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ON HARMONIC FUNCTIONS ON SURFACES WITH
POSITIVE GAUSS CURVATURE AND

THE SCHWARZ LEMMA

DAVID KALAJ

ABSTRACT. We prove some versions of the Schwarz
lemma for real harmonic functions in certain Riemann
surfaces with positive Gauss curvature.

1. Introduction and statement of the main result. We first
recall that the hyperbolic metric dh(z, w) of the unit disk U := {z :
|z| < 1} with constant Gauss curvature −4 is defined by

tanh dh(z, w) =
|z − w|
|1− zw|

.

The classical Schwarz (Schwarz-Pick) lemma says that an analytic
function f of the unit disk into itself is a contraction in the hyperbolic
metric, i.e., for z, w ∈ U,

(1.1)
|f(z)− f(w)|
|1− f(z)f(w)|

≤ |z − w|
|1− zw|

.

Letting z → w, we get

(1.2) |f ′(z)| ≤ 1− |f(z)|2

1− |z|2
.

The interested reader can find some extensions of the Schwarz lemma
for harmonic and analytic functions in [1, 2, 3, 4, 8].

The starting point of this paper is the following recent extension of
Schwarz lemma for harmonic functions:
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Theorem 1.1. [6] Let f be a real harmonic function with respect to
the Euclidean metric ρ = 1 of the unit disk U := {z : |z| < 1} into
(−1, 1). Then the following sharp inequality holds

(1.3) |∇f(z)| ≤ 4

π

1− |f(z)|2

1− |z|2
, |z| < 1.

1.1. Harmonic mappings between Riemann surfaces. Let (M,σ)
and (N, ρ) be Riemann surfaces with metrics σ and ρ, respectively. If
a mapping f : (M,σ) → (N, ρ) is C2, then f is said to be harmonic (to
avoid confusion, we will sometimes sayρ-harmonic) if

(1.4) fzz̄ + (log ρ)w ◦ ffz fz̄ = 0,

where z and w are the local parameters on M and N , respectively (see
[9]). Also f satisfies (1.4) if and only if its Hopf differential defined as

(1.5) Ψ = ρ ◦ ffzfz̄

is a holomorphic quadratic differential on M .

In this paper, we will extend Theorem 1.1 for real harmonic functions
with respect to certain metrics. Let D be a domain in C and ρ a
conformal metric in D. The Gaussian curvature on the domain is given
by

KD = −1

2

∆ log ρ

ρ
.

Consider the radial metric

ρ(z) = ϱ(|z|),

|z| < 1, where ϱ is a non-negative function. It can be easily proved
that, if the Gauss curvature of ρ is positive (negative), then the function
r → ϱ(r) is a decreasing (increasing) function for r ∈ [0, 1].

Definition 1.2. We will say that a metric ρ is admissible if ρ(z) =
φ(|z|), where φ : U → C \R−

0 is some analytic function defined in the
unit disk satisfying the following properties:

(1) φ(|z|) ≤ |φ(z)|, and φ is nonincreasing in [0, 1],

(2) φ(−1, 1) ⊂ R and
∫ 1

0
(
√
φ(x)−

√
φ(−x)) dx = 0.
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By using the fact that Hopf differential of a harmonic mapping is a
holomorphic mapping, the following proposition can be proved.

Proposition 1.3. [5] Let φ : U → C \R−
0 be an analytic function. If

f : Ω → D is ρ(z) = |φ(z)|-harmonic and

ϕ =

∫ z

0

√
φ(z) dz,

then the mapping F = ϕ ◦ f is harmonic with respect to the Euclidean
metric.

Notice that the parameter w = ϕ(z) is called the distinguished
parameter ([10]). Proposition 1.3 implies

Lemma 1.4. Let φ be an analytic function defined in the unit disk
such that φ(r) ≥ 0 for −1 < r < 1. Then the real function f : Ω → R
is ρ(z) = φ(|z|)− harmonic if and only if ϕ◦f is harmonic with respect
to the Euclidean metric, where

ϕ(s) =

∫ s

0

√
φ(t) dt.

With the help of Lemma 1.4, we can construct the family of all real
harmonic mappings with respect to the Poincaré and Riemann metrics.

Example 1.5. Let

φ(w) =
1

(1− w2)2
.

Then f is |φ|-harmonic if and only if f = tanh g, where g is harmonic
(with respect to the Euclidean metric). Since, for real w, the function
ρ = |φ(w)| coincides with the density

λ =
1

(1− |w|2)2

of Poincaré (hyperbolic) metric, we obtain that f is real λ-harmonic
if and only if f = tanh g, where g is real Euclidean harmonic. In
particular, the functions

fn(z) = tanh(nx), z = x+ iy
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are real λ-harmonic functions of the unit disk into (−1, 1). Further

∇fn(0) = (n, 0).

Thus |∇f(0)| is not uniformly bounded, and we do not have any version
of Theorem 1.1 for hyperbolic harmonic functions. Notice that the
Gauss curvature of the hyperbolic metric is equal to −4, and the
hyperbolic metric is not an admissible metric.

Example 1.6. Let

φ(z) =
1

(1 + w2)2
.

Then f is |φ|-harmonic if and only if f = tan g, where g is harmonic.
For real w, the metric density ρ = |φ(w)| coincides with the density

ϱ =
1

(1 + |w|2)2

of the Riemann metric. It follows that f is real ϱ harmonic if and
only if f = tan g, where g is real harmonic. Observe that the Riemann
metric is an admissible metric and its Gauss curvature is 4. Another
admissible metric is the Hamilton cigar soliton known in physics as
Witten’s black hole. It is a Kähler metric defined on C by

κ =
1

1 + |w|2
.

The Gauss curvature of κ is given by

K =
2

1 + |w|2
.

In both these cases, we have K > 0. In the last case ϕ(z) = ArcSinh (z)
holds. Both these metrics are admissible, and we will show that the
relation (1.3) holds for real harmonic functions with respect to these
metrics.

Namely, we have the following theorem which is the main result of
the paper.

Theorem 1.7. Let ρ(z) be an admissible metric and f a ρ-harmonic
mapping of the unit disk into the interval (−1, 1). Then the following
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inequality

|∇f(z)| ≤ 4

π

1− |f(z)|2

1− |z|2

holds.

Remark 1.8. As the Euclidean metric is an admissible metric, it
follows that Theorem 1.7 is an extension of Theorem 1.1.

2. Some auxiliary results and the proof of the main result.

Lemma 2.1. Let χ : U → C∗ be an analytic function defined in the
unit disk satisfying the conditions

(i) |χ(|z|)| ≤ |χ(z)| and
(ii) |χ(r)| is nonincreasing for r ∈ [0, 1].

Let

ψ(z) =

∫ z

0
χ(z) dz∫ 1

0
χ(x) dx

be an analytic function defined in the unit disk. Then U ⊂ ψ(U).

Proof. Let 0 < r < 1 and w ∈ ψ(rT), and let δ ⊂ ψ(U) be any
curve with endpoints w and 0. Here T = {z : |z| = 1} is the unit circle.
Because ψ′(z) ̸= 0, it follows that ψ is a covering. Since ψ is a covering,
it follows that ψ−1(δ) =

∪
i∈I γi, where {γi, i ∈ I} is a set of mutually

disjoint curves. Assume that 0 is the endpoint of γi0 , and that l = lr is
the length of γi0 . Then ψ is univalent in γi0 and, because ψ is an open
mapping, then limr→1 lr ≥ 1. Assume, in addition, that g : [0, l] → γi0
is an arc length parametrization of γi0 . Take χ(t) = ψ(g(t)). Then

|δ| =
∫ l

0

|χ′(t)| dt =
∫ l

0

|ψ′(g(s))| · |g′(s)| ds

=

∫ l

0

|ψ′(g(s))| ds =
∫ l

0

|χ(g(s))|ds
/∣∣∣∣ ∫ 1

0

χ(x) dx

∣∣∣∣
≥

∫ l

0

|χ(|g(s)|)ds
/∣∣∣∣ ∫ 1

0

χ(x) dx

∣∣∣∣
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≥
∫ min{1,l}

0

|χ(s)| ds
/∣∣∣∣ ∫ 1

0

χ(x) dx

∣∣∣∣
It follows that lim supr→1 dist (ψ(rT), 0) ≥ 1, which implies that
U ⊂ ψ(U). �

By using Lemma 2.1, we can produce the following examples.

Example 2.2. Let a(z) =
∑∞

k=0 akz
k be a non-vanishing analytic

function defined in the unit disk such that, for k ∈ N, ak ≥ 0, a0 > 0.

Then, for I =
∫ 1

0
(dx)/a(x), the function

ψ(z) =
1

I

∫ z

0

dz

a(z)

satisfies the condition U ⊂ ψ(U). Figure 1 contains the graph of ψ for
the special case a(z) = 1 + z3.

Example 2.3. Let a(z) =
∑∞

k=0 akz
2k : U → C \R−

0 be an analytic
function defined in the unit disk such that for k ∈ N, ak ≥ 0, a0 > 0.

Then, for every p ≥ 0 and Ip =
∫ 1

0
(dx)/ap(x), the function

ψ(z) =
1

Ip

∫ z

0

dz

ap(z)

satisfies the conditions U ⊂ ψ(U) and ψ(−1, 1) = (−1, 1), and the
corresponding metric ρ(z) = a−2p(|z|) is admissible. See the graph of
ψ in Figure 2 for special cases p = 1 and a(z) = 1 + z4.

Lemma 2.4. Let ψ : Ω → D be a univalent conformal mapping between
two Jordan domains Ω and D such that Ω ⊆ U ⊆ D. Then, for
z ∈ ψ−1(U), the following inequality holds

1− |ψ(z)|2

1− |z|2
≤ |ψ′(z)|.

Proof. Since ψ−1(z) : U 7→ U, the previous inequality follows by the
Schwarz-Pick lemma. �
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Figure 1. The graph of the function ψ for a(z) = 1+ z3 contains the unit
disk.

Proof of Theorem 1.7. Let ϕ(z) =
∫ z

0

√
φ(z) dz be the distinguished

parameter, and define

ψ(z) = ϕ(z)/ϕ(1).

According to Lemma 1.4, f is ρ-harmonic if and only if ψ ◦ f is real
harmonic with respect to the Euclidean metric. By Definition 1.2, ψ
satisfies the condition ψ(−1) = −ψ(1) = −1, and therefore ψ(−1, 1) =
(−1, 1). Observe next that, since φ(z) /∈ R−

0 , we have

ℜ(ψ′(z)) = ℜ(
√
φ(z))

/∫ 1

0

√
φ(x) dx > 0

and thus, by the Kaplan theorem [7], ψ is a univalent mapping. By
Lemma 2.1, U ⊂ ψ(U). By Lemma 2.4, for z ∈ ψ−1(U), we have

1

|ψ′(z)|
≤ 1− |z|2

1− |ψ(z)|2
.
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Figure 2. The graph of the function ψ for a(z) = 1+ z4 contains the unit
disk and ψ(U)∩R = (−1, 1). The corresponding metric ρ(z) = 1/(1 + |z|4)2
is admissible.

As (−1, 1) ⊂ ψ−1(U), for z ∈ U, we obtain that

(2.1)
1

|ψ′(f(z))|
≤ 1− |f(z)|2

1− |ψ(f(z))|2
.

According to Theorem 1.1, we have

|∇(ψ ◦ f)(z)| ≤ 4

π

1− |(ψ ◦ f)(z)|2

1− |z|2
.

Further,
∇(ψ ◦ f) = ψ′(f(z))∇f(z).
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Thus, by using (2.1), for w = f(z), we obtain

|∇f(z)| = |∇(ψ ◦ f)|
|ψ′(f(z))|

≤ 1− |w|2

1− |ψ(w)|2
4

π

1− |(ψ ◦ f)(z)|2

1− |z|2

=
4

π

1− |f(z)|2

1− |z|2
. �

2.1. An open problem. Does every real harmonic function f of the
unit disk into the unit interval with respect to some metric of a positive
Gauss curvature satisfy the following inequality:

|∇f | ≤ 4

π

1− |f(z)|2

1− |z|2
?
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