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TOPOLOGICAL FREE ENTROPY DIMENSION FOR
APPROXIMATELY DIVISIBLE C∗-ALGEBRAS

WEIHUA LI AND JUNHAO SHEN

ABSTRACT. Let A be a unital separable approximately
divisible C∗-algebra. We show that A is generated by
two self-adjoint elements and the topological free entropy
dimension of any finite generating set of A is less than or
equal to 1.

1. Introduction. The theory of free entropy and free entropy di-
mension was developed by Voiculescu in the 1990’s. It has been a
very powerful tool in the recent study of finite von Neumann alge-
bras. In [10], Voiculescu introduced the notion of topological free
entropy dimension of elements in a unital C∗-algebra as an analogue
of free entropy dimension in the context of C∗-algebra, and showed
that (1) if x1, . . . , xn is a family of free semicircular elements in a uni-
tal C∗-algebra with a tracial state, then δtop(x1, . . . , xn) = n, where
δtop(x1, . . . , xn) is the topological free entropy dimension of x1, . . . , xn;
(2) if {x1, . . . , xn} is the universal n-tuple of self-adjoint contractions,
then δtop(x1, . . . , xn) = n. Recently, Hadwin and Shen [4] obtained
some interesting results on topological free entropy dimensions of unital
C∗-algebras, which include the irrational rotation C∗-algebras, UHF al-
gebras and minimal tensor products of reduced free group C∗-algebras.
Thus, it will be interesting to consider the topological free entropy di-
mensions for a larger class of unital C∗-algebras. One goal of this paper
is to calculate the topological free entropy dimensions in the unital ap-
proximately divisible C∗-algebras, which were introduced by Blackadar,
Kumjian and Rørdam [2]. In that paper, they showed that the class
of approximately divisible C∗-algebras contains all simple unital AF-
algebras and most of the simple unital AH-algebras with real rank 0,
as well as every nonrational noncommutative torus.
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Note that Voiculescu’s topological free entropy dimension is defined
only for the finitely generated C∗-algebras. Therefore, it is natural
to consider the generator problem for approximately divisible unital
C∗-algebras before we carry out the calculation of the topological free
entropy. In fact, the generator problem for C∗-algebras and the one for
von Neumann algebras have been studied by many people and many
results have been obtained. For example, Olsen and Zame [7] showed
that if A is a unital separable C∗-algebra and B is a UHF algebra, then
A⊗B is generated by two self-adjoint elements in A⊗B. It is clear that
such A⊗ B is approximately divisible. In this paper, we develop some
new techniques and obtain the following result (see Theorem 3.1):

Theorem. If A is a unital separable approximately divisible C∗-
algebra, then A is generated by two self-adjoint elements in A, i.e., A
is singly generated.

Then we compute the topological free entropy dimension of any finite
family of self-adjoint generators of a unital separable approximately
divisible C∗-algebra. More specifically, we obtain the following result
(see Theorem 4.1):

Theorem. Let A be a unital separable approximately divisible C∗-
algebra. Then

δtop(x1, . . . , xn) ≤ 1,

where x1, . . . , xn is any family of self-adjoint generators of A.

The organization of the paper is as follows. In Section 2, we recall
the definition of approximately divisible C∗-algebra. The generator
problem for an approximately divisible C∗-algebra is considered in
Section 3. The computation of topological free entropy dimension in
an approximately divisible C∗-algebra is carried out in Section 4.

2. Notation and preliminaries. In this section, we will introduce
some notation that will be needed later and recall the definition of an
approximately divisible C∗-algebra introduced by Blackadar, Kumjian
and Rørdam [2].

Let Mk(C) be the k × k full matrix algebra with entries in C, and
Msa

k (C) the subspace of Mk(C) consisting of all self-adjoint matrices
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of Mk(C). Let Uk be the group of all unitary matrices in Mk(C). Let
Mk(C)n denote the direct sum of n copies of Mk(C). Let (Msa

k (C))n
be the direct sum of n copies of Msa

k (C).
The following lemma is a well-known fact.

Lemma 2.1. Suppose B is a finite-dimensional C∗-algebra. Then there
exist positive integers r and k1, . . . , kr such that

B ∼= Mk1(C)⊕ · · · ⊕Mkr (C).

Definition 2.2. Suppose

B ∼= Mk1
(C)⊕ · · · ⊕Mkr

(C)

is a finite-dimensional C∗-algebra for some positive integers r, k1, . . . , kr.
Define the rank of B to be

rank (B) = k1 + · · ·+ kr,

the subrank of B to be

subrank (B) = min{k1, . . . , kr}.

The following definition is Definition 1.2 in [2].

Definition 2.3. A separable unital C∗-algebra A with the unit IA is
approximately divisible if, for every x1, . . . , xn ∈ A and ε > 0, there is
a finite-dimensional C∗-subalgebra B of A such that

(1) IA ∈ B;
(2) subrank (B) ≥ 2;
(3) ∥xiy − yxi∥ < ε for i = 1, . . . , n and all y ∈ B with ∥y∥ ≤ 1.

The following proposition is taken from Theorem 1.3 and Corol-
lary 2.10 in [2].

Proposition 2.4. ([2]). Let A be a unital separable approximately
divisible C∗-algebra with the unit IA. Then there exists an increasing
sequence {Am}∞m=1 of subalgebras of A such that

(1) A = ∪mAm
∥·∥

,
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(2) for any positive integer m, A′
m ∩ Am+1 contains a finite-

dimensional C∗-subalgebra B with IA ∈ B and subrank (B) ≥ 2,
(3) for any positive integers m and k, there is a finite-dimensional

C∗-subalgebra B of A′
m ∩ A with IA ∈ B and subrank (B) ≥ k.

3. Generator problem for approximately divisible C∗alge-
bras. In this section we prove that every unital separable approxi-
mately divisible C∗-algebra is singly generated, i.e., generated by two
self-adjoint elements.

Theorem 3.1. If A is a unital, separable approximately divisible C∗-
algebra, then A is singly generated.

Proof. Since A is separable, there exists a sequence of self-adjoint
elements {xi}∞i=1 ⊂ A that generate A as a C∗-algebra.

Claim 3.2. There exists a sequence of finite-dimensional subalgebras
{Bn}∞n=1 of A so that the following hold :

(1) for all n ∈ N, IA ∈ Bn, where IA is the unit of A;
(2) subrank (B1) ≥ 4, and for any n ≥ 2,

subrank (Bn) ≥ n · (rank (B1))
2 · · · (rank (Bn−1))

2 + 3;

(3) if n ̸= m, then Bn commutes with Bm;
(4) for any n ∈ N,

dist (xp,A′
n ∩ A) < 2−n, for all 1 ≤ p ≤ n,

where dist (xp,B′
n ∩ A) = inf{∥xp − y∥ : y ∈ B′

n ∩ A}.

Proof of the claim. It follows from Proposition 2.4 that there exists
an increasing sequence {Am}∞m=1 of subalgebras of A such that

(a) A = ∪mAm
∥·∥

,
(b) for any positive integer m, A′

m ∩ Am+1 contains a finite-
dimensional C∗-subalgebra B with IA ∈ B and subrank (B) ≥ 2,

(c) for any positive integers m and k, there is a finite-dimensional
C∗-subalgebra B of A′

m ∩A with IA ∈ B and subrank (B) ≥ k.
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Instead of proving Claim 3.1 directly, we will prove a stronger result
by replacing statement (3) in Claim 3.1 with the following one:

(3′) there exist two increasing sequences {sn}∞n=1 and {tn}∞n=1 of
positive integers such that, for any n ∈ N, sn ≤ tn ≤ sn+1 and
Bn ⊆ A′

sn ∩ Atn .

We prove this stronger claim by induction on n.

Base step. Note that A = ∪mAm
∥·∥

. For x1 ∈ A, there are a

positive integer s1 and a self-adjoint element y
(1)
1 ∈ As1 such that

∥x1 − y
(1)
1 ∥ < 1/2. By restriction (b) on the subalgebras {Am}∞m=1, we

know that there exist two finite-dimensional subalgebras Cs1+1, Cs1+2

of A such that, IA ∈ Cs1+1 and IA ∈ Cs1+2; Cs1+1 ⊆ A′
s1 ∩ As1+1 and

Cs1+2 ⊆ A′
s1+1 ∩ As1+2; subrank (Cs1+1) and subrank (As1+2) are at

least 2.

Let t1 = s1 + 2, B1 = C∗(Cs1+1, Ct1) (the ∗-subalgebra generated by
Cs1+1 and Ct1 in A). Then subrank (B1) ≥ 4 because Cs1+1 and Ct1
commute, and B1 ⊆ A′

s1 ∩ At1 .

Inductive step. Now suppose the stronger claim is true when n ≤
k − 1, i.e., there exists a family of finite-dimensional C∗-algebras
{Bn}k−1

n=1 ofA, and two increasing sequences of positive integers {sn}k−1
n=1

and {tn}k−1
n=1 that satisfy (1), (2), (3′) and (4).

For x1, . . . , xk in A, from restriction (a) on {Am}∞m=1 ⊆ A, we
know that there are a positive integers sk with sk ≥ tk−1 and self-

adjoint elements y
(k)
1 , . . . , y

(k)
k in Ask such that ∥xi − y

(k)
i ∥ < 2−k for

1 ≤ i ≤ k. From restriction (b) on {Am}∞m=1 ⊆ A, there exists a family
{Csk+1, Csk+2, . . .} of finite-dimensional subalgebras in A such that:

(i) IA ∈ Csk+i, for all i ≥ 1;
(ii) Csk+i ⊆ A′

sk+i−1 ∩ Ask+i, for all i ≥ 1;
(iii) subrank (Csk+i) ≥ 2, for all i ≥ 1.

By (ii), we know that {Csk+1, Csk+2, . . .} is a commuting sequence of
subalgebras of A. Combining with (iii), we get that there is a positive
integer tk such that

subrank (C∗(Csk+1, . . . , Ctk)) ≥ k · (rank (B1))
2 · · · (rank (Bk−1))

2 + 3,

where C∗(Csk+1, . . . , Ctk) is the C∗-subalgebra generated by Csk+1, . . . ,
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Ctk in A. Moreover, C∗(Csk+1, . . . , Ctk) contains IA, and it is a finite-
dimensional C∗-subalgebra in A′

sk
∩ Atk . Let

Bk = C∗(Csk+1, . . . , Ctk),

and it is not hard to check that B1, . . . ,Bk satisfy conditions (1), (2),
(3′) and (4) in the stronger claim. This completes the proof of the
claim.

Let {Bn}∞n=1 be as in Claim 3.1. For any positive integer n, since Bn

is a finite-dimensional C∗-algebra, there exist positive integers rn and

k
(n)
1 , . . . , k

(n)
rn such that

Bn
∼= M

k
(n)
1

(C)⊕ · · · ⊕M
k
(n)
rn

(C).

Let {e(n,s)ij : 1 ≤ i, j ≤ k
(n)
s } be the canonical system of matrix units for

M
k
(n)
s

. We can further assume that {e(n,s)ij : 1 ≤ i, j ≤ k
(n)
s , 1 ≤ s ≤ rn}

consists of a system of matrix units of Bn. Note that Bn contains the
unit IA of A, so

rn∑
s=1

k(n)
s∑
i=1

e
(n,s)
ii = IA.

Define

(1) pn =

rn∑
s=1

e
(n,s)

k
(n)
s ,k

(n)
s

for n ≥ 1.

Then pn is a projection in Bn. Since subrank (Bn) ≥ 2, it is clear that

(2) pne
(n,s)
11 = 0 for 1 ≤ s ≤ rn.

Claim 3.3. Let {xn}∞n=1, {Bn}∞n=1, {rn}∞n=1 and {pn}∞n=1 be defined
as above. For any positive integer n, there exists zn = z∗n ∈ A with
∥zn∥ = 2−(r1+···+rn+1) so that

(1) (IA − pn)pn−1 · · · p1 · zn · p1 · · · pn−1(IA − pn) = zn,
(2) dist (xj , C

∗(B1, . . . ,Bn, zn)) < 2−n for 1 ≤ j ≤ n, where
C∗(B1, . . . ,Bn, zn) is the C

∗-subalgebra generated by B1, . . . ,Bn,
zn in A.
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Proof of the claim. By Claim 3.2, for any positive integer n,

dist (xj ,B′
n ∩ A) < 2−n for 1 ≤ j ≤ n.

Thus there exist self-adjoint elements y
(n)
1 , . . . , y

(n)
n in A that commute

with Bn and

∥xj − y
(n)
j ∥ < 2−n for 1 ≤ j ≤ n.

Step 1. Let

(3) z1 =
1

21+r1
·

∑r1
s=1 e

(1,s)
22 y

(1)
1

∥
∑r1

s=1 e
(1,s)
22 y

(1)
1 ∥

.

With subrank (B1) ≥ 4, we have

(IA − p1) · z1 · (IA − p1) = z1.

To prove dist (x1, C
∗(B1, , z1)) < 2−1, it is sufficient to show that

y
(1)
1 ∈ C∗(B1, , z1). By equation (3.3) and the fact that y

(1)
1 commutes

with B1, we know

y
(1)
1 =

(
21+r1 · ∥

r1∑
s=1

e
(1,s)
22 y

(1)
1 ∥

)
·
( r1∑

s=1

k(1)
s∑

i=1

e
(1,s)
i,2 · z1 · e(1,s)2,i

)
.

This implies that y
(1)
1 is in the C∗-algebra generated by B1 and z1,

whence
dist (x1, C

∗(B1, z1)) ≤ dist (x1, y
(1)
1 ) < 2−1.

Step 2. Now let us construct zn for any positive integer n ≥ 2. Let

∆n−1 = {(i1, s1)× (j1, t1)× (i2, s2)× (j2, t2)× · · ·
× (in−1, sn−1)× (jn−1, tn−1) :

1 ≤ i1 ≤ k(1)s1 , 1 ≤ j1 ≤ k
(1)
t1 , 1 ≤ s1, t1 ≤ r1,

· · · , 1 ≤ in−1 ≤ k(n−1)
sn−1

, 1 ≤ jn−1 ≤ k
(n−1)
tn−1

,

1 ≤ sn−1, tn−1 ≤ rn−1}.

It is not hard to check that the cardinality of the set ∆n−1 satisfies

card (∆n−1) =
n−1∏
i=1

(rank (Bi))
2.
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Hence, for any 1 ≤ j ≤ n, there is a one-to-one mapping f
(n)
j from the

index set ∆n−1 onto the set

{i ∈ N |(j − 1) · card (∆n−1) + 2 ≤ i ≤ j · card (∆n−1) + 1}.

For any index

α = (i1, s1)× (j1, t1)× · · · × (in−1, sn−1)× (jn−1, tn−1) ∈ ∆n−1

and any 1 ≤ j ≤ n, we define

(4) α(y
(n)
j ) = e

(n−1,sn−1)

k
(n−1)
sn−1

,in−1

· · · e(1,s1)
k
(1)
s1

,i1
· y(n)j · e(1,t1)

j1,k
(1)
t1

· · · e(n−1,tn−1)

jn−1,k
(n−1)
tn−1

∈ A.

By Claim 3.1, we know that subrank (Bn) ≥ n · card (∆n−1) + 3. It
follows that

(5) zn = cn ·
rn∑
s=1

n∑
j=1

∑
α∈∆n−1

(
e
(n,s)

f
(n)
j (α),f

(n)
j (α)+1

· α(y(n)j )

+

(
e
(n,s)

f
(n)
j (α),f

(n)
j (α)+1

· α(y(n)j )

)∗)
is well defined and belongs to A, where cn is a constant such that

(6) ∥zn∥ = 2−(r1+···+rn+1).

From the construction of zn, it follows as f is injective that zn = z∗n
and

zn = (IA − pn) · pn−1 · · · p1 · zn · p1 · · · pn−1 · (IA − pn).

To prove dist (xj , C
∗(B1, . . . ,Bn, zn)) < 2−n for 1 ≤ j ≤ n, it is

sufficient to prove that {y(n)1 , . . . , y
(n)
n } ⊆ C∗(B1, . . . ,Bn, zn). Because

Bn commutes with y
(n)
1 , . . . , y

(n)
n and B1,B2, . . . ,Bn−1, and f

(n)
j is one-

to-one, it follows from equation (3.5) that, for any α ∈ ∆n−1 and
1 ≤ j ≤ n,

α(y
(n)
j ) =

rn∑
s=1

k(n)
s∑
i=1

e
(n,s)

i,f
(n)
j (α)

·
(

1

cn
zn

)
· e(n,s)

f
(n)
j (α)+1,i

.

This implies that α(y
(n)
j ) ∈ C∗(B1, . . . ,Bn, zn).
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Suppose α = (i1, s1) × (j1, t1) × · · · × (in−1, sn−1) × (jn−1, tn−1) ∈
∆n−1. Since B1, . . . ,Bn−1 are commuting, it follows from equation (3.4)
that, for any 1 ≤ j ≤ n,

e
(n−1,sn−1)
in−1,in−1

· · · e(1,s1)i1,i1
· y(n)j · e(1,t1)j1,j1

· · · e(n−1,tn−1)
jn−1,jn−1

= e
(n−1,sn−1)

in−1,k
(n−1)
sn−1

· · · e(1,s1)
i1,k

(1)
s1

· α(y(n)j ) · e(1,t1)
k
(1)
t1

,j1
· · · e(n−1,tn−1)

k
(n−1)
tn−1

,jn−1

and

y
(n)
j =

r1∑
s1,t1=1

k(1)
s1∑

i1=1

k
(1)
t1∑

j1=1

· · ·
rn−1∑

sn−1,tn−1=1

k(n−1)
sn−1∑

in−1=1

k
(n−1)
tn−1∑

jn−1=1

e
(n−1,sn−1)
in−1,in−1

· · · e(1,s1)i1,i1
· y(n)j · e(1,t1)j1,j1

· · · e(n−1,tn−1)
jn−1,jn−1

.

Thus, y
(n)
j ∈ C∗(B1, . . . ,Bn, zn) for any 1 ≤ j ≤ n. This completes the

proof of the claim.

Let {xn}∞n=1, {Bn}∞n=1, {rn}∞n=1, {pn}∞n=1 and {zn}∞n=1 be as above.
From equation (3.2), part (1) of Claim 3.2 and the construction of zn,
we can get some basic facts about zn. Let us list them below:

(7) pnzn = znpn = 0.

(8) zn · e(m,s)
11 = e

(m,s)
11 · zn = 0 for m ≤ n and 1 ≤ s ≤ rm.

(9) zn · zm = 0 for any n ̸= m.

Let p0 = IA and r0 = 0. For any n ≥ 1, let

(10) an = p1 · · · pn−1

rn∑
s=1

2−r1−···−rn−1−s · e(n,s)11 + zn,

(11) bn = 2−2np1 · · · pn−1

rn∑
s=1

k(n)
s −1∑
i=1

(e
(n,s)
i,i+1 + e

(n,s)
i+1,i).

From equations (3.7), (3.8) and (3.9), we have

(12) an · am = 0 for n ̸= m.
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Combining equations (3.6), (3.8) and the fact that e
(n,s)
11 · e(n,s1)11 =

e
(n,s1)
11 · e(n,s)11 = 0 (s ̸= s1), it is clear that

∥an∥ = max{{∥p1 · · · pn−1 · 2−r1−···−rn−1−s · e(n,s)11 ∥}rns=1, ∥zn∥}(13)

= 2−r1−···−rn−1 ≤ 2−n.

It follows from equation (3.11) that

(14) ∥bn∥ ≤ 2 · 2−2n · ∥
rn∑
s=1

k(n)
s −1∑
i=1

en,si,i+1∥ ≤ 2−2n+1 ≤ 2−n.

It induces that both
∑∞

n=1 an and
∑∞

n=1 bn are all convergent series in
A. Let

(15) a =

∞∑
n=1

an, b =

∞∑
n=1

bn.

It is clear that a = a∗ ∈ A and b = b∗ ∈ A.

Claim 3.4. Let {Bn}∞n=1, {zn}∞n=1 and a, b be defined as above. Then

{B1, z1,B2, z2, . . .} ⊆ C∗(a, b),

where C∗(a, b) is the C∗-subalgebra generated by a and b in A.

Proof of the claim. It is sufficient to prove that, for any n ≥ 1,

{B1, . . . ,Bn, z1, . . . , zn} ⊆ C∗(a, b).

We will prove it by using an induction on n.

Step 1. We shall prove {B1, z1} ⊆ C∗(a, b). It follows from equations
(3.10), (3.12), (3.15) and part (1) of Claim 3.2 that for all k ∈ N,

(2a)k = (2a1)
k +

∞∑
n=2

(2an)
k

= e
(1,1)
11 +

r1∑
s1=2

(2−s1+1)ke
(1,s1)
11 + (2z1)

k +
∞∑

n=2

(2an)
k.
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Therefore,

∥(2a)k − e
(1,1)
11 ∥ =

∥∥∥∥ r1∑
s1=2

(2−s1+1)ke
(1,s1)
11 + (2z1)

k +
∞∑

n=2

(2an)
k

∥∥∥∥.
Combining equations (3.6), (3.12) and inequality (3.13), we have∥∥∥∥ r1∑

s1=2

(2−s1+1)ke
(1,s1)
11 + (2z1)

k +
∞∑

n=2

(2an)
k

∥∥∥∥ −→ 0, as k → ∞.

Hence, ∥(2a)k − e
(1,1)
11 ∥ → 0 as k goes to ∞, which implies e

(1,1)
11 ∈

C∗(a, b).

By the construction of the element b, it is not hard to check that

{e(1,1)ij : 1 ≤ i, j ≤ k
(1)
1 } are contained in the C∗-subalgebra generated

by e
(1,1)
11 and b in A. Therefore, {e(1,1)ij : 1 ≤ i, j ≤ k

(1)
1 } ⊆ C∗(a, b).

It follows from the construction of a that

(IA − e
(1,1)
11 ) · a · (IA − e

(1,1)
11 ) =

r1∑
s=2

2−se
(1,s)
11 + z1 +

∞∑
n=2

an.

By equations (3.7), (3.8), (3.9) and (3.12), we have(
4(IA − e

(1,1)
11 ) · a · (IA − e

(1,1)
11 )

)k

= e
(1,2)
11 +

r1∑
s=3

2k(−s+2)e
(1,s)
11 + (4z1)

k +
∞∑

n=2

(4an)
k.

By equation (3.6) and inequality (3.13), we have∥∥∥∥(4(IA − e
(1,1)
11 ) · a · (IA − e

(1,1)
11 )

)k

− e
(1,2)
11

∥∥∥∥
=

∥∥∥∥ r1∑
s=3

2k(−s+2)e
(1,s)
11 + (4z1)

k +

∞∑
n=2

(4an)
k

∥∥∥∥ −→ 0, as k → ∞.

This implies e
(1,2)
11 is in C∗(a, b), whence {e(1,2)ij : 1 ≤ i, j ≤ k

(1)
2 }

are in C∗(a, b). Repeating the preceding process, we get that {e(1,s)ij :

1 ≤ i, j ≤ k
(1)
s , 1 ≤ s ≤ r1} is contained in C∗(a, b); therefore, B1 is

contained in C∗(a, b). Whence p1 is contained in C∗(a, b). By part (1)
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of Claim 3.2, we know that

(IA − p1)z1 = z1;

and, from equation (3.10) and part (1) of Claim 3.2, it is clear that

(IA − p1)
∞∑

n=2

an = 0.

Whence, by the construction of a,

(IA − p1) · a =

r1∑
s=1

2−se
(1,s)
11 + z1.

This indicates that z1 is contained in C∗(a, b) since p1 and e
(1,s)
ij are

in C∗(a, b). Now we conclude that both B1 and z1 are contained in
C∗(a, b).

Step 2. Assume that {B1, . . . ,Bn−1, z1, . . . , zn−1} ⊆ C∗(a, b). We
need to prove that {Bn, zn} ⊆ C∗(a, b). By equation (3.2) and the
construction of the elements a, b (see equations (3.10), (3.11) and
(3.15)), we know that

(p1 · · · pn−1) a =

∞∑
i=n

ai = p1 · · · pn−1

rn∑
s=1

2−r1−···−rn−1−s · e(n,s)11

+ zn +
∞∑

i=n+1

ai,

and

(p1 · · · pn−1) b (p1 · · · pn−1) =
∞∑
i=n

bi

=

(
2−2np1 · · · pn−1

rn∑
s=1

k(n)
s −1∑
i=1

(e
(n,s)
i,i+1 + e

(n,s)
i+1,i)

)

+

∞∑
i=n+1

bi.
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From equations (3.10) and (3.12) and part (1) of Claim 3.2,∥∥∥∥ (2r1+···+rn−1+1
)( ∞∑

i=n

ai

)k

−(p1 · · · pn−1) e
(n,1)
11

∥∥∥∥ −→ 0, as k → ∞.

Using a similar argument as in the case n = 1, we can show that

{p1 · · · pn−1e
(n,s)
ij : 1 ≤ i, j ≤ k

(n)
s , 1 ≤ s ≤ rn} are contained in the

C∗-subalgebra generated by
∑∞

i=n ai and
∑∞

i=n bi in A. From the fact
that B1, . . . ,Bn are mutually commuting subalgebras, it follows that

e
(n,s)
ij =

r1∑
s1=1

k1
s1∑

i1=1

· · ·
rn−1∑

sn−1=1

k(n−1)
sn−1∑

in−1=1

e
(n−1,sn−1)

in−1,k
(n−1)
sn−1

· · · e(1,s1)
i1,k

(1)
s1

· (p1 · · · pn−1e
(n,s)
ij ) · e(1,s1)

k
(1)
s1

,i1
· · · e(n−1,sn−1)

k
(n−1)
sn−1

,in−1

is in C∗(a, b), which implies that {e(n,s)ij : 1 ≤ i, j ≤ k
(n)
s , 1 ≤ s ≤ rn};

therefore, Bn, pn and zn, are contained in C∗(a, b). This completes the
proof of the claim.

By Claims 3.3 and 3.4, A is generated by two self-adjoint elements
a and b. Therefore, A is singly generated. �

It is mentioned in [2] that ifA and B are unital separable C∗-algebras
and B is approximately divisible, then so is A⊗B. Combined with the
theorem above, we have the following corollary.

Corollary 3.5. If A is a unital separable C∗-algebra and B is a unital
separable approximately divisible C∗-algebra, and α is a C∗-cross norm,
then A⊗α B is singly generated.

Note that a UHF algebra is approximately divisible and nuclear (only
one tensor product). Therefore, Theorem 9 in [7] is a corollary of our
theorem.

Corollary 3.6. If A is a unital separable C∗-algebra and B is a UHF
algebra, then A⊗ B is singly generated.
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4. Topological free entropy dimension. In this section we show
that the topological free entropy dimension of any finite generating set
of a unital separable approximately divisible C∗-algebra is less than or
equal to 1.

4.1. Preliminaries. We are going to recall Voiculescu’s definition of
topological free entropy dimension of an n-tuple of self-adjoint elements
in a unital C∗-algebra.

For any element (A1, . . . , An) in Mk(C)n, define the operator norm
on Mk(C)n by

∥(A1, . . . , An)∥ = max{∥A1∥, . . . , ∥An∥}.

For every ω > 0, we define the ω-∥ · ∥-ball Ball (B1, . . . , Bn;ω,
∥ · ∥) centered at (B1, . . . , Bn) in Bk(C)n to be the subset of Mk(C)n
consisting of all (A1, . . . , An) in Mk(C)n such that

∥(A1, . . . , An)− (B1, . . . , Bn)∥ < ω.

Suppose F is a subset of Mk(C)n. We define the covering number
ν∞(F , ω) to be the minimal number of ω-∥ · ∥-balls whose union covers
F in Mk(C)n.

Define C⟨X1, . . . , Xn⟩ to be the unital noncommutative polynomials
in the indeterminates X1, . . . , Xn. Let {pm}∞m=1 be the collection of all
noncommutative polynomials in C⟨X1, . . . , Xn⟩ with rational complex
coefficients. (Here “rational complex coefficients” means that the real
and imaginary parts of all coefficients of pm are rational numbers).

Suppose A is a unital C∗-algebra, x1, . . . , xn, y1, . . . , yt are self-
adjoint elements of A. For any ω, ε > 0, positive integers k and m,
define

Γtop(x1, . . . , xn; k, ε,m) = {(A1, . . . , An) ∈ (Msa
k (C))n :

|∥pj(A1, . . . , An)∥ − ∥pj(x1, . . . , xn)∥| < ε, ∀ 1 ≤ j ≤ m},

and define
ν∞(Γtop(x1, . . . , xn; k, ε,m), ω)

to be the covering number of the set Γtop(x1, . . . , xn; k, ε,m) by ω-∥ · ∥-
balls in the metric space (Msa

k (C))n equipped with operator norm.
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Define

δtop(x1, . . . , xn;ω) = inf
ε>0
m∈N

lim sup
k→∞

log(ν∞(Γtop(x1, . . . , xn; k, ε,m), ω))

−k2 logω
,

and
δtop(x1, . . . , xn) = lim sup

ω→0+
δtop(x1, . . . , xn;ω).

Define Γtop(x1, . . . , xn : y1,. . . , yt; k, ε,m) to be the set of (A1, . . . ,
An) ∈ (Msa

k (C))n such that there is (B1, . . . , Bt) ∈ (Msa
k (C))t satisfy-

ing

(A1, . . . , An, B1, . . . , Bt) ∈ Γtop(x1, . . . , xn, y1, . . . , yt; k, ε,m).

Then, similarly, we can define

δtop(x1, . . . , xn : y1, . . . , yt;ω)

= inf
ε>0,m∈N

lim sup
k→∞

log(ν∞(Γtop(x1, . . . , xn : y1, . . . , yt; k, ε,m), ω))

−k2 logω
;

and

δtop(x1, . . . , xn : y1, . . . , yt) = lim sup
ω→0+

δtop(x1, . . . , xn : y1, . . . , yt;ω).

Lemma 4.1. Suppose A is a unital C∗-algebra, x1, . . . , xn, y1, . . . , yt
are self-adjoint elements in A and x1, . . . , xn generate A. Suppose
p ∈ {pm}∞m=1 and ω > 0. Then the following are true:

(1) δtop(x1, . . . , xn;ω) = δtop(x1, . . . , xn : y1, . . . , yt;ω),
(2) δtop(p(x1, . . . , xn) : x1, . . . , xn;ω) = δtop(p(x1, . . . , xn):x1, . . . ,

xn, y1, . . . , yt;ω),
(3) δtop(x1, . . . , xn) ≥ δtop(p(x1, . . . , xn) : x1, . . . , xn).

Proof. The proof of (1) and (2) are straightforward adaptations of
the proof of Proposition 1.6 in [9]. Lemma 4.1 (3) is proved by Hadwin
and Shen in [4]. �

The following lemma is Lemma 2.3 in [2], and it will be used in the
proofs of Theorem 4.5 and Theorem 4.8.
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Lemma 4.2. Let B be a finite-dimensional C∗-algebra, which is iso-
morphic to Mk1

(C) ⊕ · · · ⊕Mkr
(C). For any ε > 0, there is a δ > 0

such that, whenever A is a unital separable C∗-algebra with the unit IA
and {a(s)ij : 1 ≤ i, j ≤ ks, 1 ≤ s ≤ r} in A satisfying

(1) ∥(a(s)ij )∗ − a
(s)
ji ∥ ≤ δ for all i, j, s,

(2) ∥
∑r

s=1

∑ks

i=1 a
(s)
ii − IA∥ ≤ δ,

(3) ∥a(s)ij a
(s)
jj1

− a
(s)
ij1

∥ ≤ δ for all i, j, j1, s, ∥a(s)ij a
(s1)
i1j1

∥ ≤ δ if s ̸= s1
or j ̸= i1,

then there is a set {e(s)ij : 1 ≤ i, j ≤ ks, 1 ≤ s ≤ r} of matrix units for

a copy of B (i.e., a faithful unital *-homomorphic image of B) in A
satisfying ∥a(s)ij − e

(s)
ij ∥ < ε for all i, j, s.

4.2. Upper bound of topological free entropy dimension in
an approximately divisible C∗-algebra. The following lemma is
Lemma 6 in [3].

Lemma 4.3. The following statements are true:

(1) Let Uk be the group of all unitary matrices in Mk(C), ω > 0.
Then (

1

ω

)k2

≤ ν∞(Uk, ω) ≤
(
9πe

ω

)k2

.

(2) If d is the metric from a norm ∥ · ∥ on Rm and B is the unit
ball of Rm, then for ω > 0,(

1

ω

)m

≤ νd(B, ω) ≤
(
3

ω

)m

.

Let B be a finite-dimensional C∗-algebra which is isomorphic to
Mk1(C) ⊕ · · · ⊕ Mkr (C) for some positive integers k1, . . . , kr. To

simplify the notation, we will use {e(ι)st }s,t,ι to denote a set {e(ι)st : 1 ≤
s, t ≤ kι, 1 ≤ ι ≤ r} of matrix units for B, let {Re (e(ι)st )}s,t,ι denote the

set { e
(ι)
st + (e

(ι)
st )

∗/2 : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r}, and let {Im (e
(ι)
st )}s,t,ι

denote the set { e
(ι)
st − (e

(ι)
st )

∗/2
√
−1 : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r}.
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Lemma 4.4. Let A be a unital separable approximately divisible C∗-
algebra with unit IA, and {x1, . . . , xn} be a family of self-adjoint
generators of A. Then, for any ω > 0 and positive integer N , there
exists a finite-dimensional C∗-subalgebra B ⊆ A with a set of matrix

units {e(ι)st }s,t,ι = {e(ι)st : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r}, a positive integer m0

and 1 > ε0 > 0, such that

(1) IA ∈ B,
(2) subrank (B) ≥ N ,
(3) for any m ≥ m0, ε ≤ ε0, and any k ≥ 1, if

(A1, . . . , An, {B(ι)
st }s,t,ι, {C

(ι)
st }s,t,ι)

∈ Γtop(x1, . . . , xn, {Re (e(ι)st )}s,t,ι, {Im (e
(ι)
st )}s,t,ι; k, ε,m),

then there exists a set {P (ι)
st : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r} of matrix

units for a copy of B in Mk(C) so that∥∥∥∥Aj −
∑

1≤ι≤r

∑
1≤s≤kι

P (ι)
ss AjP

(ι)
ss

∥∥∥∥ ≤ 2ω.

Proof. Suppose A = ∪mAm
∥·∥

, where Am is as in Proposition 2.4.
For any ω > 0, any positive integer N and self-adjoint elements
x1, . . . , xn, there are self-adjoint elements y1, . . . , yn in some Am such
that ∥xj−yj∥ < ω/2 for all 1 ≤ j ≤ n. From part (3) of Proposition 2.4,
there exists a finite-dimensional subalgebra B of A′

m ∩ A such that

IA ∈ B and subrank (B) ≥ N . Let {e(ι)st : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r} be a
set of matrix units for B. Then, for 1 ≤ j ≤ n,∥∥∥∥xj −

∑
1≤ι≤r

∑
1≤s≤kι

e(ι)ss xje
(ι)
ss

∥∥∥∥
=

∥∥∥∥(xj − yj) + yj −
∑

1≤ι≤r

∑
1≤s≤kι

e(ι)ss (xj − yj)e
(ι)
ss

−
∑

1≤ι≤r

∑
1≤s≤kι

e(ι)ss yje
(ι)
ss

∥∥∥∥
=

∥∥∥∥(xj − yj)−
∑

1≤ι≤r

∑
1≤s≤kι

e(ι)ss (xj − yj)e
(ι)
ss

∥∥∥∥
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≤ ∥(xj − yj)||+
∥∥∥∥ ∑

1≤ι≤r

∑
1≤s≤kι

e(ι)ss (xj − yj)e
(ι)
ss

∥∥∥∥
≤ ∥(xj − yj)||+max{||e(ι)ss (xj − yj)e

(ι)
ss ∥}

<
ω

2
+

ω

2
= ω.

Let R = max{∥x1∥, . . . , ∥xn∥, 1}.
By Lemma 4.2, there are 0 < ε0 < min{1, ω/2} and positive integer

m0, such that, for any m ≥ m0, ε ≤ ε0 and k ≥ 1, if

(16) (A1, . . . , An, {B(ι)
st }s,t,ι, {C

(ι)
st }s,t,ι) ∈

Γtop(x1, . . . , xn, {Re (e(ι)st )}s,t,ι, {Im (e
(ι)
st )}s,t,ι; k, ε,m),

then there exists a set {P (ι)
st : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r} ⊂ Msa

k (C) such
that

(a) {P (ι)
st : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r} is exactly a set of matrix units

for a copy of B in Mk(C),
(b) For any 1 ≤ ι ≤ r, 1 ≤ s, t ≤ kι,

∥P (ι)
st − (B

(ι)
st +

√
−1 · C(ι)

st )∥ <
ω

24R · rank (B)
.

Let D
(ι)
st = B

(ι)
st +

√
−1 · C(ι)

st . We have∥∥∥∥Aj −
∑

1≤ι≤r

∑
1≤s≤kι

P (ι)
ss AjP

(ι)
ss

∥∥∥∥
≤

∥∥∥∥Aj −
∑

1≤ι≤r

∑
1≤s≤kι

D(ι)
ss AjD

(ι)
ss

∥∥∥∥
+

∥∥∥∥ ∑
1≤ι≤r

∑
1≤s≤kι

(P (ι)
ss −D(ι)

ss )AjD
(ι)
ss

∥∥∥∥
+

∥∥∥∥ ∑
1≤ι≤r

∑
1≤s≤kι

D(ι)
ss Aj(P

(ι)
ss −D(ι)

ss )

∥∥∥∥
+

∥∥∥∥ ∑
1≤ι≤r

∑
1≤s≤kι

(P (ι)
ss −D(ι)

ss )Aj(P
(ι)
ss −D(ι)

ss )

∥∥∥∥
≤ ω + ε+

ω

6
+

ω

6
+

ω

6
≤ 2ω. �
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Theorem 4.5. Suppose A is a unital separable approximately divisible
C∗-algebra generated by self-adjoint elements x1, . . . , xn. Then

δtop(x1, . . . , xn) ≤ 1.

Proof. For any positive integer N , 1 > ω > 0, from Lemma 4.4,
there exists a finite-dimensional C∗-subalgebra B ⊆ A with a set of

matrix units {e(ι)st }s,t,ι = {e(ι)st : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r}, a positive
integer m0 and 1 > ε0 > 0, such that

(a) IA ∈ B, where IA is the unit of A,
(b) subrank (B) ≥ N ,
(c) for m ≥ m0 and ε ≤ ε0, and for any k ≥ 1, if

(17) (A1, . . . , An, {B(ι)
st }s,t,ι, {C

(ι)
st }s,t,ι)

∈ Γtop(x1, . . . , xn, {Re (e(ι)st )}s,t,ι, {Im (e
(ι)
st )}s,t,ι; k, ε,m),

then there exists a set {P (ι)
st : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r} of matrix

units for a copy of B in Mk(C) so that∥∥∥∥Aj −
∑

1≤ι≤r

∑
1≤s≤kι

P (ι)
ss AjP

(ι)
ss

∥∥∥∥ ≤ 2ω.

Note that {P (ι)
ss : 1 ≤ ι ≤ r, 1 ≤ s ≤ kι} is a family of mutually

orthogonal projections with the sum Ik in Mk(C). There is some

unitary matrix U ∈ Uk such that U∗P
(ι)
ss U(= Q

(ι)
ss ) is diagonal for any

1 ≤ ι ≤ r and 1 ≤ s ≤ kι. Then, for any 1 ≤ j ≤ n,

(18)

∥∥∥∥Aj − U

( ∑
1≤ι≤r

∑
1≤s≤kι

Q(ι)
ss (U

∗AjU)Q(ι)
ss

)
U∗

∥∥∥∥ ≤ 2ω.

Thus, for 1 ≤ j ≤ n, R = max{∥x1∥, . . . , ∥xn∥, 1},∥∥∥∥ ∑
1≤ι≤r

∑
1≤s≤kι

Q(ι)
ss (U

∗AjU)Q(ι)
ss

∥∥∥∥ ≤ ∥Aj∥+ 2ω ≤ 4R.
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Therefore,

(19)

( ∑
1≤ι≤r

∑
1≤s≤kι

Q(ι)
ss (U

∗A1U)Q(ι)
ss , . . . ,

∑
1≤ι≤r

∑
1≤s≤kι

Q(ι)
ss (U

∗AnU)Q(ι)
ss

)
∈ Ball (0, . . . , 0; 4R, ∥ · ∥),

i.e., it is contained in the ball centered at (0, . . . , 0) with radius 4R in
(Mk(C))n.

Since {P (ι)
st : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r} is a system of matrix units for

a copy of B in Mk(C) such that∑
1≤ι≤r1≤s≤kι

P (ι)
ss = Ik,

we know that there is a unital embedding from B into Mk(C). It
follows that there are positive integers c1, . . . , cr satisfying

(i) rankP
(ι)
11 = · · · = rankP

(ι)
kι,kι

= cι for all 1 ≤ ι ≤ r, where

rankT is the rank of the matrix T for any T in Mk(C); and
(ii) c1k1 + · · ·+ crkr = k.

By the restriction on the C∗-algebra B (see condition (b) as above), we
know that subrank (B) ≥ N , i.e.,

min{k1, . . . , kr} ≥ N.

By (ii), we obtain that

(20) min{c1, . . . , cr} ≤ k

N
.

By (i) and the fact that Q
(ι)
ss = U∗P

(ι)
ss U , we know that

rankQ
(ι)
11 = · · · = rankQ

(ι)
kι,kι

= rankP
(ι)
11

= · · · = rankP
(ι)
kι,kι

= cι, for 1 ≤ ι ≤ r.

Thus, the real-dimension of the linear space
∑

1≤ι≤r

∑
1≤j≤kι

Q
(ι)
jj
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Mk(C)saQ(ι)
jj is

(21) dimR

( ∑
1≤ι≤r

∑
1≤j≤kι

Q
(ι)
jj Mk(C)saQ(ι)

jj

)
= c21k1 + · · ·+ c2rkr.

By inequality (4.4), we get

(22) c21k1 + · · ·+ c2rkr ≤ k

N
(c1k1 + · · ·+ crkr) =

k2

N
.

For any such family of positive integers c1, . . . , cr with c1k1 + · · ·+
crkr = k, and the family of mutually orthogonal diagonal projections

{Q(ι)
ss }1≤s≤kι,1≤ι≤r with

rank (Q(ι)
ss ) = cι, for all 1 ≤ ι ≤ r,

we define

Ω({Q(ι)
ss }s,ι) =

{( ∑
1≤ι≤r

∑
1≤s≤kι

Q(ι)
ss T1Q

(ι)
ss , . . . ,

∑
1≤ι≤r

∑
1≤s≤kι

Q(ι)
ss TnQ

(ι)
ss

)
:

Ti = T ∗
i ∈ Mk(C), for all 1 ≤ i ≤ n

}
,

which is a subset of (Msa
k (C))n.

Therefore, combining part (2) of Lemma 4.3, equation (4.5) and
inequality (4.6), for any ω > 0, we have

(23) ν∞(Ω({Q(ι)
ss }s,ι) ∩ Ball (0, . . . , 0; 4R, ∥ · ∥); ω) ≤

(
12R

ω

)nk2/N

.

Let

Λ = {(c1, . . . , cr) : ∃k1, . . . , kr ∈ N such that c1k1 + · · ·+ crkr = k}.

By inequality (4.4), we know that the cardinality of the set Λ satisfies

(24) card (Λ) ≤
(

k

N

)r

.
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Let

Ω = ∪(c1,...,cr)∈Λ

{
Ω({Q(ι)

ss }s,ι) | {Q(ι)
ss }1≤s≤kι,1≤ι≤r

is a family of mutually orthogonal diagonal projections

with rank (Q(ι)
ss ) = cι, ∀ 1 ≤ ι ≤ r

}
.

By inequalities (4.7) and (4.8), we know that

(25) ν∞(Ω ∩ Ball (0, . . . , 0; 4R, ∥ ∥); ω) ≤
(
12R

ω

)nk2/N

·
(

k

N

)r

.

Based on (4.1), (4.2), (4.3), (4.9), and part (2) of Lemma 4.3, now
it is a standard argument to show that

δtop(x1, . . . , xn : {Re (e(ι)st )}s,t,ι, {Im (e
(ι)
st )}s,t,ι; 4ω)

≤ lim sup
k→∞

log
(
(k/N)r(12R/ω)nk

2/N (9πe/ω)k
2
)

−k2 log(4ω)

=
−(1 + n/N) logω + n/N log(12R) + log(9πe)

− log 4ω
.

By part (1) of Lemma 4.1,

δtop(x1, . . . , xn; 4ω) ≤
−(1 + n/N) logω + n/N log(12R) + log(9πe)

− log 4ω
.

Therefore,

δtop(x1, . . . , xn) = lim sup
ω→0+

δtop(x1, . . . , xn; 4ω) ≤ 1 +
n

N
.

Since N is arbitrarily large, δtop(x1, . . . , xn) ≤ 1. �

4.3. Lower bound of topological free entropy dimension of an
approximately divisible C∗-algebra. Using the idea in the proof of
Lemma 5.3.5 in [4], we can prove the following lemma.

Lemma 4.6. Suppose m1,m2, . . . ,mr is a family of positive integers
with summation m and m1, . . . ,mr ≥ N for some positive integer N .
Suppose k1, . . . , km is a family of positive integers with summation k
and, for every 1 ≤ s ≤ r, km1+···+ms−1+1 = · · · = km1+···+ms (m0 = 0).
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If A = A∗ ∈ Mk(C), and for some U ∈ Uk,∥∥∥∥∥∥∥∥∥A− U


1 · Ik1 0 · · · 0
0 2 · Ik2 · · · 0

· · · · · ·
. . . · · ·

0 0 · · · m · Ikm

U∗

∥∥∥∥∥∥∥∥∥ ≤ 2

N3
,

then, for any ω > 0, we have

ν∞(Ω(A), ω) ≥ (8C1ω)
−k2

(
2C

ω

)−56k2/N

,

for some constants C1, C > 1 independent of k, ω, where

Ω(A) = {W ∗AW : W ∈ Uk}.

Suppose A is a unital C∗-algebra and x1, . . . , xn is a family of
self-adjoint elements of A that generates A as a C∗-algebra. In the
definition of topological free entropy dimension, it requires that the
“Γ-set” Γtop(x1, . . . , xn) is “eventually” nonempty, more specifically, for
any m ∈ N, ε > 0, there is a sequence of positive integers k1 < k2 < · · ·
such that, for s ≥ 1,

Γtop(x1, . . . , xn : y1, . . . , yt; ks, ε,m) ̸= ∅.

Actually, this requirement is equivalent to saying that A is an MF-
algebra (see [5]). The notion of MF algebra was introduced by Black-
adar and Kirchberg [1]. A separable C∗-algebra is an MF-algebra if
and only if it can be embedded into

∏
k Mnk

(C)/
∑

k Mnk
(C) for a

sequence of positive integers nk, k = 1, 2, . . . .

Now we are ready to prove the main theorem in this subsection.

Theorem 4.7. Let A be a unital separable approximately divisible C∗-
algebra generated by self-adjoint elements x1, . . . , xn. If A is an MF-
algebra, then

δtop(x1, . . . , xn) ≥ 1.

Proof. For any positive integer N , by part (3) of Proposition 2.4,
there is a finite-dimensional C∗-subalgebra B containing the unit of
A with subrank (B) ≥ N . Therefore, there are positive integers
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r, k1, . . . , kr such that

B ≃ Mk1(C)⊕ · · · ⊕Mkr (C).

Let {e(ι)st : 1 ≤ ι ≤ r, 1 ≤ s, t ≤ kι} be a system of matrix units for B.
Let

zN =

r∑
ι=1

kι∑
s=1

(
s+

ι−1∑
j=1

kj

)
· e(ι)ss .

Let {pm}∞m=1 be the collection of all noncommutative polynomi-
als in C⟨X1, . . . , Xn⟩ with rational complex coefficients. Note that
{pm(x1, . . . , xn)}∞m=1 is a norm-dense set in A. Thus, there exists a
polynomial pmN

∈ {pm}∞m=1 such that pmN
(x1, . . . , xn) is self-adjoint

and ∥pmN (x1, . . . , xn)− zN∥ ≤ 1/N3.

For sufficiently small ε > 0 and sufficiently large positive integers m
and k, if

(B,A1, . . . , An, {C(ι)
st }s,t,ι, {D

(ι)
st }s,t,ι)

∈ Γtop(pmN
(x1, . . . , xn), x1, . . . , xn, {Re (e(ι)st )}s,t,ι,

{Im (e
(ι)
st )}s,t,ι; k, ε,m),

then, by Lemma 4.2, there exists a set {P (ι)
st : 1 ≤ s, t ≤ kι, 1 ≤ ι ≤ r}

of matrix units for a copy of B in Mk(C), such that∥∥∥∥B −
r∑

ι=1

kι∑
s=1

(
s+

ι−1∑
j=1

kj

)
· P (ι)

ss

∥∥∥∥ ≤ 2

N3
.

Let U be a unitary matrix in Mk(C) such that, for any 1 ≤ s ≤ kι
and 1 ≤ ι ≤ r, U∗P

(ι)
ss U(= Q

(ι)
ss ) is diagonal. Then, from the preceding

inequality,∥∥∥∥B − U

( r∑
ι=1

kι∑
s=1

(
s+

ι−1∑
j=1

kj

)
·Q(ι)

ss

)
U∗

∥∥∥∥ ≤ 2

N3
.

From Lemma 4.6, for any ω > 0, when m is large enough and ε is
small enough, there are some constants C,C1 > 1 independent of k and
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ω, such that

ν∞(Γtop(pmN
(x1, . . . , xn) : x1, . . . , xn,

{Re (e(ι)st )}s,t,ι, {Im (e
(ι)
st )}s,t,ι; k, ε,m), ω)

≥ (8C1ω)
−k2

(
2C

ω

)−56k2/N

.

Therefore,

δtop(pmN
(x1, . . . , xn) :x1, . . . , xn, {Re(e(ι)st )}s,t,ι, {Im (e

(ι)
st )}s,t,ι)≥1− 56

N
.

By Lemma 4.1,

δtop(pmN (x1, . . . , xn) : x1, . . . , xn, {Re (e(ι)st )}s,t,ι, {Im (e
(ι)
st )}s,t,ι)

= δtop(pmN
(x1, . . . , xn) : x1, . . . , xn)

≤ δtop(x1, . . . , xn),

whence δtop(x1, . . . , xn) ≥ 1 − 56/N . Since N is an arbitrary positive
integer, we obtain

δtop(x1, . . . , xn) ≥ 1. �

Combining Theorem 3.1, Theorem 4.1 and Theorem 4.2, we have
the following result.

Theorem 4.8. Let A be a unital separable approximately divisible C∗-
algebra. If A is an MF-algebra, then

δtop(x1, . . . , xn) = 1,

where x1, . . . , xn is any family of self-adjoint generators of A.

Note. The original version of this paper was included in the first
author’s dissertation and [6].
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