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PSEUDO-HYPERBOLIC DISTANCE AND GLEASON
PARTS OF THE ALGEBRA OF BOUNDED

HYPER-ANALYTIC FUNCTIONS ON THE BIG DISK

DIMCHO K. STANKOV

ABSTRACT. Let G be the compact group of all char-
acters of the additive group of rational numbers, and let
H∞

G be the Banach algebra of so-called bounded hyper-
analytic functions on the big-disk ∆G. We characterize the
pseudo-hyperbolic distance of the algebra H∞

G in terms of
the pseudo-hyperbolic distance of the algebra H∞ and es-
tablish relationships between Gleason parts in M(H∞

G ) and
M(H∞).

1. Introduction. Let Γ be a subgroup of the additive group of real

numbers R with the discrete topology, and let G = Γ̂ be its dual group,
i.e., the (compact) group of all continuous characters on Γ. By the
celebrated Pontryagin theorem [1], each continuous character on G
is of type χp(g), p ∈ Γ, where χp(g) = g(p), g ∈ G. The uniform
closure AG of finite linear combinations of ’non-negative’ characters
χp, p ∈ Γ+ = Γ ∩ [0,∞), with complex coefficients, i.e., of generalized
polynomials, is the big-disk algebra on G [2]. AG is a uniform algebra
on G, and its elements are called generalized-analytic functions in the
sense of Arens and Singer [2]. The maximal ideal space M(AG) of the
big-disk algebra is the closed unit big-disk ∆G over G, i.e., the cone

∆G = [0, 1]×G/{0} ×G.

The points of ∆G are denoted by r · g, r ≤ 1, with the understanding
that all the points of type 0 · g are identified into a single point, {∗},
the origin (or the center) of the closed big-disk ∆G. Each character
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χp, p ∈ Γ+, admits a continuous extension from the group G to the

closed big disk ∆G of G, as follows (e.g., [10]):

χ̃p(r · g) =

 rpχp(g) when 0 < r < 1 and p > 0,
0 when r = 0 and p > 0,
1 when p = 0 for any 0 ≤ r < 1.

Each function χ̃p, p ∈ Γ+ \ {0}, projects the closed big-disk ∆G onto

the closed unit disk ∆ and the open big disk ∆G = [0, 1)×G/{0} ×G
onto the open unit disk ∆ in the complex plane.

Note that, if Γ is the (additive) group of integers Z, then its dual,

Γ̂ = Ẑ, is the unit circle T in the complex plane, the open big-disk
∆G = ∆T is the open unit disk ∆ in the complex plane, and the
corresponding big-disk algebra, AT = A(∆), the classical disk algebra.

The object of this paper is, as introduced in [9] (see also [10]), the
Banach algebra of hyper-analytic functions on the big-disk ∆G over the
dual group G of the (additive) group of rational numbers Q.

Definition 1.1. [9, 10] Let Γ be the group of rational numbers Q and

G = Q̂. A function f on the open unit big-disk ∆G over G is said to
be hyper-analytic on ∆G if f can be approximated uniformly on ∆G by
functions of type h◦ χ̃1/n, where n ∈ Z+ = Z∩ (0,∞) and h is analytic
on the unit disk ∆.

The algebra of all bounded hyper-analytic functions on ∆G is denoted
by H∞

G . Under the sup-norm ∥f∥ = sup{|f(r · g)| : r · g ∈ ∆G}, H∞
G is

a commutative Banach algebra with unit. As is customary, we identify

the functions f ∈ H∞
G with their Gelfand transforms f̂ ∈ C(M(H∞

G )),

defined by f̂(ϕ) = ϕ(f), where ϕ runs in M(H∞
G ).

Recall that, by the classical corona theorem, ∆ can be identified
with a dense subset of the maximal ideal space M(H∞) (e.g., [4]).
Namely, there exists a continuous mapping τ from M(H∞) onto ∆
which is one-to-one and homeomorphic on τ−1(∆). Actually, τ is
the Gelfand transform of the identity mapping id: z 7→ z in ∆, i.e.,
τ(ϕ) = ϕ(id), where ϕ runs in M(H∞). For any α ∈ T, the set Sα =
{ϕ ∈M(H∞) : τ(ϕ) = α} is the fibre ofM(H∞) over α. Different fibres
ofM(H∞) are disjoint and homeomorphic to each other (e.g., [6]). The
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union of all fibres of M(H∞) is the complement of the open unit disk
∆ in M(H∞), i.e., M(H∞) \∆ =M(H∞) \ τ−1(∆) =

∪
α∈T Sα.

In a similar way, there is a continuous map, τG, from the maximal
ideal space, M(H∞

G ), of bounded hyper-analytic functions onto the

closed unit big-disk ∆G with properties similar to the ones of τ . The
map τG is defined as follows. For any ϕ ∈M(H∞

G ), define the function

(1.1) gϕ(p) =

{
ϕ(χ̃p)/|ϕ(χ̃p)| when p ∈ Γ+

gϕ(−p) when p < 0,

which is a continuous character of Γ. Therefore, gϕ can be interpreted

as a point, written again as gϕ, in the dual group G = Γ̂. The mapping

τG : M(H∞
G ) → ∆G is defined by

(1.2) τG(ϕ) = rϕ · gϕ, ϕ ∈ H∞
G ,

where rϕ = |ϕ(χ̃1)|.
In [9] (see also [10]) it is shown that, similarly to H∞, the alge-

bra H∞
G of bounded hyper-analytic functions does not have corona.

Namely,

Theorem 1.2 ([9, 10]).

(i) τG maps M(H∞
G ) onto ∆G.

(ii) The set τ−1
G (∆) is dense in M(H∞

G ).

(iii) τG is one-to-one and homeomorphic on τ−1
G (∆).

If we identify the sets ∆G and τ−1
G (∆), then Theorem 1.2 asserts that

the big-disk ∆G is dense in M(H∞
G ), thus H∞

G does not have corona.

The fibre of M(H∞
G ) over a g ∈ G is the set Sg = τ−1

G (1 · g) = {ϕ ∈
M(H∞

G ) : τG = (1 · g)}. Any fibre Sg of M(H∞
G ) is a compact subset of

M(H∞
G ), different fibres are disjoint and homeomorphic to each other,

and M(H∞
G ) \ τG(∆G) =M(H∞

G ) \∆G =
∪

g∈G Sg [10].

Let A be a uniform algebra with maximal ideal space M(A) and
Shilov boundary ∂A. The function

(1.3) ρA(ϕ, ψ) = sup{|f(ψ)| : f ∈ A, ∥f∥ ≤ 1, f(ϕ) = 0}

on M(A) × M(A) is a metric in M(A), called the pseudo-hyperbolic
distance of A. Note that in (1.3) we can consider only f ∈ A with
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∥f∥ = 1. For any ϕ, ψ ∈ M(A), the inequality ∥ϕ − ψ∥ < 2 holds if
and only if ρA(ϕ, ψ) < 1 and defines an equivalent relation in M(A),
namely, ϕ ∼ ψ if and only if ∥ϕ−ψ∥ < 2 (or if ρA(ϕ, ψ) < 1) (e.g., [3]).
The equivalent classes of this relation are the Gleason parts of A (or, in
M(A)). The Gleason part containing an ϕ ∈M(A) is denoted by P (ϕ),
i.e., P (ϕ) = {ψ ∈ M(A) : ∥ϕ − ψ∥ < 2} = {ψ ∈ M(A) : ρA(ϕ, ψ) < 1}
[3]. If P (ϕ) is a singleton, then it is called a trivial Gleason part.

In the classical situation of H∞ the open unit disk ∆ is a Glea-
son part, the pseudo-hyperbolic distance ρH∞ is lower semi-continuous
on M(H∞) × M(H∞) and its restriction on ∆ × ∆ is invariant un-
der Möbius transformation (e.g., [4, 6]). In addition, ρH∞(z, w) =
sup{ρH∞(f(ϕ), f(ψ)) : f ∈ H∞, ∥f∥ ≤ 1}. Moreover, by the Schwarz-
Pick’s lemma (cf., [4])

(1.4) ρH∞(z, w) =
|z − w|
|1− zw|

for any z and w in ∆. If Γ = Q (or, more generally, if Γ is dense in
R in the usual topology) the only trivial Gleason parts of AG are the
points in G = ∂AG and the origin {∗} of the big-disk ∆G (e.g. [3]).

In this paper, we study the maximal ideal space M(H∞
G ) of the al-

gebra of bounded hyper-analytic functions on the big-disk ∆G, where

G = Q̂. In Section 2, we consider a natural extensions of the “posi-
tive” characters χp, p ∈ Q+, and establish a formula for the pseudo-
hyperbolic distance in M(H∞

G ), based on the pseudo-hyperbolic dis-
tance in M(H∞). In Section 3, we investigate the restriction of the
pseudo-hyperbolic distance ρH∞

G
on the big disk ∆G. In Section 4, we

study the relationships between Gleason parts ofM(H∞
G ) andM(H∞).

2. The pseudo-hyperbolic distance in M (H∞
G ). In [8] (see

also [10]) it is shown that every character χ1/m, m ∈ Z+ extends
continuously to a projection, πm, fromM(H∞

G ) ontoM(H∞). Namely,
given a ϕ ∈M(H∞

G ), πm is defined as

(2.1) (πm(ϕ))(h) = ϕ(h ◦ χ̃1/m),

where h runs in H∞.

Proposition 2.1. Let m ∈ Z+, and let πm : M(H∞
G ) → M(H∞) be

the mapping defined in (2.1). Then
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(i) πm is a continuous extension of the character χ1/m from G to
M(H∞

G );
(ii) πm is surjective, i.e., πm(M(H∞

G )) =M(H∞);
(iii) πm(∂H∞

G ) = ∂H∞;
(iv) The maps {πm}∞m=1 separate the points of M(H∞

G );
(v) If f ∈ H∞

G and hnk
∈ H∞ be such that

lim
k→∞

hnk
◦ χ̃1/nk

= f in H∞
G ,

then
lim
k→∞

ĥnk
◦ πnk

= f̂ in C(M(H∞
G ));

(vi) If χ1/m(g) = α ∈ T, then πm(Sg) = Sα; hence, π−1
m (Sα) =∪

g∈G{Sg : g ∈ χ−1
1/m(α)}.

Proof.

(i) If ϕα → ϕ0 in M(H∞
G ), then, according to (2.1),

(πm(ϕα))(h) = ϕα(h ◦ χ̃1/m) → ϕ0(h ◦ χ̃1/m) = (πm(ϕ0))(h)

for every h ∈ H∞. Hence, πm(ϕα) → πm(ϕ0) in M(H∞) and
therefore πm is continuous. Let r · g ∈ ∆G and h ∈ H∞. For the
point evaluation ϕr·g, we have (πm(ϕr·g))(h) = ϕr·g(h ◦ χ̃1/m) =
h(χ̃1/m(r · g)). Hence, πm(ϕr·g) is the evaluation at the point
χ̃1/m(r · g) ∈ ∆. Consequently, πm|∆G

= χ̃1/m, i.e., πm is a
continuous extension of χ̃1/m toM(H∞

G ), and therefore it extends
also χ1/m from G to M(H∞

G ).
(ii) As shown in the proof of (i), πm(∆G) = χ̃1/m(∆G) = ∆. There-

fore, πm(M(H∞
G )) = M(H∞) since πm is continuous and ∆G, ∆

are dense in the compact sets M(H∞
G ) and M(H∞) correspond-

ingly. Hence, πm is surjective. In addition, πm(M(H∞
G ) \∆G) =

M(H∞) \∆.
(iii) This is shown in [8] (see also [10]).
(iv) Let ϕ1 ̸= ϕ2 be two points in M(H∞

G ) with πm(ϕ1) = πm(ϕ2) for
everym ∈ Z+. Then ϕ1(h◦χ̃1/m) = (πm(ϕ1))(h) = (πm(ϕ2)(h) =
ϕ2(h ◦ χ̃1/m) for every m ∈ Z+ and all h ∈ H∞. Since functions
of type h ◦ χ̃1/m, where m ∈ Z+ and h ∈ H∞, are dense in H∞

G

it follows that ϕ1 = ϕ2.
(v) Assume that hnk

∈ H∞, and let f ∈ H∞
G be such that

limk→∞ hnk
◦ χ̃1/nk

= f in H∞
G . Fix an ε > 0. Since πm|∆G =
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χ̃1/m, we can find a k0 ∈ Z+ such that, for every r · g ∈ ∆G,

|(ĥnk
◦ πnk

)(ϕr·g)− f̂(ϕr·g)|
= |(hnk

◦ χ̃1/nk
)(r · g)− f(r · g)| < ε

for all k > k0. Therefore, |(ĥnk
◦ πnk

)(ϕ) − f̂(ϕ)| ≤ ε for all
ϕ ∈ M(H∞

G ) and each k > k0, since ∆G is dense in M(H∞
G ).

Consequently, limk→∞ ĥnk
◦ πnk

= f̂ in C(M(H∞
G )), as claimed.

(vi) We claim that the following diagram is commutative:

M(H∞
G )

πm−→ M(H∞)
τG ↓ τ ↓
∆G

χ̃1/m−→ ∆

Indeed, let ϕ ∈ M(H∞
G ). By (1.1), (1.2) and Theorem 1.2, we

have:

χ̃1/m(τG(ϕ)) = χ̃1/m(rϕ · gϕ) = r
1/m
ϕ · gϕ(1/m)

= |ϕ(χ̃1)|1/m ·
ϕ(χ̃1/m)

|ϕ(χ̃1/m)|

= |ϕ(χ̃1/m)| ·
ϕ(χ̃1/m)

|ϕ(χ̃1/m)|
= ϕ(χ̃1/m) = ϕ(id ◦ χ̃1/m)

= (πm(ϕ))(id) = τ(πm(ϕ)),

i.e., the diagram is commutative, as claimed. Assume now that
g ∈ G, ϕ ∈ Sg, χ1/m(g) = α ∈ T and τG(ϕ) = 1 · g ∈ ∆G.
The commutativity of the diagram from the above implies that
τ(πm(ϕ)) = χ̃1/m(τG(ϕ)) = χ̃1/m(1 · g) = χ1/m(g) = α; thus,
πm(ϕ) ∈ Sα. Conversely, let ψ belong to Sα0 ⊂M(H∞)\∆, where
α0 ∈ T. Since, as we saw in the proof of (ii), πm(

∪
g∈G Sg) =

πm(M(H∞
G ) \∆G) = M(H∞) \∆ =

∪
β∈T Sβ , there are g0 ∈ G

and ϕ ∈ Sg0 such that πm(ϕ) = ψ and χ1/m(g0) = χ̃1/m(1 · g0) =
χ̃1/m(τG(ϕ)) = τ(πm(ϕ)) = α0. Therefore, πm(Sg) = Sα, and

consequently, π−1
m (Sα) =

∪
g∈G{Sg : χ1/m(g) = α}, as desired.

�
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In general, the mapping πm is not injective, and, for every functional
ϕ ∈M(H∞

G ) \ {∗}, there are m,n ∈ Z+ with πm(ϕ) ̸= πn(ϕ).

Given an m ∈ Z+, the set H∞
1/m = {h ◦ χ̃1/m : h ∈ H∞} is a

subalgebra of H∞
G . It is easy to see that H∞

1/n ⊂ H∞
1/m whenever

m = kn for some k ∈ Z+. The map h 7→ h ◦ χ̃1/m is an isometric
algebra isomorphism between H∞ and H∞

1/m. Its conjugate, ϕ →
ψ : M(H∞

1/m) →M(H∞), defined by ψ(h ◦ χ̃1/m) = ϕ(h), where h runs

in H∞, is a homeomorphism between the corresponding maximal ideal
spaces. Therefore, any property of the algebra H∞ has an identical
property for H∞

1/m. By identifying M(H∞
1/m) with M(H∞), we may

assume that πm maps M(H∞
G ) onto M(H∞

1/m) and that πm(ϕ) is the

restriction of ϕ on the algebra H∞
1/m ⊂ H∞

G .

The equality (1.3) implies that the pseudo-hyperbolic distance in
M(H∞

G ) is given by

(2.2) ρH∞
G
(ϕ1, ϕ2) = sup{|f(ϕ2)| : f ∈ H∞

G , ∥f∥ = 1, f(ϕ1) = 0},

where ϕ1, ϕ2 ∈M(H∞
G ).

In the sequel we will need the following

Lemma 2.2. [7] If f is a hyper-analytic function in the open big-disk
∆G, then there exists a sequence of functions of type {hnk

◦ χ̃1/nk
}∞k=1

that converges uniformly to f on ∆G and such that

(i) hnk
is analytic in ∆ for every k ∈ Z+, and

(ii) For every m > s there is a km,s ∈ Z+ so that nm = nskm,s.

The next theorem describes the pseudo-hyperbolic distance inM(H∞
G )

in terms of the pseudo-hyperbolic distance in M(H∞).

Theorem 2.3. If ϕ1, ϕ2 ∈M(H∞
G ), then

(2.3)
ρH∞

G
(ϕ1, ϕ2) = supm∈Z+

ρH∞(πm(ϕ1), πm(ϕ2)) =

supm∈Z+
sup{|(ĥ ◦ πm)(ϕ2)| : h ∈ H∞, ∥h∥ = 1, (ĥ ◦ πm)(ϕ1) = 0}.

Proof. Let ϕ1, ϕ2 ∈M(H∞
G ), ϕ1 ̸= ϕ2 and denote γ = ρH∞

G
(ϕ1, ϕ2) >

0. Choose a λ with 0 < λ < γ. By (2.2), there is an f ∈ H∞
G such

that ∥f∥ = 1, f(ϕ1) = 0 and γ − λ < |f(ϕ2)| ≤ γ. According to
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Lemma 2.2, there is a sequence of type {hnk
◦ χ̃1/nk

}∞k=1 converging
uniformly on ∆G to f , where hnk

are analytic in ∆ = χ̃1/nk
(∆G)

and such that, if m > s, then nm = nskm,s for some km,s ∈ Z+.

Without loss of generality, we may assume that ĥnk
◦ πnk

(ϕ1) = 0
for every k. Indeed, let h′nk

= hnk
− hnk

(πnk
(ϕ1)). By Proposi-

tion 2.1 (v), for any ε > 0, there is a k0 > 0 such that, for all

k > k0, we have ∥hnk
◦ πnk

− f∥ < ε and |ĥnk
◦ πnk

(φ1)| < ε. There-

fore, ĥ′nk
◦ πnk

(ϕ1) = 0, and ∥h′nk
◦ χ̃1/nk

− f∥ = ∥h′nk
◦ πnk

− f∥ ≤
∥h′nk

◦ πnk
− hnk

◦ πnk
∥ + ∥hnk

◦ πnk
− f∥ < 2ε for all k > k0. Also,

we can assume that ∥hnk
∥ = 1 for each k ∈ Z+. Indeed, if gnk

=
hnk

/∥hnk
∥, then

∥gnk
◦ χ̃1/nk

− f∥ = (1/∥hnk
∥)(∥(hnk

◦ χ̃1/nk
)− f + (1− ∥hnk

∥) f∥)
≤ (1/∥hnk

∥)(∥(hnk
◦ χ̃1/nk

)− f∥+ (1− ∥hnk
∥)∥f∥)

which converges to 0 as k → ∞, since ∥hnk
∥ = ∥hnk

◦χ̃1/nk
∥ → ∥f∥ = 1.

Let λ′ > 0 be such that λ′ < |f̂(ϕ2)| − γ + λ. By Proposition 2.1 (v),

there is a k1 ∈ Z+ such that |(ĥnk
◦πnk

)(ϕ)−f(ϕ)| < λ′ for any k > k1
and every ϕ ∈M(H∞

G ). Then |(ĥnk
◦ πnk

)(ϕ2)| > |f(ϕ2)| − λ′ > γ − λ

for all k > k1. On the other hand, hnk
◦ χ̃1/nk

∈ H∞
G , ∥ĥnk

◦ χ̃1/nk
∥ = 1

and ĥnk
◦πnk

(ϕ1) = 0. Therefore, |(ĥnk
◦πnk

)(ϕ2)| ≤ γ. Consequently,
for any m > k1 we have

γ − λ < sup{|(ĥ ◦ πm)(ϕ2)| : h ∈ H∞,

∥h∥ = 1, (ĥ ◦ πm)(ϕ1)} = 0} ≤ γ.

Since λ can be chosen arbitrarily close to γ it follows that sup{|(ĥ ◦
πm)(ϕ2)| : h ∈ H∞, ∥h∥ = 1, (ĥ ◦ πm)(ϕ1)} = 0} = γ = ρH∞

G
(ϕ1, ϕ2),

as claimed. �

Grigorian and Tonev [5] have generalized the construction of the
algebra H∞

G and have considered inductive limits H∞(I) of algebras
H∞ linked by a sequence I = {Ik}∞1 of general inner functions
and prove a version of the corona theorem with estimates for them.
Whether Theorem 2.3 holds in general for algebras of type H∞(I) is
not known.
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3. The pseudo-hyperbolic distance ρH∞
G

on the big-disk ∆G.
In the case when ϕi = ϕri·gi , i = 1, 2, we will write for short
ρH∞

G
(r1 · g1, r2 · g2) instead of ρH∞

G
(ϕr1·g1 , ϕr2·g2). Since πm(ϕr·g) =

χ̃1/m(r · g), the following corollary follows directly from Theorem 2.3.

Corollary 3.1. If r1 · g1 and r2 · g2 are points in the big-disk ∆G, then

ρH∞
G
(r1 · g1, r2 · g2) = sup

m∈Z+

ρH∞(χ̃1/m(r1 · g1), χ̃1/m(r2 · g2))

= sup
m∈Z+

|χ̃1/m(r1 · g1)− χ̃1/m(r2 · g2)|
|1− χ̃1/m(r1 · g1)χ̃1/m(r2 · g2)|

= sup
m∈Z+

sup{|(h ◦ χ̃1/m)(r2 · g2)| : h ∈ H∞,

∥h∥ = 1, (h ◦ χ̃1/m)(r1 · g1) = 0}.

Corollary 3.2. The pseudo-hyperbolic distance ρH∞
G

on ∆G is lower
semi-continuous on ∆G ×∆G.

Proof. Denote Bδ = {(r1 · g1, r2 · g2) ∈ ∆G × ∆G : ρH∞
G
(r1 · g1, r2 ·

g2) > δ}, and Cδ = {(z1, z2) ∈ ∆ × ∆: ρH∞(z1, z2) > δ}. Let
(r01 ·g01 , r02 ·g02) ∈ Bδ. Corollary 3.1 implies that supm∈Z+

ρH∞(χ̃1/m(r01 ·
g01), χ̃1/m(r02 · g02)) = ρH∞

G
(r01 · g01 , r02 · g02) > δ, and there is an m0 ∈ Z+

such that (χ̃1/m0
(r01 · g01), χ̃1/m0

(r02 · g02)) ∈ Cδ. Since the pseudo-
hyperbolic distance ρH∞ is lower semi-continuous on ∆ × ∆ we can
find neighborhoods U1 and U2 of χ̃1/m0

(r01 · g01) and χ̃1/m0
(r02 · g02)

correspondingly, such that U1 × U2 ⊂ Cδ. Clearly, (r01 · g01 , r02 · g02) ∈
χ̃−1
1/m0

(U1) × χ−1
1/m0

(U2). Since χ̃1/m0
is continuous on ∆G, then

the set χ̃−1
1/m0

(U1) × χ̃−1
1/m0

(U2) is open. Corollary 3.1 implies that

χ̃−1
1/m0

(U1)× χ̃−1
1/m0

(U2) ⊂ Bδ. �

Corollary 3.3. ρH∞(f(r1 · g1), f(r2 · g2)) ≤ ρH∞
G
(r1 · g1, r2 · g2) for

every f ∈ H∞
G with ∥f∥ ≤ 1.

Proof. Suppose, on the contrary, that there is a function f ∈ H∞
G

with ∥f∥ ≤ 1 such that ρH∞(f(r1 · g1), f(r2 · g2)) > ρH∞
G
(r1 · g1, r2 · g2).

Let {hnk
◦ χ̃1/nk

}∞k=1, hnk
∈ H∞, be a sequence as in Lemma 2.2 that

approximates uniformly f on ∆G. The lower semi-continuity of ρH∞
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on ∆×∆ implies

(3.1) ρH∞(hnk
◦χ̃1/nk

(r1 ·g1), hnk
◦χ̃1/nk

(r2 ·g2)) > ρH∞
G
(r1 ·g1, r2 ·g2)

for sufficiently large k. We may assume that ∥hnk
∥ ≤ 1 for every

k ∈ Z+. If zk1 = χ̃1/nk
(r1 · g1), zk2 = χ̃1/nk

(r2 · g2), then from (3.1) it
follows that, for sufficiently large k,

ρH∞((hnk
◦ χ̃nk

)(r1 · g1), (hnk
◦ χ̃nk

)(r2 · g2))

= ρH∞(hnk
(zk1 ), hnk

(zk2 )) ≤ ρH∞(zk1 , z
k
2 )

= ρH∞(χ̃1/nk
(r1 · g1), χ̃1/nk

(r2 · g2)) ≤ ρH∞
G
(r1 · g1, r2 · g2),

by Corollary 3.1 and the corresponding classical results for ρH∞ . This
contradicts (3.1). �

Let g0 be a fixed point of G, and let Rg0 : ∆G → ∆G be the rotation
Rg0(r · g) = r · gg0 in the big-disk ∆G by g0.

Corollary 3.4. The restriction of the pseudo-hyperbolic distance ρH∞
G

on the big-disk ∆G is invariant under any rotation Rg0 , i.e.,

ρH∞
G
(Rg0(r1 · g1), Rg0(r2 · g2)) = ρH∞

G
(r1 · g1, r2 · g2)

for any r1 · g1 and r2 · g2 in ∆G.

Proof. Let r1 ·g1 and r2 ·g2 be points in the big-disk ∆G. According
to (1.4) for every m ∈ Z+ we have:

ρH∞(χ̃1/m(Rg0(r1 · g1)), χ̃1/m(Rg0(r2 · g2)))

=

∣∣∣∣ χ̃1/m(r1 · g1g0)− χ̃1/m(r2 · g2g0)
1− χ̃1/m(r2 · g2g0)χ̃1/m(r1 · g1g0)

∣∣∣∣
=

∣∣∣∣r1/m1 · g1(1/m) g0(1/m)− r
1/m
2 · g2(1/m) g0(1/m)

1− r
1/m
2 g2(1/m) g0(1/m)r

1/m
1 · g1(1/m) g0(1/m)

∣∣∣∣
=

∣∣∣∣r1/m1 · g1(1/m)− r
1/m
2 · g2(1/m)

1− r
1/m
2 g2(1/m)r

1/m
1 · g1(1/m)

∣∣∣∣
=

∣∣∣∣ χ̃1/m(r1 · g1)− χ̃1/m(r2 · g2)
1− χ̃1/m(r2 · g2)χ̃1/m(r1 · g1)

∣∣∣∣
= ρH∞(χ̃1/m(r1 · g1), χ̃1/m(r2 · g2)).
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Corollary 3.1 implies that ρH∞
G
(Rg0(r1 · g1), Rg0(r2 · g2)) = ρH∞

G
(r1 ·

g1, r2 · g2), as claimed. �

4. Gleason parts in M(H∞
G ). The next proposition follows di-

rectly from Theorem 2.3.

Proposition 4.1. If ϕ ∈ M(H∞
G ), then πm(P (ϕ)) ⊂ P (πm(ϕ)) for

every m ∈ Z+.

Indeed, let ψ ∈ P (φ), φ ∈ M(H∞
G ) and m ∈ Z+. Theorem 2.3

implies

ρH∞ (πm (φ) , πm (ψ)) 6 sup
m∈Z+

ρH∞ (πm (φ) , πm (ψ)) = ρH∞
G

(φ,ψ) < 1,

and therefore πm(ψ) ∈ P (πm(φ)).

One can prove Proposition 4.1 also directly. Note that, for everym ∈
Z+, the map πm : M(H∞

G ) →M(H∞) is the restriction on M(H∞
G ) of

the linear map π̃m : (H∞
G )∗ → (H∞)∗, (π̃m(φ))(h) = φ(h ◦ χ̃1/m) for

φ ∈ (H∞
G )∗ and h ∈ H∞. Note that π̃m is a contraction. Indeed,

∥π̃m(ϕ)∥ = suph̸=0
|(π̃m)(ϕ)(h)|

∥h∥ ≤ suph̸=0
∥ϕ∥∥h◦χ̃1/m∥

∥h∥ = ∥ϕ∥. Now, if

φ ∈M(H∞
G ), ψ ∈ P (φ), then

∥πm (ψ)− πm (φ)∥(H∞)∗ = ∥πm (ψ − φ)∥(H∞)∗ 6 ∥ψ − φ∥(H∞
G )

∗ < 2.

Therefore, πm(ψ) ∈ P (πm(φ)) and, consequently, πm(P (φ))⊂P (πm(φ))
for every m ∈ Z+.

As mentioned in the introduction, the big-disk ∆G can be interpreted
as a subset of the maximal ideal spaces of both algebras AG and H∞

G .
Since, as it is easy to see, ρAG

(r1 · g1, r2 · g2) = ρH∞
G
(r1 · g1, r2 · g2),

the Gleason parts of M(AG) and of M(H∞
G ) inside the big-disk ∆G

coincide. In particular, the center {∗} of the big-disk is a singleton
Gleason part for both algebras AG and H∞

G . Other trivial Gleason
parts of both algebras outside {∗} are the points of their corresponding
Shilov boundaries.

Proposition 4.2. If the Gleason part of ϕ ∈ M(H∞
G ) is non-trivial,

then there exists an m0 ∈ Z+ such that the Gleason part of πm0
(ϕ) with

respect to the algebra H∞ is also non-trivial.
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Proof. Let the Gleason part P (ϕ) of a ϕ ∈ M(H∞
G ) be non-trivial,

and let ϕ1 ∈ P (ϕ) \ {ϕ}. By Proposition 2.1 (iv), there is an m0 ∈ Z+

such that πm0(ϕ1) ̸= πm0(ϕ). From Proposition 4.1, it follows that
P (πm0

(ϕ)) is non-trivial. �

Observe that the statement of Proposition 4.2 cannot be reversed.
Indeed, while the Gleason part of πm(∗) = 0 in H∞ and the open unit
disk ∆, is not trivial, the center {∗} of the big-disk ∆G itself is a trivial
part of H∞

G .

Denote by Ψ the set of all trivial Gleason parts of the algebra
H∞. Since ∂H∞ ⊂ Ψ, Proposition 2.1 (iii) implies that ∂H∞

G ⊂∩
m∈Z+

π−1
m (∂H∞

1/m) ⊂
∩

m∈Z+
π−1
m (Ψ). Note that the center, {∗},

of the big-disk ∆G is a trivial Gleason part of H∞
G that is outside∩

m∈Z+
π−1
m (Ψ).

Proposition 4.3. The points of the set
∩

m∈Z+
π−1
m (Ψ) are trivial

Gleason parts of H∞
G .

Proof. Let ϕ0 ∈
∩

m∈Z+
π−1
m (Ψ), and assume that ϕ ∈ M(H∞

G ),

ϕ ̸= ϕ0. According to Proposition 2.1 (iv), there is an m0 ∈ Z+ such
that πm0(ϕ) ̸= πm0(ϕ0). Since πm0(ϕ0) is a trivial Gleason part of
H∞, πm0(ϕ) /∈ P (πm0(ϕ0)). Therefore, ρH∞(πm0(ϕ), πm0(ϕ0)) = 1.
By Theorem 2.3,

ρH∞
G
(ϕ, ϕ0) = sup

m∈Z+

ρH∞(πm(ϕ), πm(ϕ0)) = 1,

and hence ϕ and ϕ0 belong to different Gleason parts of H∞
G . �

Proposition 4.4. For every ϕ ∈ M(H∞
G ) \ ∆G and each m ∈ Z+,

there is a g0 ∈ G such that P (ϕ) ⊂ Sg0 ∩ π−1
m (P (πm(ϕ))).

Proof. First we will show that points of different fibres Sg belong to
different Gleason parts of H∞

G . Let g1 ̸= g2, and let ϕi ∈ Sgi , i = 1, 2,

where Sgi = τ−1
G (1 · gi) are the fibres over gi. We will show that

ρH∞
G
(ϕ1, ϕ2) = 1. Since the family of functions {χ1/m}∞m=1 separates

the points of G, there is an m0 ∈ Z+ such that α1 = χ1/m0
(g1) ̸=

χ1/m0
(g2) = α2. Hence, Sα1 ∩ Sα2 = ∅. Proposition 2.1 (vi) implies

that πm0(ϕi) ∈ Sαi , and hence P (πm0(ϕi)) ⊂ Sαi , i = 1, 2 (cf., [6]).
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By Theorem 2.3, ρH∞
G
(ϕ1, ϕ2) ≥ ρH∞(πm0(ϕ1), πm0(ϕ2)) = 1, and

therefore, ϕ2 /∈ P (ϕ1). If ϕ ∈ M(H∞
G ) \∆G, then, by Proposition 4.1,

πm(P (ϕ)) ⊂ P (πm(ϕ)) for any m ∈ Z+ and, therefore, P (ϕ) ∈
π−1
m (P (πm(ϕ))). �
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