 9 are
as follows:

X35 = (q
−1
12 − q12)q

2
11q

3
22 + (−q

−1
12 + q12)q

3
11q

2
22

+ (−q
−3
12 − 69q

−1
12 + 69q12 + q

3
12)q

2
11q

4
22 + (q

−3
12 + 69q

−1
12 − 69q12 − q

3
12)q

4
11q

2
22

+ (69q
−3
12 + 2277q

−1
12 − 2277q12 − 69q

3
12)q

2
11q

5
22

+ (q
−5
12 − 32384q

−2
12 − 129421q

−1
12 + 129421q12 + 32384q

2
12 − q

5
12)q

3
11q

4
22

+ (−q
−5
12 + 32384q

−2
12 + 129421q

−1
12 − 129421q12 − 32384q

2
12 + q

5
12)q

4
11q

3
22

+ (−69q
−3
12 − 2277q

−1
12 + 2277q12 + 69q

3
12)q

5
11q

2
22

+ (q
−5
12 − 2277q

−3
12 − 47702q

−1
12 + 47702q12 + 2277q

3
12 − q

5
12)q

2
11q

6
22

+ (32384q
−4
12 − 2184448q

−2
12 − 3203072q

−1
12 + 3203072q12 + 2184448q

2
12

− 32384q
4
12)q

3
11q

5
22

+ (−32384q
−4
12 + 2184448q

−2
12 + 3203072q

−1
12 − 3203072q12 − 2184448q

2
12

+ 32384q
4
12)q

5
11q

3
22

+ (−q
−5
12 + 2277q

−3
12 + 47702q

−1
12 − 47702q12 − 2277q

3
12 + q

5
12)q

6
11q

2
22

+ (−69q
−5
12 + 47702q

−3
12 + 709665q

−1
12 − 709665q12 − 47702q

3
12 + 69q

5
12)q

2
11q

7
22

+ (−q
−7
12 + 129421q

−5
12 + 2184448q

−4
12 + 41321984q

−2
12 + 105235626q

−1
12

− 105235626q12 − 41321984q
2
12 − 2184448q

4
12 − 129421q

5
12 + q

7
12)q

3
11q

6
22

+ (−69q
−7
12 − 32384q

−6
12 + 107121810q

−3
12 − 31380096q

−2
12 + 759797709q

−1
12

− 759797709q12 + 31380096q
2
12 − 107121810q

3
12 + 32384q

6
12 + 69q

7
12)q

4
11q

5
22

+ (69q
−7
12 + 32384q

−6
12 − 107121810q

−3
12 + 31380096q

−2
12 − 759797709q

−1
12

+ 759797709q12 − 31380096q
2
12 + 107121810q

3
12 − 32384q

6
12 − 69q

7
12)q

5
11q

4
22

+ (q
−7
12 − 129421q

−5
12 − 2184448q

−4
12 − 41321984q

−2
12 − 105235626q

−1
12

+ 105235626q12 + 41321984q
2
12 + 2184448q

4
12 + 129421q

5
12 − q

7
12)q

6
11q

3
22

+ (69q
−5
12 − 47702q

−3
12 − 709665q

−1
12 + 709665q12 + 47702q

3
12 − 69q

5
12)q

7
11q

2
22 + · · · .
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The Fourier coefficients different from ±1 are as follows:
a((4, 1, 2);X35) = −69 = −3·23, a((5, 1, 2);X35) = 2277 = 32·11·23, a((4, 1, 3);X35) =

−1294121 = −17 · 23 · 331, a((4, 2, 3);X35) = −32384 = −27 · 11 · 23, a((6, 1, 2);X35) =

−47702 = −2·17·23·61, a((5, 1, 3);X35) = −3203072 = −213 ·17·23, a((5, 2, 3);X35) =

−2184448 = −28·7·23·53, a((7, 1, 2);X35) = 709665 = 3·5·112·17·23, a((6, 1, 3);X35) =

105235626 = 2 · 3 · 23 · 762577, a((6, 2, 3);X35) = 41321984 = 29 · 112 · 23 · 29,

a((5, 1, 4);X35) = 759797709 = 3 · 11 · 23 · 29 · 34519, a((5, 2, 4);X35) = −31380096 =

−27 · 3 · 11 · 17 · 19 · 23, a((5, 3, 4);X35) = 107121810 = 2 · 3 · 5 · 19 · 23 · 8171.

All of these Fourier coefficients are divisible by 23. On the other
hand, if a(T ;X35) = ±1 for T in this range, then det (T ) = 23/4 ≡ 0
(mod 23). This fact implies that

a((m,n, r);Θ(X35)) ≡ 0 (mod 23)

for T = (m,n, r) with tr (T ) = m+ n ≤ 9. Therefore, we obtain

a((m,n, r);G) ≡ 0 (mod 23)

for T = (m,n, r) with tr (T ) = m+n ≤ 9. Consequently, we have (3.1).
This completes the proof of our theorem. �

Remark 3.2.

(1) The numerical examples of the Fourier coefficients a(T ;X35) in the
above are calculated by using Ibukiyama’s determinant expression
of X35 (cf. [1, page 253]).

(2) The converse statement of the theorem is not true in general. In
fact,

a((1, 6, 1);X35) = 0 and det((1, 6, 1)) = 23/4 ≡ 0 (mod 23).

(3) There are other “modulo 23” congruences for the Siegel modular
forms in [2, Satz 5,(a)]. In that case, the congruence is concerned
with the Eisenstein lifting of the Ramanujan delta function.
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