NOTE ON IGUSA'S CUSP FORM OF WEIGHT 35

TOSHIYUKI KIKUTA, HIROTAKA KODAMA AND SHOYU NAGAOKA

Abstract

A congruence relation satisfied by Igusa's cusp form of weight 35 is presented. As a tool to confirm the congruence relation, a Sturm-type theorem for the case of odd-weight Siegel modular forms of degree 2 is included.

1. Introduction. In [5], Igusa gave a set of generators of the graded ring of degree 2 Siegel modular forms. In these generators, there are four even-weight forms $\varphi_{4}, \varphi_{6}, \chi_{10}, \chi_{12}$, and only one odd-weight form, χ_{35}. Here φ_{k} is the normalized Eisenstein series of weight k, and χ_{k} is a cusp form of weight k.

The purpose of this paper is to introduce a strange congruence relation of the odd-weight cusp form X_{35}, which is a suitable normalization of χ_{35} (for the precise definition, see subsection 2.2).

Main result. Denote by $a\left(T ; X_{35}\right)$ the T-th Fourier coefficient of the cusp form X_{35}. If T satisfies $\operatorname{det}(T) \not \equiv 0(\bmod 23)$, then

$$
a\left(T ; X_{35}\right) \equiv 0 \quad(\bmod 23)
$$

or equivalently,

$$
\Theta\left(X_{35}\right) \equiv 0 \quad(\bmod 23)
$$

where Θ is the theta operator on Siegel modular forms (for the precise definition, see subsection 2.4).

This result shows that almost all the Fourier coefficients $a\left(T ; X_{35}\right)$ are divisible by 23 .

[^0]
2. Preliminaries.

2.1. Notation. First we confirm the notation. Let $\Gamma_{n}=S p_{n}(\mathbb{Z})$ be the Siegel modular group of degree n and \mathbb{H}_{n} the Siegel upper-half space of degree n. We denote by $M_{k}\left(\Gamma_{n}\right)$ the \mathbb{C}-vector space of all Siegel modular forms of weight k for Γ_{n}, and $S_{k}\left(\Gamma_{n}\right)$ is the subspace of cusp forms.

Any $F(Z)$ in $M_{k}\left(\Gamma_{n}\right)$ has a Fourier expansion of the form

$$
F(Z)=\sum_{T \in L_{n}} a(T ; F) q^{T}, \quad q^{T}:=e^{2 \pi i \operatorname{tr}(T Z)}, \quad Z \in \mathbb{H}_{n}
$$

where T runs over all elements of L_{n}, and

$$
\begin{aligned}
\Lambda_{n} & :=\left\{T=\left(t_{i j}\right) \in \operatorname{Sym}_{n}(\mathbb{Q}) \mid t_{i i}, 2 t_{i j} \in \mathbb{Z}\right\} \\
L_{n} & :=\left\{T \in \Lambda_{n} \mid T \text { is semi-positive definite }\right\} .
\end{aligned}
$$

In this paper, we deal mainly with the case of $n=2$. For simplicity, we write

$$
T=(m, n, r) \quad \text { for } \quad T=\left(\begin{array}{cc}
m & \frac{r}{2} \\
\frac{r}{2} & n
\end{array}\right) \in \Lambda_{2} .
$$

For a subring R of \mathbb{C}, let $M_{k}\left(\Gamma_{n}\right)_{R} \subset M_{k}\left(\Gamma_{n}\right)$ denote the R-module of all modular forms whose Fourier coefficients lie in R.
2.2. Igusa's generators. Let

$$
M\left(\Gamma_{2}\right)=\bigoplus_{k \in \mathbb{Z}} M_{k}\left(\Gamma_{2}\right)
$$

be the graded ring of Siegel modular forms of degree 2. Igusa [5] gave a set of generators of the ring $M\left(\Gamma_{2}\right)$. The set consists of five generators

$$
\varphi_{4}, \quad \varphi_{6}, \quad \chi_{10}, \quad \chi_{12}, \quad \chi_{35},
$$

where φ_{k} is the normalized Eisenstein series on Γ_{2} and χ_{k} is a cusp form of weight k. Moreover he showed that the even-weight generators $\varphi_{4}, \varphi_{6}, \chi_{10}$ and χ_{12} are algebraically independent. Later, he extended the result to the integral case ([6]). Namely, he gave a minimal set of generators over \mathbb{Z} of the ring

$$
M\left(\Gamma_{2}\right)_{\mathbb{Z}}=\bigoplus_{k \in \mathbb{Z}} M_{k}\left(\Gamma_{2}\right)_{\mathbb{Z}}
$$

The set of generators consists of 15 modular forms including the following forms:

$$
\begin{array}{rlrl}
X_{4} & :=\varphi_{4}, & X_{6} & :=\varphi_{6}, \\
X_{10} & :=-2^{-2} \chi_{10}, & X_{12} & :=2^{2} \cdot 3 \chi_{12}, \\
X_{35} & :=2^{2} i \chi_{35} . &
\end{array}
$$

Of course, these forms have rational integral Fourier coefficients under the following normalization:

$$
\begin{aligned}
a\left((0,0,0) ; X_{4}\right) & =a\left((0,0,0) ; X_{6}\right)=1 \\
a\left((1,1,1) ; X_{10}\right) & =a\left((1,1,1) ; X_{12}\right)=1 \\
a\left((2,3,-1) ; X_{35}\right) & =1
\end{aligned}
$$

2.3. Order and the p-minimum matrix. We define a lexicographical order " \succ " for two different elements $T=(m, n, r)$ and $T^{\prime}=$ ($m^{\prime}, n^{\prime}, r^{\prime}$) of Λ_{2} by

$$
\begin{aligned}
& T \succ T^{\prime} \Longleftrightarrow(1) \quad \operatorname{tr}(T)>\operatorname{tr}\left(T^{\prime}\right) \\
& \quad \text { or } \\
& \quad(2) \quad \operatorname{tr}(T)=\operatorname{tr}\left(T^{\prime}\right), \quad m>m^{\prime} \\
& \quad \text { or }
\end{aligned}
$$

(3) $\operatorname{tr}(T)=\operatorname{tr}\left(T^{\prime}\right), \quad m=m^{\prime}, r>r^{\prime}$.

Let p be a prime and $\mathbb{Z}_{(p)}$ the local ring consisting of p-integral rational numbers. For $F \in M_{k}\left(\Gamma_{2}\right)_{\mathbb{Z}_{(p)}}$, we define the p-minimum matrix $m_{p}(F)$ of F by

$$
m_{p}(F):=\min \left\{T \in L_{2} \mid a(T ; F) \not \equiv 0 \quad(\bmod p)\right\}
$$

where the "min" is defined in the sense of the above order. If $F \equiv 0$ $(\bmod p)$, then we define $m_{p}(F)=(\infty)$.

Remark 2.1. The p-minimum matrices of Igusa's generators are

$$
\begin{aligned}
m_{p}\left(X_{4}\right) & =m_{p}\left(X_{6}\right)=(0,0,0) \\
m_{p}\left(X_{10}\right) & =m_{p}\left(X_{12}\right)=(1,1,-1) \\
m_{p}\left(X_{35}\right) & =(2,3,-1)
\end{aligned}
$$

for any prime number p.

The following properties are essential.

Lemma 2.2. (1) $T_{1} \succ T_{2}, S_{1} \succ S_{2}$ implies $T_{1}+S_{1} \succ T_{2}+S_{2}$.
(2) $T_{1} \succ T_{2}$ implies $T_{1} \pm S \succ T_{2} \pm S$.
(3) $T+S=T^{\prime}+S^{\prime}$, $T \succ T^{\prime}$ implies $S \prec S^{\prime}$.
(4) $m_{p}(F \cdot G)=m_{p}(F)+m_{p}(G)$.

Proof. (1), (2) Trivial.
(3) We use (2) without notice. By the assumption $T+S=T^{\prime}+S^{\prime}$, we have $T-T^{\prime}=S^{\prime}-S$. Then $0_{2} \prec T-T^{\prime}=S^{\prime}-S$ because of $T \succ T^{\prime}$. Hence, $S \prec S^{\prime}$.
(4) Let $m_{p}(F)=T_{0}$ and $m_{p}(G)=T_{0}^{\prime}$. Then, for all $T \prec T_{0}$ (respectively, $\left.T \prec T_{0}^{\prime}\right), a(T ; F) \equiv 0(\bmod p)$ and $a\left(T_{0} ; F\right) \not \equiv 0(\bmod p)$ $\left(\right.$ respectively, $a(T ; G) \equiv 0(\bmod p)$ and $\left.a\left(T_{0}^{\prime} ; G\right) \not \equiv 0(\bmod p)\right)$. Now, recall that the T-th Fourier coefficient $a(T ; F \cdot G)$ of $F \cdot G$ is given by

$$
a(T ; F \cdot G)=\sum_{\substack{S, S^{\prime} \in L_{2} \\ S+S^{\prime}=T}} a(S ; F) a\left(S^{\prime} ; G\right)
$$

If $T \prec T_{0}+T_{0}^{\prime}$, then $T=S+S^{\prime} \prec T_{0}+T_{0}^{\prime}$, and hence $S \prec T_{0}$ or $S^{\prime} \prec T_{0}^{\prime}$ because of (1). In this case, $a(S ; F) \equiv 0(\bmod p)$ or $a\left(S^{\prime} ; G\right) \equiv 0(\bmod p)$. Therefore, $a(S ; F) a\left(S^{\prime} ; G\right) \equiv 0(\bmod p)$ for each S, S^{\prime} with $S+S^{\prime} \prec T_{0}+T_{0}^{\prime}$. This implies $a(T ; F) \equiv 0(\bmod p)$ for all $T \prec T_{0}+T_{0}^{\prime}$.

In order to complete the proof of (4), we need to prove that $a\left(T_{0}+\right.$ $\left.T_{0}^{\prime} ; F \cdot G\right) \not \equiv 0(\bmod p)$. If $S+S^{\prime}=T_{0}+T_{0}^{\prime}$, then we have by (3) that $S \prec T_{0}, S^{\prime} \succ T_{0}^{\prime}$ or $S \succ T_{0}, S^{\prime} \prec T_{0}^{\prime}$ or $S=T_{0}, S^{\prime}=T_{0}^{\prime}$. In the first two cases, since $a(S ; F) \equiv 0(\bmod p)$ or $a\left(S^{\prime} ; G\right) \equiv 0$ $(\bmod p)$, we get $a(S ; F) a\left(S^{\prime} ; G\right) \equiv 0(\bmod p)$. In the third case,
$a\left(T_{0} ; F\right) a\left(T_{0}^{\prime} ; G\right) \not \equiv 0(\bmod p)$. Thus, $a\left(T_{0}+T_{0}^{\prime} ; F \cdot G\right) \not \equiv 0(\bmod p)$, namely, $m_{p}(F \cdot G)=T_{0}+T_{0}^{\prime}$. This completes the proof of (4).

Sturm-type theorem. A Sturm-type theorem for the Siegel modular forms was first given by Poor and Yuen in [7]. Recently Choi, Choie and the first author [4] investigated such a problem in the case of degree 2 and proved some theorems.

We introduce the statement of this theorem for the case of level 1.
Theorem 2.3 (Choi, Choie and Kikuta [4]). Let p be a prime with $p \geq 5$ and k an even positive integer. For $F \in M_{k}\left(\Gamma_{2}\right)_{\mathbb{Z}_{(p)}}$ with Fourier expansion

$$
F=\sum_{T \in L_{2}} a(T ; F) q^{T}
$$

we assume that $a((m, n, r) ; F) \equiv 0(\bmod p)$ for all m, n, r such that $0 \leq m, n \leq k / 10$ and $4 m n-r^{2} \geq 0$. Then $F \equiv 0(\bmod p)$.

We rewrite this theorem for later use:

Theorem 2.4. Let p be a prime with $p \geq 5$. Assume that $F \in$ $M_{k}\left(\Gamma_{2}\right)_{\mathbb{Z}_{(p)}}$ satisfies $m_{p}(F) \succ\left([k / 10],[k / 10], r_{0}\right)$ for the maximum $r_{0} \in \mathbb{Z}$ such that $\left([k / 10],[k / 10], r_{0}\right) \in L_{2}$. Then $m_{p}(F)=(\infty)$, i.e., $F \equiv 0(\bmod p)$.

Proof. The assertion follows immediately from the inclusion

$$
\begin{equation*}
\left\{T \in L_{2} \left\lvert\, T \preceq\left(\left[\frac{k}{10}\right],\left[\frac{k}{10}\right], r_{0}\right)\right.\right\} \supset\left\{(m, n, r) \in L_{2} \mid m, n \leq \frac{k}{10}\right\} . \tag{2.1}
\end{equation*}
$$

Remark 2.5. In general, the converse of inclusion (2.1) is not true. For example, $([k / 10]+1,0,0) \prec\left([k / 10],[k / 10], r_{0}\right)$ (for $\left.k \geq 20\right)$. We need a statement of this type to aid the proof of the next proposition.

In order to prove our main result, we need a Sturm-type theorem for the odd-weight case:

Proposition 2.6. Let p be a prime with $p \geq 5$ and k an odd positive integer. For $F \in M_{k}\left(\Gamma_{2}\right)_{\mathbb{Z}_{(p)}}$, we assume that

$$
m_{p}(F) \succ\left(\left[\frac{k-35}{10}\right]+2,\left[\frac{k-35}{10}\right]+3, r_{0}-1\right)
$$

where $r_{0} \in \mathbb{Z}$ is the maximum number such that

$$
\left(\left[\frac{k-35}{10}\right],\left[\frac{k-35}{10}\right], r_{0}\right) \in L_{2}
$$

Then $m_{p}(F)=(\infty)$, namely, $F \equiv 0(\bmod p)$.
Remark 2.7. When $F \in M_{k}\left(\Gamma_{2}\right)_{\mathbb{Z}_{(p)}}$ is of odd weight, $X_{35} \cdot F \in$ $M_{k+35}\left(\Gamma_{2}\right)_{\mathbb{Z}_{(p)}}$ is of even weight. Using Theorem 2.3 directly, we have the following statement: If $a((m, n, r) ; F) \equiv 0(\bmod p)$ for all m, n and r such that $0 \leq m, n \leq \frac{k+35}{10}$ and $4 m n-r^{2} \geq 0$, then $F \equiv 0(\bmod p)$.

For our purposes, however, the estimation of Proposition 2.6 is better than this estimation.

Proof of Proposition 2.6. First note that

$$
M_{k}\left(\Gamma_{2}\right)_{\mathbb{Z}_{(p)}}=X_{35} M_{k-35}\left(\Gamma_{2}\right)_{\mathbb{Z}_{(p)}}
$$

for odd k. Hence, there exists $G \in M_{k-35}\left(\Gamma_{2}\right)_{\mathbb{Z}_{(p)}}$ such that $F=X_{35} \cdot G$. Using Lemma 2.2 (4), we get $m_{p}(F)=m_{p}\left(X_{35}\right)+m_{p}(G)$. Since $m_{p}\left(X_{35}\right)=(2,3,-1)$, we have

$$
m_{p}(G)=m_{p}(F)-(2,3,-1) \succ\left(\left[\frac{k-35}{10}\right],\left[\frac{k-35}{10}\right], r_{0}\right)
$$

It should be noted that Lemma $2.2(2)$ is used to get the last inequality. Since G is of even weight, we can apply Theorem 2.4 to G. This shows that $F=X_{35} \cdot G \equiv 0(\bmod p)$.
2.4. Theta operator. In [8], Serre used the theta operator θ on elliptic modular forms to develop the theory of p-adic modular forms:

$$
\theta=q \frac{d}{d q}: f=\sum a(t ; f) q^{t} \longmapsto \theta(f):=\sum t \cdot a(t ; f) q^{t}
$$

Later the operator was generalized to the case of Siegel modular forms:

$$
\Theta: F=\sum a(T ; F) q^{T} \longmapsto \Theta(F):=\sum \operatorname{det}(T) \cdot a(T ; F) q^{T}
$$

(e.g., cf., [3])). Moreover, the following fact was proven:

Theorem 2.8 (Böcherer-Nagaoka [3]). Assume that a prime p satisfies $p \geq n+3$. Then, for any Siegel modular form F in $M_{k}\left(\Gamma_{n}\right)_{\mathbb{Z}_{(p)}}$, there exists a Siegel cusp form G in $S_{k+p+1}\left(\Gamma_{n}\right)_{\mathbb{Z}_{(p)}}$ satisfying

$$
\Theta(F) \equiv G \quad(\bmod p)
$$

Example 2.9. Under the notation in subsection 2.2, we have

$$
\Theta\left(X_{6}\right) \equiv 4 X_{12} \quad(\bmod 5)
$$

3. Main result. On the basis of the previous preparation, we can now describe our main result.

Theorem 3.1. Let $a\left(T ; X_{35}\right)$ denote the Fourier coefficient of X_{35}. If $\operatorname{det}(T) \not \equiv 0(\bmod 23)$, then

$$
a\left(T ; X_{35}\right) \equiv 0 \quad(\bmod 23)
$$

or, equivalently,

$$
\Theta\left(X_{35}\right) \equiv 0 \quad(\bmod 23)
$$

Proof. Our proof mainly depends on Proposition 2.6 and numerical calculation of the Fourier coefficients of X_{35}. If we use the theta operator, this assertion is equivalent to showing that

$$
\Theta\left(X_{35}\right) \equiv 0 \quad(\bmod 23)
$$

From Theorem 2.8, there exists a Siegel cusp form $G \in S_{59}\left(\Gamma_{2}\right)_{\mathbb{Z}_{(23)}}$ such that

$$
\Theta\left(X_{35}\right) \equiv G \quad(\bmod 23)
$$

Therefore, the proof is reduced to showing that

$$
\begin{equation*}
G \equiv 0 \quad(\bmod 23) \tag{3.1}
\end{equation*}
$$

We now apply Proposition 2.6 to the form G. It then suffices to show that

$$
\begin{gathered}
a((m, n, r) ; G) \equiv 0 \quad(\bmod 23) \quad \text { for } T=(m, n, r) \\
\text { with } \operatorname{tr}(T)=m+n \leq 10
\end{gathered}
$$

Since $a((m, n, r) ; G)=-a((n, m, r) ; G)$ for the odd-weight form G, this statement is equivalent to

$$
\begin{gathered}
a\left((m, n, r) ; \Theta\left(X_{35}\right)\right) \equiv 0 \quad(\bmod 23) \quad \text { for } T=(m, n, r) \\
\text { with } \operatorname{tr}(T)=m+n \leq 9 .
\end{gathered}
$$

We then write down the first part the Fourier expansion of X_{35} following the order introduced in subsection 2.3. For this, we set

$$
q_{j k}:=\exp \left(2 \pi i z_{j k}\right) \quad \text { for } \quad Z=\left(\begin{array}{ll}
z_{11} & z_{12} \\
z_{12} & z_{22}
\end{array}\right) \in \mathbb{H}_{2}
$$

The terms corresponding to $T=(m, n, r)$ with $\operatorname{tr}(T)=m+n \leq 9$ are as follows:

$$
\begin{aligned}
X_{35} & =\left(q_{12}^{-1}-q_{12}\right) q_{11}^{2} q_{22}^{3}+\left(-q_{12}^{-1}+q_{12}\right) q_{11}^{3} q_{22}^{2} \\
& +\left(-q_{12}^{-3}-69 q_{12}^{-1}+69 q_{12}+q_{12}^{3}\right) q_{11}^{2} q_{22}^{4}+\left(q_{12}^{-3}+69 q_{12}^{-1}-69 q_{12}-q_{12}^{3}\right) q_{11}^{4} q_{22}^{2} \\
& +\left(69 q_{12}^{-3}+2277 q_{12}^{-1}-2277 q_{12}-69 q_{12}^{3}\right) q_{11}^{2} q_{22}^{5} \\
& +\left(q_{12}^{-5}-32384 q_{12}^{-2}-129421 q_{12}^{-1}+129421 q_{12}+32384 q_{12}^{2}-q_{12}^{5}\right) q_{11}^{3} q_{22}^{4} \\
& +\left(-q_{12}^{-5}+32384 q_{12}^{-2}+129421 q_{12}^{-1}-129421 q_{12}-32384 q_{12}^{2}+q_{12}^{5}\right) q_{11}^{4} q_{22}^{3} \\
& +\left(-69 q_{12}^{-3}-2277 q_{12}^{-1}+2277 q_{12}+69 q_{12}^{3}\right) q_{11}^{5} q_{22}^{2} \\
& +\left(q_{12}^{-5}-2277 q_{12}^{-3}-47702 q_{12}^{-1}+47702 q_{12}+2277 q_{12}^{3}-q_{12}^{5}\right) q_{11}^{2} q_{22}^{6} \\
& +\left(32384 q_{12}^{-4}-2184448 q_{12}^{-2}-3203072 q_{12}^{-1}+3203072 q_{12}+2184448 q_{12}^{2}\right. \\
& \left.-32384 q_{12}^{4}\right) q_{11}^{3} q_{22}^{5} \\
+ & \left(-32384 q_{12}^{-4}+2184448 q_{12}^{-2}+3203072 q_{12}^{-1}-3203072 q_{12}-2184448 q_{12}^{2}\right. \\
& \left.+32384 q_{12}^{4}\right) q_{11}^{5} q_{22}^{3} \\
+ & \left(-q_{12}^{-5}+2277 q_{12}^{-3}+47702 q_{12}^{-1}-47702 q_{12}-2277 q_{12}^{3}+q_{12}^{5}\right) q_{11}^{6} q_{22}^{2} \\
+ & \left(-69 q_{12}^{-5}+47702 q_{12}^{-3}+709665 q_{12}^{-1}-709665 q_{12}^{-1}-47702 q_{12}^{3}+69 q_{12}^{5}\right) q_{11}^{2} q_{22}^{7} \\
+ & \left(-q_{12}^{-7}+129421 q_{12}^{-5}+2184448 q_{12}^{-4}+41321984 q_{12}^{-2}+105235626 q_{12}^{-1}\right. \\
& \left.-105235626 q_{12}-41321984 q_{12}^{2}-2184448 q_{12}^{4}-129421 q_{12}^{5}+q_{12}^{7}\right) q_{11}^{3} q_{22}^{6} \\
+ & \left(-69 q_{12}^{-7}-32384 q_{12}^{-6}+107121810 q_{12}^{-3}-31380096 q_{12}^{-2}+759797709 q_{12}^{-1}\right. \\
& \left.-759797709 q_{12}+31380096 q_{12}^{2}-107121810 q_{12}^{3}+32384 q_{12}^{6}+69 q_{12}^{7}\right) q_{11}^{4} q_{22}^{5} \\
+ & \left(69 q_{12}^{-7}+32384 q_{12}^{-6}-107121810 q_{12}^{-3}+31380096 q_{12}^{-2}-759797709 q_{12}^{-1}\right. \\
& \left.+759797709 q_{12}-31380096 q_{12}^{2}+107121810 q_{12}^{3}-32384 q_{12}^{6}-69 q_{12}^{7}\right) q_{11}^{5} q_{22}^{4} \\
+ & \left(q_{12}^{-7}-129421 q_{12}^{-5}-2184448 q_{12}^{-4}-41321984 q_{12}^{-2}-105235626 q_{12}^{-1}\right. \\
& \left.+105235626 q_{12}+41321984 q_{12}^{2}+2184448 q_{12}^{4}+129421 q_{12}^{5}-q_{12}^{7}\right) q_{11}^{6} q_{22}^{3} \\
+ & \left(69 q_{12}^{-5}-47702 q_{12}^{-3}-709665 q_{12}^{-1}+709665 q_{12}+47702 q_{12}^{3}-69 q_{12}^{5}\right) q_{11}^{7} q_{22}^{2}+\cdots .
\end{aligned}
$$

The Fourier coefficients different from ± 1 are as follows:

$$
\begin{aligned}
& a\left((4,1,2) ; X_{35}\right)=-69=-3 \cdot \underline{23}, \quad a\left((5,1,2) ; X_{35}\right)=2277=3^{2} \cdot 11 \cdot \underline{23}, a\left((4,1,3) ; X_{35}\right)= \\
& -1294121=-17 \cdot \underline{23} \cdot 331, \quad a\left((4,2,3) ; X_{35}\right)=-32384=-2^{7} \cdot 11 \cdot \underline{23}, a\left((6,1,2) ; X_{35}\right)= \\
& -47702=-2 \cdot 17 \cdot \underline{23} \cdot 61, \quad a\left((5,1,3) ; X_{35}\right)=-3203072=-2^{13} \cdot 17 \cdot \underline{23}, a\left((5,2,3) ; X_{35}\right)= \\
& -2184448=-2^{8} \cdot 7 \cdot \underline{23} \cdot 53, \quad a\left((7,1,2) ; X_{35}\right)=709665=3 \cdot 5 \cdot 11^{2} \cdot 17 \cdot \underline{33}, a\left((6,1,3) ; X_{35}\right)= \\
& 105235626=2 \cdot 3 \cdot \underline{23} \cdot 762577, \quad a\left((6,2,3) ; X_{35}\right)=41321984=2^{9} \cdot 11^{2} \cdot \underline{23} \cdot 29, \\
& a\left((5,1,4) ; X_{35}\right)=759797709=3 \cdot 11 \cdot \underline{23} \cdot 29 \cdot 34519, a\left((5,2,4) ; X_{35}\right)=-31380096= \\
& -2^{7} \cdot 3 \cdot 11 \cdot 17 \cdot 19 \cdot \underline{23}, a\left((5,3,4) ; X_{35}\right)=107121810=2 \cdot 3 \cdot 5 \cdot 19 \cdot \underline{23} \cdot 8171 .
\end{aligned}
$$

All of these Fourier coefficients are divisible by 23 . On the other hand, if $a\left(T ; X_{35}\right)= \pm 1$ for T in this range, then $\operatorname{det}(T)=23 / 4 \equiv 0$ $(\bmod 23)$. This fact implies that

$$
a\left((m, n, r) ; \Theta\left(X_{35}\right)\right) \equiv 0 \quad(\bmod 23)
$$

for $T=(m, n, r)$ with $\operatorname{tr}(T)=m+n \leq 9$. Therefore, we obtain

$$
a((m, n, r) ; G) \equiv 0 \quad(\bmod 23)
$$

for $T=(m, n, r)$ with $\operatorname{tr}(T)=m+n \leq 9$. Consequently, we have (3.1). This completes the proof of our theorem.

Remark 3.2.

(1) The numerical examples of the Fourier coefficients $a\left(T ; X_{35}\right)$ in the above are calculated by using Ibukiyama's determinant expression of X_{35} (cf. [1, page 253]).
(2) The converse statement of the theorem is not true in general. In fact,

$$
a\left((1,6,1) ; X_{35}\right)=0 \quad \text { and } \quad \operatorname{det}((1,6,1))=23 / 4 \equiv 0 \quad(\bmod 23)
$$

(3) There are other "modulo 23" congruences for the Siegel modular forms in [2, Satz 5,(a)]. In that case, the congruence is concerned with the Eisenstein lifting of the Ramanujan delta function.

REFERENCES

1. H. Aoki and T. Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products, Int. J. Math. 16 (2005), 249-279.
2. S. Böcherer, Über gewisse Siegelsche Modulformen zweiten Grades, Math. Ann. 261 (1982), 23-41.
3. S. Böcherer and S. Nagaoka, On mod p properties of Siegel modular forms, Math. Ann. 338 (2007), 421-433.
4. D. Choi, Y. Choie and T. Kikuta, Sturm type theorem for Siegel modular forms of genus 2 modulo p, Acta Arith. 158 (2013), 129-139.
5. J.-I. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175-200; II, ibid. 86 (1964), 392-412.
6. \qquad , On the ring of modular forms of degree two over \boldsymbol{Z}, Amer. J. Math. 101 (1979), 149-183.
7. C. Poor and D.S. Yuen, Paramodular cusp forms, arXiv:0912.0049v1 [math.NT], 1 Dec 2009.
8. J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, Modular functions of one variable III, Lect. Notes Math. 350 (1972), 191-268.

Faculty of Information Engineering, Department of Information and Systems Engineering, Fukuoka Institute of Technology, 3-30-1 WajiroHigashi, Higashi-Ku, Fukuoka 811-0295, Japan

Email address: kikuta@fit.ac.jp

Academic Support Center, Kogakuin University, 1-2665 Nakano-Cho, HachiojiShi, Tokyo 192-0015, Japan
Email address: kt13511@ns.kogakuin.ac.jp
Department of Mathematics, Kindai University, 3-4-1 Kowakae, HigashiOsaka 577-8502, Japan
Email address: nagaoka@math.kindai.ac.jp

[^0]: 2010 AMS Mathematics subject classification. Primary 11F33, Secondary 11F46.

 Received by the editors on January 21, 2013, and in revised form on May 2, 2013.

