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REALIZING INFINITE CARDINAL NUMBERS VIA
MAXIMAL CHAINS OF INTERMEDIATE FIELDS

DAVID E. DOBBS AND RAYMOND C. HEITMANN

To Roger Wiegand, on the occasion of his retirement

ABSTRACT. For each nonzero cardinal number κ, there
is a field extension Q ⊆ L and a maximal chain Hκ of
intermediate fields going from Q to L such that the cardinal
number of Hκ is κ. If κ is infinite, then for all infinite
cardinals ν < κ, it can be arranged that Hν ⊂ Hκ. However,
there exists an infinite cardinal for which there does not exist
a field extension L/K such that κ is the supremum of the
cardinalities of chains of intermediate fields going from K to
L. For a field extension L/K, this supremum of cardinalities
has been denoted λ(L/K). If L/K is infinitely generated,
we reduce its calculation to set theory, as follows. Let ℵα

be the infimum of the cardinalities of generating sets of
L/K. Let Ω(ℵα) be the supremum of the cardinalities of
chains of subsets of a set of cardinality ℵα. (Ω(ℵα) is equal
to what has been called ded (ℵα) in the literature.) Then
ℵα < Ω(ℵα) ≤ 2ℵα ; and if α > 0 (but not necessarily if
α = 0), then λ(L/K) = Ω(ℵα).

1. Introduction. In [5], Mullins and the first author introduced an
invariant λ(L/K) that gives an intuitive measure of the size of a field
extension L/K. By definition, λ(L/K) is the supremum (qua cardinal
number) of the set of cardinal numbers that arise as lengths of chains
of intermediate fields of L/K. (As usual, the length of a finite chain is
defined as the number of “jumps” in it; to avoid possible ambiguity, we
take the “length” of any infinite chain to be its cardinality.) Of course,
an intermediate field of L/K is a field F such that K ⊆ F ⊆ L. It is
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convenient to let S(L/K) denote the poset (under inclusion) consisting
of the intermediate fields of L/K. In calculating λ(L/K), one can
restrict attention to chains C in S(L/K) that go from K to L, in
the sense that K,L ∈ C. Thanks to Zorn’s lemma, one can also
restrict attention to maximal such chains. Note also that if at least
one chain in S(L/K) is infinite, then λ(L/K) is also the supremum of
the cardinalities of maximal chains in S(L/K) that go from K to L.
As usual, it will be convenient to let |T | denote the cardinal number of
a set T .

It was shown in [5] that each finite cardinal number, as well as
ℵ0, can be realized as λ(L/K) for some field extension L/K. The
main result of that paper, [5, Theorem 3.2], addressed the case of
larger infinite cardinal numbers and proved, assuming the Generalized
Continuum Hypothesis (GCH), that if α is any infinite successor ordinal
number, then ℵα can be realized as λ(L/K) for some field extension
L/K. Unfortunately, [5, Theorem 3.2] was stated incorrectly in [5],
where the word “successor” was omitted from the statement of the
result. The first author repeated that mistake when giving a talk on [5]
several years ago at a meeting of the American Mathematical Society.
When he returned to his seat after his talk, Roger Wiegand quietly
and kindly asked him, “What about ℵω?”. (As usual, ω denotes the
smallest infinite ordinal number.) Indeed, [5] had failed to find any
cardinal number of the form ℵα, with α a limit ordinal number, that
could be realized in the form λ(L/K). The main purpose of this paper
is to characterize λ(L/K) for infinitely generated field extensions L/K,
a byproduct being a negative answer to Wiegand’s question.

We achieve the above “main purpose” assuming only ZFC; that
is, the Zermelo-Fraenkel foundations for set theory, together with the
Axiom of Choice. (This is what we mean in Section 4 when we give
results that are valid “in any model”.) As a result, we may use the
usual rules for arithmetic with infinite cardinal numbers. Our current
logical assumptions are to be contrasted with the approach in [5], which
used the following consequence of GCH: if S is an infinite set, with
ℵ := |S|, then there is a chain C, consisting of subsets of S, such that
|C| = 2ℵ. (A correct explanation of which set-theoretic principles imply
the preceding assertion can be found in [3, Remark 2.2].) In the present
paper, the only place where we assume GCH is Theorem 4.5 (a).

We begin with an elementary section that gives a positive answer
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to a weakened version of Wiegand’s question. Theorem 2.2 shows
how to realize any cardinal number κ, via a suitable field extension
L/K, as the cardinality of some maximal chain Hκ in S(L/K) that
goes from K to L. Theorem 2.2 goes further than [4, Example 2.5],
where a similar conclusion had also been achieved, in the following way.
The chains constructed in Theorem 2.2 are “compatible,” in the sense
that Hν ⊂ Hκ for any infinite cardinals ν < κ. Moreover, all of the
Hκ in Theorem 2.2 have the same base field K. Also, we note that
the classical D + M construction is used in Corollary 2.4 to give the
analogue of Theorem 2.2 for chains of commutative rings of positive
Krull dimension.

The deeper work in this paper reduces the calculation of λ(L/K),
for an infinitely generated field extension L/K, to set theory. This
main result is stated in Theorem 4.3. To prepare for this, we devote
Section 3 to a study of generating sets of field extensions L/K. Suppose
that L/K is infinitely generated. Then the infimum of the cardinalities
of generating sets of L/K is some cardinal number ℵα. It is shown
in Corollary 3.3 that ℵα is the cardinality of any so-called “traditional
generating set” of L/K. (The definitions of “traditional generating
set” and the related concept of “special generating set” are given in
Section 3.) We define Ω(ℵα) to be the supremum of the cardinalities
of chains that consist of subsets of a set of cardinality ℵα. It turns
out that ℵα < Ω(ℵα) ≤ 2ℵα (Lemma 4.4). In that sense, the
determination of Ω(ℵα) is a matter of set theory. However, Theorem 4.3
and Proposition 4.2 combine to show that if α > 0 (but not if α = 0),
then λ(L/K) = Ω(ℵα). It follows in Theorem 4.5 (a) that if one
also assumes GCH, then one can determine precisely which cardinal
numbers are realizable as λ-values, and one thus has a negative answer
to Wiegand’s question. Moreover, Theorem 4.5 (b) identifies an infinite
cardinal number which is not a λ-value in any model.

While the applications in Section 4 are stated rather early in The-
orem 4.5 and the main result that justifies these applications is stated
even earlier in Theorem 4.3, the bulk of Section 4 is devoted to the proof
of Theorem 4.3, with Theorem 4.6 establishing that λ(L/K) ≤ Ω(ℵα)
and Theorem 4.12 establishing (the harder fact) that λ(L/K) ≥ Ω(ℵα)
if α > 0. Following the proof of Theorem 4.5, the reader will find an
extensive guide for explaining how the various pieces of the latter part
of Section 4 fit together to establish these inequalities (and ultimately
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Theorem 4.3). To reduce prerequisites for some to the technicalities in
Section 4, material on linear disjointness is recalled and developed as
needed.

In addition to the notation for cardinality mentioned above, we let
⊂ and ⊃ denote proper containments. For the appropriate background
on cardinal numbers, ordinal numbers and transfinite induction, we
recommend [7] and [10].

2. Realizing infinite cardinals via maximal chains of fields.
Theorem 2.2 will give a sense in which every infinite cardinal number ℵα

can be realized via a maximal chain of fields. In contrast to the proof in
[5, Theorem 3.2] for the case where α is a successor ordinal, which made
use of a certain algebraic field extension (and which used a consequence
of GCH), the proof of Theorem 2.2 uses a purely transcendental field
extension (and assumes only the usual ZFC foundations). Note that
the proof of [4, Example 2.5] showed (without appeal to GCH) how
to use the algebraic field extension from [5, Theorem 3.2] to build a
maximal chain of fields that realizes any given ℵα. However, our proof
of Theorem 2.2 has the additional advantage that the base fields of
these chains do not change as ℵα varies.

First, it will be convenient to use the next easy lemma to isolate
a technique that will be used in the proof of Theorem 2.2. Although
Lemma 2.1 will be applied to S(L/K), the proof is just as easy in a
more general poset-theoretic context. If (X,≤) is a poset and x1 ≤ x2

in X, then a “chain (respectively, maximal chain) in X going from x1

to x2” has the obvious meaning.

Lemma 2.1. Let (X,≤) be a poset. If C1 (respectively, C2) is a
maximal chain in X going from x1 to x2 (respectively, from x2 to x3),
then C := C1 ∪ C2 is a maximal chain in X going from x1 to x3.

Proof. It is clear that C is a chain in X going from x1 to x3, and so
it remains only to prove maximality of C. If the assertion fails, there
exists y ∈ X \C such that x1 ≤ y ≤ x3 and D := C ∪{y} is also a chain
(in X going from x1 to x3). Since D is a chain and y /∈ C, either y < x2

or x2 < y. If y < x2, then C1 ∪{y} is a chain in X going from x1 to x2,
contradicting the maximality of C1. Similarly, x2 < y would lead to a
contradiction of the maximality of C2. �
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We now present the main result of this section.

Theorem 2.2. Let κ be any cardinal number. Then there exists a field
extension K ⊆ L (depending on κ) such that there is a maximal chain
Hκ in S(L/K) that goes from K to L and satisfies |Hκ| = κ+1. It can
be arranged that K = Q. If κ is infinite, then K ⊆ L can furthermore
be arranged so that |L| = κ. Moreover, it can also be arranged that
Hν ⊂ Hκ as chains in S(L/K) for all infinite cardinal numbers ν < κ.

Proof. We first take care of the case where κ is finite. Of course,
λ(K/K) = 0 for any field K. Also, it is well known that if e is any
positive integer and p is a prime number, then there exists an algebraic
Galois field extension L of Q whose Galois group is cyclic of order pe.
Hence, by [5, Proposition 2.2 (a)], λ(L/Q) = e. Thus, every whole
number is realized as λ(L/Q) for a suitable field L. This completes the
verification in case κ is finite.

Next, we find a field extension K0 := Q ⊂ L0 such that λ(L0/K0) =
ℵ0 as follows. Recall from [6, Theorem 3.9] that if K is a field that is
neither algebraically closed nor real closed, then K has a J-extension
L. (By definition, this means that L/K is an infinite-dimensional field
extension such that [F : K] < ∞ for all fields F such that K ⊆ F ⊂ L.)
In particular, Q has a J-extension L0. It is known that if L/K is any J-
extension (of fields), then λ(L/K) = ℵ0 and, in fact, that each maximal
chain in S(L/K) is denumerable (cf. [4, Proposition 2.7 (b)]). Also,
it is well known (cf. [8, Lemma 3.5, page 259]) that if K is an infinite
field and L is an algebraic field extension of K, then |L| = |K|. In
particular, |L0| = ℵ0. This completes the verification in case κ = ℵ0.

In the following, the symbols K0 and L0 retain the above meanings.
Also, fix a (denumerable) maximal chain C in S(L0/K0) going from K0

to L0.

Next, suppose that κ > ℵ0. Take X to be a well-ordered set,
with no greatest member, that consists of (commuting) algebraically
indeterminates over K0 (i.e., over L0). Put L := L0(X). By the usual
laws of arithmetic for infinite cardinal numbers (which hold here since
we have assumed ZFC), |L| = |X| = κ. For each x ∈ X, consider the
subfield of L given by Fx := L0({y ∈ X | y < x}). We claim that the
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chain, which we call Dx, given by

Fx ⊂ · · · ⊂ Fx(x
2n) ⊂ · · · ⊂ Fx(x

4) ⊂ Fx(x
2) ⊂ Fx(x),

is a maximal chain of fields going from Fx to Fx(x). Indeed, suppose, on
the contrary, that there exists a field F ∈ S(Fx(x)/Fx) \ Dx such that
Dx ∪ {F} is a chain. It is easy to see (via, for instance, [9, Theorem
7, page 158]) that ∩∞

n=0 Fx(x
2n) = Fx. Consequently, there exists a

smallest whole number n such that F ̸⊆ Fx(x
2n). Hence, Fx(x

2n) ⊂ F .
On the other hand, n ≥ 1, and so the minimality of n leads to

F ⊂ Fx(x
2n−1

). This contradicts the fact that Fx(x
2n−1

)/Fx(x
2n) is a

two-dimensional (and hence minimal) field extension (cf. [9, Theorem
7, page 158]) and thus proves the above claim.

Consider any y < z in X. Since Fy(y) ⊆ Fz, it follows easily that

D := {L0, L} ∪ ∪x∈XDx

is a chain in S(L/L0) that goes from L0 to L. Note that

κ = |X| ≤ |D| ≤ ℵ0 · |X| = |X| = κ,

and so |D| = κ. We claim that D is a maximal chain. Suppose, on the
contrary, that there exists a field F ∈ S(L/L0) \ D such that D ∪ {F}
is a chain. Since ∪x∈X Fx = L, it follows from the fact that X is well
ordered that there exists a least z ∈ X such that F ̸⊇ Fz. Hence,
F ⊂ Fz and F ⊇ Fv for all v < z in X. Without loss of generality, we
can view X as an ordinal number, and so z is itself an ordinal number.
Of course, z ̸= 0, since F ̸⊂ L0 = F0. If z is a limit ordinal and v < z
in X, then Fv ⊆ F ⊂ Fz, which is a contradiction since the hypothesis
on z ensures that Fz = ∪v<z Fv. Therefore, z is a successor ordinal,
with z = z0+1 for some uniquely determined ordinal z0. It follows that
Fz0 ⊂ F ⊂ Fz = Fz0+1 = Fz0(z0), which contradicts the maximality of
Dz0 . This proves the claim that D is a maximal chain.

The required chain is defined as Hκ := C ∪ D. By Lemma 2.1, Hκ

is a maximal chain in S(L/K0) going from K0 = Q to L. Evidently,
|Hκ| = |C| + |D| = ℵ0 + κ = κ. Finally, given an infinite cardinal
number ν < κ, note that there exist a well-ordered set (actually, an
initial segment) Y ⊂ X without a maximal element such that |Y | = ν.
ReplacingX with Y in the above construction would produce a suitable
chain Hν . It is clear from the above construction that Hν ⊂ Hκ. �
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We next collect some comments about the preceding result.

Remark 2.3. (a) The proof of Theorem 2.2 can be shortened. Indeed,
after establishing the result for the case where κ is finite, one can handle
the case of infinite κ by taking L := Q(X) and making the obvious
modifications to the proof that was given above for the case κ > ℵ0.
In this way, one would have a proof of Theorem 2.2 which does not
mention J-extensions and which does not need to appeal to Lemma 2.1.
However, the above, longer, proof and Lemma 2.1 were included for
the following reasons. First, J-extensions and the case κ = ℵ0 will
play a unique role early in Section 4: see the comment following the
statement of Theorem 4.3. Second, when proving an assertion about
infinite cardinals, it is often illuminating to give a proof for the case of
ℵ0 that is as concrete as possible.

(b) For infinite ν < κ, perhaps the principal improvement that
Theorem 2.2 provides when compared with [4, Example 2.5] is that
the chains that were obtained above are “nested,” in the sense that
Hκ is simply an elongation of Hν . This fact should not be obscured
by the facts that we began with a specific (but arbitrary) κ and that
we worked inside a specific field extension L/K while handling all the
infinite cardinals ν that are less then or equal to κ. This formulation
was used because the class of all the relevant ν then formed a set (and
hence was susceptible to an argument involving well ordering).

Unfortunately, we cannot conclude that λ(L/K) = κ in Theorem 2.2
for every infinite cardinal κ. The reason has nothing to do with the
construction that was used in the above proof. Indeed, for each model
with ZFC, some such κ is not a λ-value: see Theorem 4.5 below for
this and for a complete answer to the motivating question of Roger
Wiegand.

We close the section by pursuing a theme from [5, Corollary 3.8] and
[3, Example 2.3], namely, by extending Theorem 2.2 to higher Krull
dimensions. Recall that if D is an integral domain with quotient field
F , then by an overring of D, we mean a ring E such that D ⊆ E ⊆ F .
As usual, we take dim (R), the Krull dimension of a commutative unital
ring R, to be the supremum of the lengths of chains of prime ideals of
R, but when that supremum is infinite, we will view it as a cardinal
number (not simply as ∞).



1478 DAVID E. DOBBS AND RAYMOND C. HEITMANN

Corollary 2.4. Let κ, d be nonzero cardinal numbers such that κ ≥
d + 1. Then there exists an integral domain R of Krull dimension d
that has a maximal chain C∗ of overrings going from R to its quotient
field such that |C∗| = κ.

Proof. Let ν be a nonzero cardinal number satisfying ν+d = κ. (The
hypotheses on κ and d guarantee the existence of such ν. Note that ν is
uniquely determined unless κ = d is infinite, in which case any cardinal
number ν ≤ d can be used.) By Theorem 2.2, there exists a field
extension K ⊆ L and a maximal chain C of intermediate fields going
from K to L such that |C| = ν. Next, let V be a valuation domain
of Krull dimension d such that V = L + M , where M denotes the
unique (nonzero) maximal ideal of V . Then the integral domain R :=
K +M has the asserted properties. To see this, one uses the standard
properties of the classical D + M construction, as summarized in [2,
Theorems 2.1 and 3.1]. First, one checks that E := {A +M | A ∈ C}
is a maximal chain of rings going from R to V . Next, recall from [2,
Theorem 3.1] that each overring of R (inside the quotient field of R) is
comparable with V under inclusion and, since V is a valuation domain,
note that F := {VP | P is a nonmaximal prime ideal of V } is the unique
maximal chain of proper overrings of V (inside the quotient field of R).
Consequently, C∗ := E ∪ F is a maximal chain of overrings of R. Since
this is a disjoint union, its cardinality is |E|+ |F| = |C|+d = ν+d = κ.
Finally, dim (R) = dim (K) + dim (V ) = 0 + d = d. �

Remark 2.5. (a) The restrictions on κ and d in Corollary 2.4 cannot
be deleted. Indeed, if R is an integral domain having a chain of prime
ideals Pd ⊃ Pd−1 ⊃ · · · ⊃ P0 = 0 for some positive integer d and if C
is any maximal chain of overrings of R (inside its quotient field) that
contains {RPi}, then |C| ≥ |{RPi}| = d+ 1.

(b) In view of Corollary 2.4 and (a), the referee has asked if a
maximal chain of overrings of an integral domain R (inside the quotient
field of R) must be of cardinality at least dim (R).

3. Special and traditional generating sets of a field exten-
sion. Let L/K be a field extension. It will be convenient to say that
L/K is infinitely generated if there is no finite subset S of L such that
K(S) = L. Of course, regardless of whether L/K is infinitely gener-
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ated, this field extension does contain some generating sets, that is, sets
S such that K(S) = L. In this brief section, we introduce two kinds
of generating sets that are of particular interest when L/K is infinitely
generated, namely, special generating sets (sgs) and traditional gener-
ating sets (tgs). The results given below show that if L/K is infinitely
generated, then the study of its generating sets leads to an infinite car-
dinal number ℵα which depends only on L/K and which will be used in
our main result, Theorem 4.3, to characterize λ(L/K) whenever L/K
is not countably generated.

Lemma 3.1 will be of particular use for algebraic field extensions,
but the underlying definition can be given more generally. Let L/K
be a field extension. Let W be any subset of L such that K(W ) = L.
We can view W as {wβ | β is an ordinal number such that β < α}
for some ordinal α. For each β < α, let Wβ := {wγ | γ < β}, and let
I := {β | wβ /∈ K(Wβ)}. Then let Y := {wβ | β ∈ I} be indexed by
the well-ordered set I. Any set Y that can be built in this way will be
called an sgs (or special generating set) of L/K. Note that if an sgs
Y of L/K is built via a set W such that K(W ) = L, then Y satisfies
K(Y ) = L (since there cannot exist a least element of W which is not
in K(Y )).

It will be helpful, for any field extension L/K, to view [L : K], the
K-vector space dimension of L, as a cardinal number. In [4, Example
2.5], it was shown that if ℵα is any infinite cardinal number, then there
exists an algebraic field extension L/K such that [L : K] = ℵα.

Lemma 3.1. Let L/K be a field extension. Then:

(a) If L = K(W ) for some set W , then there exists a special
generating set Y of L/K such that Y ⊆ W . Thus, there exists
a special generating set of L/K.

(b) Let Y be any special generating set of L/K. Then Y is linearly
independent over K, and there exists a well-ordered chain C in
S(L/K) which is order-isomorphic to Y and so |C| = |Y |. If,
in addition, L/K is infinite-dimensional and algebraic (that is,
infinitely generated and algebraic), then [L : K] = |Y |.

Proof.

(a) The first assertion was proved in discussing the above construc-
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tion. The second assertion then follows from the case W := L
of the first assertion.

(b) If we had a linear dependence relation among the elements of
Y , then each of those occurring with nonzero coefficient would
be in the K-span of the others having nonzero coefficient. In
particular, this would apply to the largest of the elements oc-
curring with nonzero coefficient. But we know this element
is not in the subfield of L generated over K by the smaller
elements, let alone in their K-span. Since any linearly inde-
pendent subset of a vector space can be extended to a basis, it
follows that |Y | ≤ [L : K].

Next, we can construct the desired chain C as follows. For each
y ∈ Y , consider the field Fy := K({z ∈ Y | z ≤ y}) ∈ S(L/K), where
≤ is the well ordering of some set W that led to the chosen construction
of Y . It is clear that, if y1 ≤ y2 in Y , then Fy1 ⊆ Fy2 . Moreover,
if y ∈ Y , the construction of Y ensures that y is not a member of
∪{K(Yz) | z ∈ Y, z < y} = ∪{Fz | z ∈ Y, z < y}. Therefore, the
assignment y 7→ Fy sets up a bijection between Y and {Fy | y ∈ Y }, and
so the latter set is a suitable C. In particular, C inherits the property
of being well ordered from (the indexing set I of) Y .

It remains to prove that [L : K] ≤ |Y | under the hypothesis that
L/K is infinite-dimensional and algebraic. Note that this hypothesis
guarantees that the sgs Y is infinite. If y ∈ Y , then the integer

ny := [K(y) : K] ≥ 2 and K(y) =
∑ny−1

i=0 Kyi. Consider the infinite
set Σ of finite products defined by

Σ := {ye11 · · · yett | t a positive integer, y1, . . . , yt ∈ Y,

1 ≤ ei ≤ nyi for each i}.

By algebraicity, K(Y ) = K[Y ] = K +
∑

z∈Σ Kz. Therefore, Σ ∪ {1}
contains a K-basis of L, and so [L : K] ≤ |Σ|. However, by the usual
laws for arithmetic for infinite cardinal numbers (which hold since our
riding assumptions include ZFC), |Σ| = |Y |. Thus, [L : K] ≤ |Y |, to
complete the proof. �

We next introduce a very useful kind of generating set of a field
extension L/K. Let X be a transcendence basis of L/K, and let Y be a
special generating set of L/K(X). (The existence of such X is classical,
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and the final assertion of Lemma 3.1 (a) then gives the existence of such
Y .) Note that Z := X ∪ Y is a generating set of the field extension
L/K, since K(Z) = K(X)(Y ) = L. Any such generating set Z of
the above form will be called a tgs (or traditional generating set) of
L/K. We next show that all the traditional generating sets of a given
infinitely generated field extension have the same cardinality.

Proposition 3.2. Let L/K be a field extension. Then:

(a) Let W be a subset of L such that K(W ) = L. Then W
contains a traditional generating set of L/K; that is, there exist
a transcendence basis X of L/K and a special generating set Y
of L/K(X) such that X ∪ Y ⊆ W .

(b) L/K has a traditional generating set.
(c) Suppose, in addition, that L/K is infinitely generated. Then

any two traditional generating sets of L/K have the same
cardinality ; in other words, if X1 and X2 are transcendence
bases of L/K with Y1 a special generating set of L/K(X1)
and Y2 a special generating set of L/K(X2), then |X1 ∪ Y1| =
|X2 ∪ Y2|.

Proof.

(a) It is standard that W contains some transcendence basis X
of L/K. Since K(X)(W \ X) = L, it follows from the first
assertion in Lemma 3.1 (a) that W \ X contains a special
generating set Y of L/K(X).

(b) Apply (a), with W := L.
(c) For i = 1, 2, let Zi := Xi ∪ Yi. Since Xi ∩ Yi = ∅ and Zi is

infinite by the assumption on L/K, we have |Zi| = |Xi|+ |Yi| =
max(|Xi|, |Yi|). Note also that |X1| and |X2| are equal, since
each of these equals the transcendence degree of the extension
L/K. Now, suppose that the assertion fails. Without loss of
generality, |Z2| < |Z1|. We have |X1| = |X2| ≤ |Z2| < |Z1|
and so |Y1| = |Z1| is infinite. So by Lemma 3.1 (b), [L :
K(X1)] = |Y1| = |Z1|. Also, since K(X1 ∪ Z2) = L, it follows
from Lemma 3.1 (a) that the extension L/K(X1) has a special
generating set Y such that Y ⊆ Z2. Again, by Lemma 3.1 (b),
|Y | = [L : K(X1)] = |Z1|. Then |Z1| = |Y | ≤ |Z2| < |Z1|, a
contradiction, which completes the proof. �
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The next result follows immediately from Proposition 3.2.

Corollary 3.3. Let L/K be an infinitely generated field extension.
Let ℵα be the infinite cardinal number which is the infimum of the
cardinalities of generating sets of L/K. Then L/K has a traditional
generating set of cardinality ℵα, and each traditional generating set of
L/K has cardinality ℵα.

It is easy to produce examples showing that the assertions in Propo-
sition 3.2 (b) and Corollary 3.3 would fail if one deleted the hypothesis
that the field extension L/K is infinitely generated. For instance, if an
element x is transcendental over a field K, then L := K(x) is a finitely
generated field extension of K but L/K has traditional generating sets
with unequal cardinalities: consider the tgs X1∪Y1 and X2∪Y2, where
X1 := {x2}, Y1 := {x}, X2 := {x} and Y2 := ∅.

4. Not every infinite cardinal is a λ-value. In this section, we
will reduce the computation of λ(L/K) to strictly a problem in logic.
The bulk of the section will be devoted to this reduction. Our results
will allow us to show that the motivating question of Roger Wiegand
has a negative answer and, in fact, allow us to give a complete picture
of the situation when the generalized continuum hypothesis (GCH)
holds. However, it should be noted that the main result in this section
is independent of GCH. We begin with a definition.

Definition 4.1. Let ℵα be an infinite cardinal, U a set of cardinality
ℵα, and V the set of all chains that consist of subsets of U . Set
Ω(ℵα) := sup{|C| | C ∈ V }.

It seems reasonable that the actual value of Ω(ℵα) depends upon the
model we choose for our set theory. Although determining Ω(ℵα) may
not be an algebra question, the main result of this section shows that
determining the value of Ω(ℵα) is central to answering questions such
as that of Roger Wiegand. We will state that main result as Theorem
4.3. First, we determine a significant value of Ω(ℵα).

Proposition 4.2. Ω(ℵ0) = 2ℵ0 .
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Proof. For each real number r, consider the set Br := {q ∈ Q | q <
r}. Since Q is order-dense in R, it follows that if r1, r2 ∈ R, then
r1 < r2 if and only if Br1 ⊂ Br2 . Thus, C := {Br | r ∈ R} is a
chain of subsets of Q such that |C| = |R| = 2ℵ0 . As Q has cardinality
ℵ0, the assertion therefore follows from the definition of Ω(ℵα) when
α = 0. �

It is not a coincidence that the proof of Proposition 4.2 is reminiscent
of the construction of R via Dedekind cuts in Q. In fact, for any
infinite cardinal number κ = ℵα, the concept that we have denoted
by Ω(ℵα) has appeared in the literature as follows (cf. [1, page 87]):
ded (κ) := sup{λ | there is a linear order of cardinal κ with λ Dedekind
cuts}. The interested reader can easily verify that Ω(ℵα) and ded (κ)
define the same quantity. Our form of the definition of Ω(ℵα) seems
more intuitively connected to the problem at hand, and so our methods
will not emphasize Dedekind cuts.

For an infinitely generated field extension L/K, it will be convenient
to say that L/K is minimally generated by ℵα elements to mean that
ℵα is the infimum of the cardinalities of the generating sets of L/K. In
this context, Corollary 3.3 showed that each tgs (traditional generating
set) of L/K has cardinality ℵα.

Theorem 4.3. Let L/K be an infinitely generated field extension which
is minimally generated by ℵα elements, for some ordinal number α > 0.
Then λ(L/K) = Ω(ℵα) (= ded (ℵα)).

We pause to explain why the case α = 0 was excluded from
the statement of Theorem 4.3. If L/K is a J-extension, then [4,
Proposition 2.7] shows that L/K is minimally generated by ℵ0 elements
and λ(L/K) = ℵ0. But we showed in Proposition 4.2 that Ω(ℵ0) = 2ℵ0

(> ℵ0).

Before proceeding to the proof of Theorem 4.3, we will show (in
Theorem 4.5) how it answers our question. First, Lemma 4.4 gives
some key bounds.

Lemma 4.4. Let ℵα be any infinite cardinal. Then ℵα < Ω(ℵα) ≤ 2ℵα .
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Proof. Let U be a set of cardinality ℵα and V the set of all chains of
subsets of U . Any element of V has its cardinality bounded above
by the (cardinal) number of subsets of U , and so it is clear that
Ω(ℵα) ≤ 2ℵα . It remains only to prove the first inequality. Let ℵβ

be the smallest cardinal such that ℵα < 2ℵβ . Note that ℵβ ≤ ℵα, and
so β ≤ α. To complete the proof, it suffices to construct a chain in V
of cardinality 2ℵβ .

Let S be the smallest ordinal with cardinality ℵβ , and let W be the
set of all subsets of S which have a maximal element. For each x ∈ S,
let Wx be the set of all subsets of S which have maximal element x.
Then |W | =

∑
x∈S |Wx| ≤ |S| ·sup{|Wx| | x ∈ S} ≤ ℵβ ·ℵα = ℵα. (The

preceding argument used the fact that each |Wx| ≤ ℵα. To see why
this holds, note that x can be viewed as an ordinal γ such that γ < ℵβ .
As S can be identified with ℵβ as ordinal numbers, |γ| < ℵβ , and so it

follows from the minimality of S that ℵα ≥ 2|γ|. On the other hand,
|Wx| ≤ 2|γ| ≤ ℵα, as asserted.) Hence (since we can view S ⊆ U), it
will suffice to find a chain of subsets of W which has cardinality 2ℵβ .

Let T be the set of subsets of S. Notice that W ⊂ T . We first
construct a chain of subsets of T which has cardinality 2ℵβ . We can
put a “lexicographic” order on T as follows. Suppose A,B are distinct
elements of T . Let x be the least element in (A \ B) ∪ (B \ A). Then
we say that A < B precisely if x ∈ B. Finally, for each A ∈ T , let
DA := {H ∈ W | H ≤ A}. Suppose A < B in T . It is straightforward
to check that < is transitive, and so DA ⊆ DB . Consider the least
element x ∈ B \ A. Let H := B ∩ {y ∈ S | y ≤ x}. Then H ∈ W and
A < H ≤ B. In particular, H ∈ DB \DA. Thus, DA ⊂ DB . Therefore,
C := {DA | A ∈ T} is a chain of cardinality |T | = 2|S| = 2ℵβ . Since
each DA ⊆ W , C is the required chain. �

Although we found it useful to give a direct proof of Proposition 4.2,
its conclusion also follows from Lemma 4.4. Indeed, if one takes α = 0
in the proof of Lemma 4.4, that proof shows that β = 0 satisfies
2ℵβ ≤ Ω(ℵα) ≤ 2ℵα , whence Ω(ℵ0) = 2ℵ0 .

We next show that in any model of ZFC, some infinite cardinal is not
obtained as a λ-value. Note that the proof of Theorem 4.5 depends on
Theorems 4.3 and 4.6 (whose proofs will be completed later). Note also
that since Roger Wiegand’s motivating question was in the context of
the approach in [5]; that question is completely answered by Theorem
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4.5 (a). In regard to the hypotheses of that part of the next result,
recall that ZF +GCH implies the Axiom of Choice (cf. [10, Theorem
6.12.3, page 351]).

Theorem 4.5.

(a) Assume that the generalized continuum hypothesis (GCH) holds
(along with ZFC). Then an infinite cardinal number ℵα is
achievable as λ(L/K) for some field extension L/K if and only
if either α = 0 or α is a successor ordinal. In particular (given
GCH), ℵω is not a λ-value.

(b) (Without assuming GCH). If α > 0 and ℵα is a cardinal
number with the property that 2ℵβ < ℵα whenever β < α,
then there does not exist a field extension L/K such that
λ(L/K) = ℵα. In particular, if κ denotes the supremum of
the denumerable sequence of cardinals which starts with ℵ0,
and where each subsequent term is the cardinality of the power
set of the term preceding it, then for any field extension L/K,
κ ̸= λ(L/K).

Proof.

(a) If we assume the generalized continuum hypothesis, there are
no cardinals strictly between ℵα and 2ℵα , and so Lemma 4.4
can be restated as Ω(ℵα) = 2ℵα . Recall from [4, Proposition
2.7 (b)] that ℵ0 = λ(L/K) for any J-extension L/K. Hence,
by Theorem 4.3, the infinite cardinals other than ℵ0 that are
achievable as λ(L/K) for some field extension L/K which
is minimally generated by ℵγ elements for some γ > 0 are
precisely the values 2ℵα = ℵα+1, i.e., the successor cardinals.
Moreover, if a field extension L/K is minimally generated by
ℵ0 elements, then λ(L/K) must be either ℵ0 or ℵ1, since
Theorem 4.6 and Proposition 4.2 combine to show that ℵ0 ≤
λ(L/K) ≤ Ω(ℵ0) = 2ℵ0 (= ℵ1 using GCH).

(b) In the general case (without assuming GCH), suppose the first
assertion fails. Then there exists α > 0 such that ℵα is a
cardinal number with the property that 2ℵβ < ℵα whenever
β < α, and ℵα = λ(L/K) for some field extension L/K that
is minimally generated by ℵγ elements for some γ ≥ 0. Since
ℵα > 2ℵ0 , we can use Theorem 4.6 and Proposition 4.2 as
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in part (a) to rule out the γ = 0 case. Then Theorem 4.3
gives ℵα = Ω(ℵγ). As ℵα is a supremum, there exists an
index β such that ℵγ < ℵβ < ℵα. Thus, by Lemma 4.4,
Ω(ℵγ) ≤ Ω(ℵβ) ≤ 2ℵβ < ℵα. This contradiction proves the
first assertion of (b). As for the second assertion, note that the
cardinal κ described there (and for that matter, every cardinal
that occurs as a limit cardinal under the GCH assumption)
satisfies the hypothesis on ℵα specified in the first assertion of
(b). �

We shall prove Theorem 4.3 by reducing it to two theorems, namely,
Theorem 4.6 (λ(L/K) ≤ Ω(ℵα)) and Theorem 4.12 (λ(L/K) ≥ Ω(ℵα)).
The proof of the first is reasonably straightforward, and we will get to
it fairly quickly. However, the second is more difficult and will require
a series of lemmas. The ideas behind the proof are relatively simple
but are easily obscured by the details. So it is best to give an outline
of the proof of Theorem 4.12 at this point.

Let K ⊆ L be an infinitely-generated field extension, and let ℵα

be the least cardinality of a generating set for L over K. To prove
Theorem 4.12, it will suffice to show that if there exists a chain of
cardinality ℵβ that consists of subsets of a set of cardinality ℵα, then
we can find a chain of intermediate fields of L/K with cardinality ℵβ .
We shall get this by showing something even stronger, namely

(∗) L contains a subset T of cardinality ℵα such that intermediate
fields generated over K by distinct subsets of T are distinct.

Once we have (∗), we simply choose a chain of subsets of T of the
desired cardinality and then this chain induces the desired chain of
intermediate fields.

The proof of (∗) will be broken into several cases. If L/K has the
largest transcendence degree possible under our hypothesis, namely ℵα,
then any transcendence basis for L/K can serve as the desired T . If
L/K has smaller transcendence degree, we can reduce to the case where
L/K is algebraic. In this case, we shall see (Lemma 4.10) that the proof
is relatively easy if L is generated over K by a set of elements that are
algebraic of bounded degrees.

If α is not the supremum of countably many smaller ordinals (i.e.,
if ℵα has uncountable cofinality), then among the members of an
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appropriate sort of generating set, some degree must occur ℵα times,
and this will allow us to reduce to the above mentioned bounded-degree
case (Lemma 4.11). The result is harder to show if α is the supremum
of countably many smaller ordinals d1 < d2 < · · · . In this situation,
we prove (Lemma 4.9) that L contains a countable family of subfields
which are linearly disjoint over a common subfield, and whose degrees
over that subfield are, respectively, ℵd1 ,ℵd2 , . . . . Inductively applying
our result to these subextensions, and letting T be the union of the
resulting sets T1, T2, . . ., we obtain (∗) in this case as well.

Now we are ready for the easier half of our main theorem.

Theorem 4.6. Let L/K be an infinitely generated field extension. Let
X be a transcendence basis of L/K, and let Y be a special generating
set for the (algebraic) field extension L/K(X). Suppose |X ∪ Y | = ℵα

(which is the infinite cardinal such that L/K can be minimally generated
by ℵα elements). Then λ(L/K) ≤ Ω(ℵα).

Proof. Suppose the theorem is false. Then there exists a chain
{Fi | i ∈ I} in S(L/K) that has cardinality ℵβ > Ω(ℵα). It is harmless
to suppose that Fi ̸= Fj whenever i ̸= j. Let U be the set of finite
subsets of X. It is easy to check that |U | ≤ ℵα. For each i, let
Ui := {D ∈ U | D is algebraically independent over Fi}. Observe
that if Fi ⊂ Fj , then Ui ⊇ Uj . Thus, {Ui} is a chain. Note that
repetition is permitted; that is, it is possible that Ui = Uj with i ̸= j.
For each subset U ′ of U , define ρ(U ′) := |{i | Ui = U ′}|. Note that
ρ(U ′) ≤ |I| = |{Fi}| = ℵβ for each U ′. Let V := {U ′ | ρ(U ′) > 0}. By
the above observation, V is a chain in U . As |U | ≤ ℵα, it follows from
the definition of Ω(−) that |V | ≤ Ω(ℵα).

Now |I| =
∑

U ′⊆U ρ(U ′) =
∑

U ′∈V ρ(U ′). By using the definition of
addition and multiplication of cardinal numbers, one can easily see
that |I| = ℵβ ≤ |V | · supU ′ ρ(U ′) ≤ Ω(ℵα) · supU ′ ρ(U ′). Hence,
sup(ρ(U ′)) ≥ ℵβ (by the assumption on ℵβ). But the reverse inequality
is trivial since each ρ(U ′) ≤ |I|. Thus, sup(ρ(U ′)) = ℵβ . Hence, there
exists at least one subset U ′ of U such that ρ(U ′) > Ω(ℵα). Fix one
such U ′. Since the only property of ℵβ that we have used is that it
is larger than Ω(ℵα), we can assume, without loss of generality, that
ρ(U ′) = ℵβ .

Next, replace the chain {Fi} with its subchain that consists of the
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fields for which Ui = U ′. Since the new chain still has cardinality
ℵβ , it is harmless to continue denoting the new chain by {Fi}. Let
X ′ ⊆ X be a transcendence basis of the field extension L/Fi for
some i. We claim that, in fact, X ′ ⊆ X is a transcendence basis
of L/Fj for every j. To see this, we first show X ′ is algebraically
independent over Fj . If not, then some nonempty finite subset D ⊆ X ′

is algebraically dependent over Fj . Then D /∈ Uj = U ′ = Ui, and so D
is algebraically dependent over Fi, contradicting the assumption that
X ′ is a transcendence basis of L/Fi. This gives the asserted algebraic
independence of X ′ over Fj . To finish the proof of the claim, we must
also show that L is algebraic over Fj(X

′). It suffices to prove that any
x ∈ X is algebraic over Fj(X

′). (Indeed, it would then follow that
Fj(X) is algebraic over Fj(X

′); and hence, since L is algebraic over
Fj(X), that L is algebraic over Fj(X

′).) Now x is algebraic over Fi(X
′),

and so x is necessarily algebraic over Fi(xi, . . . , xn) for some finite set
of elements xi, . . . , xn ∈ X ′. Then, we have {x1, . . . , xn} ∈ Ui = Uj

and {x, x1, . . . , xn} /∈ Ui = Uj . This gives L algebraic over Fj(X
′) and

completes the proof of the above claim.

For each i, consider the field Ei := Fi(X
′). We claim that if Fi ⊂ Fj ,

then Ei ⊂ Ej . It is clear that Ei ⊆ Ej . Thus, to prove the claim, it
suffices to show that if t ∈ Fj \ Fi, then t /∈ Ei. If t ∈ Ei (= Fi(X

′)),
then t ∈ Fi(W ) for some finite subset W of X ′, so that t = f(W )/g(W )
for some nonzero polynomials f, g ∈ Fi[W ]. Of course, f and g cannot
both be constants (since t /∈ Fi), and so, since W is nonempty, the
equation f(W )−tg(W ) = 0 contradicts the fact that X ′ is algebraically
independent over Fj . This proves the above claim. Therefore, there
is no harm in replacing the chain {Fi} with {Ei} (since |{Ei}| = ℵβ).
Thus, L/Fi is an algebraic extension for each i. In addition, setting
Z := X ∪ Y , we have L = Fi(Z) for each i.

Let Z⋆ be the multiplicative submonoid of L that is generated by
the elements of Z. It is easy to check that |Z⋆| = ℵα. Since we have
reduced to the case where L is algebraic over Fi, it is also easy to
see that, for each i, Z⋆ is a spanning set for L viewed as a vector
space over Fi. (We will use this fact in the final paragraph of this
proof.) We will now use a process mimicking the one we used above for
transcendence bases. Let U∗ be the set of finite subsets of Z⋆. Clearly,
|U∗| = ℵα. For each i, let U∗

i = {D ∈ U∗ | D is a linearly independent
set over Fi}. Observe that if Fi ⊂ Fj , then U∗

i ⊇ U∗
j . Thus, {U∗

i } is
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a chain (with repetition permitted). For each subset W ′ of U∗, define
ρ(W ′) := |{i | U∗

i = W ′}|. Note that ρ(W ′) ≤ |I| = |{Fi}| = ℵβ for
each W ′. Let V ∗ := {W ′ | ρ(W ′) > 0}. By the above observation, V ∗

is a chain in U∗. As |U∗| = ℵα, it follows that |V ∗| ≤ Ω(ℵα).

As before, we see that |I| =
∑

W ′⊆U∗ ρ(W ′) =
∑

W ′∈V ∗ ρ(W ′).
By using the definition of addition and multiplication of cardinal
numbers, one can easily see that |I| = ℵβ ≤ |V ∗| · supW ′ ρ(W ′) ≤
Ω(ℵα) · supW ′ ρ(W ′). Therefore, sup(ρ(W ′)) ≥ ℵβ (by the assumption
on ℵβ). Thus, there exists at least one subset W ′ of U∗ such that
ρ(W ′) > Ω(ℵα). Fix one such W ′. Since Ω(ℵα) > 1, we can choose
Fi ⊂ Fj such that U∗

i = W ′ = U∗
j . Finally, as noted above, we may

choose a subset B of Z⋆ which is a basis for L as a vector space over
Fi. Since U∗

i = U∗
j , a finite subset of Z⋆ is linearly independent over

Fi if and only if it is linearly independent over Fj . Hence, each finite
subset of B is necessarily linearly independent over Fj . Consequently,
B is also a basis for L over Fj .

Suppose ξ ∈ Fj \ Fi, and let b ∈ B. Then ξb is the unique way of
expressing the element ξb of L as a linear combination of elements of
B with coefficients in Fj . So, since Fi ⊂ Fj and ξ /∈ Fi, ξb cannot be
in the Fi-vector space spanned by B, a contradiction which completes
the proof. �

The rest of this section is devoted to proving Theorem 4.12. First, we
need some background on linear disjointness. As in [9, pages 160–167],
consider field extensions F/K and L/K, with F and L both contained
in some field E, and let FL denote the K-subalgebra of E generated
by F ∪ L. (In our applications, F/K and L/K will be algebraic, in
which case FL is also the subfield of E generated by F ∪ L.) We say
that F and L are linearly disjoint (over K) if the surjective K-algebra
homomorphism F ⊗K L → FL,

∑
ai ⊗ bi 7→

∑
aibi for all ai ∈ F ,

bi ∈ L, is an injection (that is, a K-algebra isomorphism). This notion
of linear disjointness is equivalent to the following: each subset of F
that is linearly independent over K must be linearly independent over
L; and linear disjointness of F and L over K implies that F ∩ L = K.

The following lemma collects some useful facts about linear disjoint-
ness that will be used in the proof of Lemma 4.9. Its part (a) has been
noted before in [9, page 161], but we have not found a proof of it in the
literature, and so we have included an elementary proof of it. Part (b)
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of Lemma 4.7 is well known (cf. [9, Lemma, page 162], [8, Theorem
2.4, page 319]).

Lemma 4.7.

(a) Let F/K and L/K be field extensions, with F and L both
contained in a common extension field. Then F and L are
linearly disjoint over K if (and only if) some K-vector space
basis of F is linearly independent over L.

(b) Given fields A ⊆ D ⊆ L and A ⊆ B ⊂ C ⊆ L, then D and
C are linearly disjoint over A if and only if the following two
conditions hold: D and B are linearly disjoint over A and DB
and C are linearly disjoint over B.

(c) Given algebraic field extensions J0 ⊂ Ji ⊂ L for i = 1, 2, 3 such
that J2 and J3 are linearly disjoint over J0 and also such that
J1 and J2J3 are linearly disjoint over J0, then J1J2 and J1J3
are linearly disjoint over J1.

Proof. To prove (a), suppose that some K-vector space basis B =
{vi | i ∈ I} of F is linearly independent over L. It suffices to
show that if ξ ∈ F ⊗K L is sent to 0 by the canonical surjective
K-algebra homomorphism α : F ⊗K L → FL, then ξ = 0. In
view of the canonical isomorphisms F ⊗K L ∼= (⊕i∈IKvi) ⊗K L ∼=
⊕i∈I(Kvi ⊗K L) ∼= ⊕i∈I(K ⊗K L) ∼= ⊕i∈IL, we can write ξ uniquely
in the form ξ =

∑
i∈I vi ⊗ wi where each wi ∈ L and wi is 0 for all

but finitely many i ∈ I. Since 0 = α(ξ) =
∑

i viwi, the fact that B is
linearly independent over L gives wi = 0 for all i ∈ I, whence ξ = 0, as
required.

We will prove (c) using the above tensor product criterion for linear
disjointness, leaving an alternate proof that uses vector space bases
to the interested reader. (Although (b) is standard, the reader will
also easily find a proof of it that uses tensor products.) By the
hypotheses of (c), the multiplication maps f : J2 ⊗J0 J3 → J2J3
and g : J1 ⊗J0 J2J3 → J1(J2J3) are isomorphisms. The canonical
homomorphism J1 ⊗J0 J2 → J1 ⊗J0 J2J3 is injective since J1 is J0-flat,
and so the multiplication map J1⊗J0J2 → J1J2 inherits injectivity from
g. The same can be said for the multiplication map J1 ⊗J0 J3 → J1J3.
In addition, 1⊗f is a isomorphism from J1⊗J0 J2⊗J0 J3 to J1⊗J0 J2J3.
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It follows that J1J2 ⊗J1 J1J3 is isomorphic to

(J1 ⊗J0 J2)⊗J1 (J1 ⊗J0 J3)
∼= J1 ⊗J0 J2 ⊗J0 J3
∼= J1 ⊗J0 J2J3

∼= J1(J2J3).

It is straightforward to check that the resulting isomorphism is the
multiplication map from J1J2⊗J1J1J3 to J1(J2J3) = (J1J2)(J1J3). �

Theorem 4.8. Let α > 1 be an ordinal number, and let F/E be an
algebraic field extension such that [F : E] = ℵα. Consider any ordinal
number d < α. Then there exist fields Ed, Ld, Fd ∈ S(F/E) such that
E ⊆ Ed ⊂ Ld ⊆ F and Ed ⊂ Fd ⊆ F satisfying :

(i) Fd and Ld are linearly disjoint over Ed;
(ii) [Ld : Ed] = ℵd; and
(iii) [Fd : Ed] = ℵα.

Proof. Choose an sgs T of the field extension F/E. By the earlier
construction of such sets, T is a well-ordered set, F = E(T ), and
adjoining any element τ ∈ T to the field generated by E and the set
of predecessors of τ in T gives a proper field extension. Regarding
each cardinal as the least ordinal with its cardinality, and hence, in
particular, as a well-ordered set, we can give ℵ1 × ℵd lexicographic
order (under which (γ, δ) ≤ (γ′, δ′) if and only if either γ < γ′ or
both γ = γ′ and δ ≤ δ′), and note that it is then a well-ordered set
of cardinality < ℵα. Hence, by standard properties of well-ordered
sets, it is order-isomorphic to a unique initial segment of T , say, by
a map sending (γ, δ) ∈ ℵ1 × ℵd to tγ,δ ∈ T . Now, for each γ ∈ ℵ1,
let Sγ := {tγ,δ | δ ∈ ℵd}. The restriction of the above map gives an
order-isomorphism {γ} × ℵd → Sγ , and so ℵd

∼= Sγ . Also, for each
γ ∈ ℵ1, consider the field Eγ := E(

∪
β<γ Sβ) ∈ S(F/E). If β < γ in

ℵ1, it follows easily that Eβ ⊂ Eγ .

By Lemma 3.1 (b), |T | = ℵα. As ∪γ∈ℵ1Sγ has cardinality < ℵα,
T ′ := T \ ∪Sγ must have cardinality ℵα. Next, for each γ ∈ ℵ1 and
t ∈ T ′, consider the field Eγt := Eγ({t′ ∈ T ′ | t′ < t}). Then, for each
γ ∈ ℵ1, we define the function fγ : T ′ → Z by fγ(t) := [Eγt(t) : Eγt]
for each t ∈ T ′. If β < γ in ℵ1, it is clear that Eβt ⊆ Eγt, and
so fγ(t) ≤ fβ(t) for each t ∈ T ′. Since a strictly decreasing infinite
sequence of positive integers cannot exist, it follows that, for each
t ∈ T ′, only finitely many γ ∈ Γ exist such that fγ+1(t) < fγ(t).



1492 DAVID E. DOBBS AND RAYMOND C. HEITMANN

For each γ ∈ ℵ1 and t ∈ T ′, t satisfies a unique monic irreducible
polynomial; let us call it gtγ(X), in Eγt[X]. In other words, gtγ
is the minimum polynomial of t over Eγt. Thus, whenever β < γ
in ℵ1, gtγ divides gtβ in Eγt[X]. This forces these polynomials to
coincide when they have equal degrees, and so, for each t ∈ T ′, the set
Ct := {gtγ | γ ∈ ℵ1} is finite. For each gtγ ∈ Ct, choose the minimum
relevant γ and then fix any finite subset Utγ of {t′ ∈ T ′ | t′ < t} such
that all of the coefficients of gtγ lie in the field Eγ(Utγ). For each t ∈ T ′,
consider the finite set Ut := ∪{Utγ | gtγ ∈ Ct}.

Define ≼ to be the smallest transitive and reflexive binary relation
on T ′ such that t1 ∈ Ut implies t1 ≼ t. We claim that, for each t ∈ T ′,
the set Vt := {t′ ∈ T ′ | t′ ≼ t} is finite. Suppose that the claim is
false. Then, since T ′ is well-ordered, there exists a unique least t ∈ T ′

such that Vt is infinite. On the other hand, Ut is a finite subset of
Vt. Moreover, it follows from the nature of the transitive and reflexive
closure of a binary relation that Vt = {t} ∪

∪
{Vt′ | t′ ∈ Ut}. If t′ ∈ Ut,

the minimality of t ensures that Vt′ is finite. The upshot is that Vt is
finite, the desired contradiction, thus proving the above claim.

For all γ ∈ ℵ1, let Wγ := {t ∈ T ′ | fγ+1(t
′) < fγ(t

′) for some t′ ∈
Vt}. By the above comments, for each t ∈ T ′, only finitely many
γ exist such that t ∈ Wγ . We claim that γ ∈ ℵ1 exists such that
T ′ \ Wγ has cardinality ℵα. Suppose that this claim is false. Then,
for each γ ∈ ℵ1, there exists a smallest ordinal number mγ < α
such that |T ′ \ Wγ | ≤ ℵmγ . (Of course, we necessarily have equality
unless mγ = 0.) Let ∆ := {mγ | γ ∈ ℵ1}. For each m ∈ ∆, let
h(m) := |{γ ∈ ℵ1 | mγ = m}|. Then ℵ1 = |ℵ1| =

∑
m∈∆ h(m) ≤

|∆| · sup{h(m) | m ∈ ∆}. It follows that either |∆| = ℵ1 or there
exists m ∈ ∆ with h(m) = ℵ1. In the former case, we choose some
m ∈ ∆ with infinitely many predecessors in ∆, while in the latter case,
we choose m so that h(m) = ℵ1. In either case, |T ′ \ Wγ | ≤ ℵm for
infinitely many γ ∈ ℵ1; and, of course, m < α. Let Σ denote the infinite
subset of ℵ1 that consists of all such γ. As γ runs through Σ, the union
of this collection of sets of the form T ′ \ Wγ has cardinality at most
|ℵ1| · ℵm = ℵmax(1,m) < ℵα = |T ′|, and so this union must be a proper
subset of T ′. Therefore, ∩γ∈ΣWγ is nonempty, a contradiction (since
Σ is infinite). This proves the above claim.

Hereafter, we fix γ such that |T ′ \ Wγ | = ℵα. We will show that
Ed := Eγ , Ld := Eγ+1 and Fd := Ed(T

′ \ Wγ) have the asserted



REALIZING ℵα 1493

properties. By the construction of T , we can transfinitely adjoin each
element of T ′\Wγ successively to Ed, getting a proper field extension at
each step. As in the proof of Lemma 3.1 (b), it follows from algebraicity
that [Fd : Ed] = |T ′ \ Wγ | = ℵα, thus proving (iii). Similarly, since
Ld = Eγ(Sγ), we see that [Ld : Ed] = |Sγ | = ℵd, thus proving (ii). It
remains only to prove (i).

First, we claim that if t ∈ T ′ \ Wγ , then Ut ⊆ T ′ \ Wγ . If the
claim fails, pick s ∈ Ut ∩ Wγ . Since s ∈ Wγ , some t′ ∈ Vs satisfies
fγ+1(t) < fγ(t). However, since s ∈ Ut, we have s ≼ t, and so Vs ⊆ Vt

since ≼ is transitive. Thus, t′ ∈ Vt, and so t ∈ Wγ , a contradiction,
thus proving the claim.

For σ ∈ {γ, γ + 1}, consider Fσ := Eσ(T
′ \ Wγ). Then Fγ =

Fd = Eγ(T
′ \ Wγ) and Fγ+1 = Ld(T

′ \ Wγ) = LdFd. In each of
the field extensions Fγ/Eγ and Fγ+1/Eγ+1, the larger field can be
obtained from the smaller field by transfinitely/successively adjoining
the individual elements of T ′ \Wγ . Such adjunctions lead, in a natural
way, to vector space bases of the larger field over the smaller field.
By Lemma 4.7 (a), it suffices to prove that the natural Eγ-basis of
Fγ is also linearly independent over Eγ+1. This, in turn, holds if
[E∗

γt(t) : E∗
γt] = [E∗

γ+1,t(t) : E∗
γ+1,t] for every t ∈ T ′ \ Wγ , where

for σ ∈ {γ, γ + 1}, we define E∗
σt := Eσ({t′ ∈ T ′ \Wγ | t′ < t}). Now,

since Eσt ⊇ E∗
σt, it is clear that

[E∗
σt(t) : E

∗
σt] ≥ [Eσt(t) : Eσt] = deg (gtσ) = fσ(t).

However, for both of the possible values of σ, this inequality is an
equality, since gtσ ∈ E∗

σt[X], the point being that each coefficient of gtσ
belongs to Eσ(Ut) and (as we showed above) Ut ⊆ T ′ \Wγ . Therefore,
it suffices to prove that fγ+1(t) = fγ(t). But this holds since t /∈ Wγ .
The proof is complete. �

Lemma 4.9. Let α be an ordinal number for which there exists a
denumerable ascending chain d1 < d2 < · · · of ordinal numbers such
that sup{di} = α. Let L/K be an algebraic field extension such that
[L : K] = ℵα. Then there exist fields K ′,M1,M2,M3, . . . ∈ S(L/K)
such that K ⊆ K ′ ⊂ Mi ⊆ L for each positive integer i, satisfying

(i) if i, k1, . . . , km are finitely many pairwise distinct positive inte-
gers, the field composite

∏m
j=1 Mkj and Mi are linearly disjoint
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over K ′;
(ii) [Mi : K

′] = ℵdi
for each positive integer i.

Proof. For each n ≥ 1, we will use an inductive procedure to define
intermediate fields En, Fn, Ln. This will be done in such a way that,
for all n ≥ 1,

• K ⊆ En ⊂ Ln ⊆ L and En ⊂ Fn ⊆ L;
• En ⊇ En−1 and Fn ⊆ Fn−1, with E0 := K and F0 := L;
• [Ln : En] = ℵdn

and [Fn : En] = ℵα;
• Hn :=

∏n
i=1 Li and Fn are linearly disjoint over En; and

• (
∏

1≤j<n Lj)En and Ln are linearly disjoint over En.

For the induction basis, apply Lemma 4.8 to the case where F = L,
E = K, and d = d1. This gives us E1, L1 and F1. By Lemma 4.8,
these fields have all of the five bulleted properties for n = 1.

For the induction step, assume En, Fn, L1, . . . , Ln have been chosen
with the above properties. Apply Lemma 4.8 with F = Fn, E = En

and d = dn+1. This gives us En+1, Ln+1 and Fn+1. The first three
bulleted items are immediate from Lemma 4.8 (when n is replaced by
n + 1). To verify the remaining two bulleted items (concerning linear
disjointness), we will repeatedly make use of Lemma 4.7 (b).

By the induction assumptions, Hn and Fn are linearly disjoint
over En. As Fn+1Ln+1 ⊆ Fn, it follows that Hn and Fn+1Ln+1

are linearly disjoint over En. Hence, applying Lemma 4.7 (b), with
A = En, D = Hn, B = Ln+1 and C = Fn+1Ln+1, we find that
HnLn+1 and Fn+1Ln+1 are linearly disjoint over Ln+1. Also, we
know from Lemma 4.8 that Ln+1 and Fn+1 are linearly disjoint over
En+1. Now Hn+1 = HnLn+1 ⊇ En+1. Hence, we can use the reverse
direction of Lemma 4.7 (b), with A = En+1, D = Fn+1, B = Ln+1

and C = HnLn+1, to get that Hn+1 = HnLn+1 and Fn+1 are linearly
disjoint over En+1. This completes the proof of the induction step for
the fourth bulleted item.

We turn to the fifth bulleted item. By the induction hypothesis, Hn

and Fn are linearly disjoint over En. Thus, Hn and Ln+1 are linearly
disjoint over En. Using Lemma 4.7 (b), with A = En, B = En+1, C =
Ln+1 and D = Hn, we see that HnEn+1 and Ln+1 are linearly disjoint
over En+1. This completes the proof by induction of all five bulleted
items for all positive integers n.



REALIZING ℵα 1495

Set K ′ := ∪∞
n=0En and, for each positive integer i, set Mi := LiK

′.
Clearly K ′ ⊆ Mi. Now fix i. Since [Li : Ei] = ℵdi

(by the third
bulleted item), (ii) will follow if we find an isomorphismMi

∼= K ′⊗Ei Li

of vector spaces over K ′. First, note that, for all integers n ≥ i,
En ⊆ Fi, yielding K ′ ⊆ Fi. So by the fourth bulleted item, K ′ and Li

are linearly disjoint over Ei; that is, the canonical multiplication map
K ′ ⊗Ei Li → K ′Li = Mi is an isomorphism. This proves (ii).

We will prove (i) by contradiction. Suppose that m is minimal
such that (i) fails, with i, k1, . . . , km appearing in a counterexample
to (i). Let n := sup{i, k1, . . . , km}. We claim that (

∏m
j=1 Lkj )En

and LiEn are linearly disjoint over En. Suppose this claim fails. In
any event, the fifth bulleted item shows that the claim does hold if
n = i, as LiEn = Ln here. So, without loss of generality, i < n.
Also, since the ordering of k1, . . . , km does not matter, we may assume
n = k1. Then, by another application of the fifth bulleted item,
Li(

∏m
j=2 Lkj )En and Ln are linearly disjoint over En. Hence, by

Lemma 4.7 (b), Li(
∏m

j=2 Lkj )En and Ln(
∏m

j=2 Lkj )En are linearly

disjoint over (
∏m

j=2 Lkj )En. In addition, by the minimality of m,

(
∏m

j=2 Lkj )En and LiEn are linearly disjoint over En. (The preceding
assertion can be justified as follows. By reasoning as above and using
the minimality ofm, we getK ′⊗En (

∏m
j=2 Lkj )En

∼=
∏m

j=2 Mkj . Hence,

any subset of (
∏m

j=2 Lkj
)En that is linearly independent over En must

remain linearly independent over K ′. However, since m is minimal,
Mi and

∏m
j=2 Mkj are linearly disjoint over K ′. Thus, any subset

of (
∏m

j=2 Lkj )En that is linearly independent over En must remain
linearly independent over Mi and, a fortiori, linearly independent over
LiEn.) Therefore, an application of the “if” part of Lemma 4.7 (b), with
A = En, D = LiEn, B = (

∏m
j=2 Lkj )En and C = Ln(

∏m
j=2 Lkj )En,

shows that m cannot be part of a counterexample to the above claim.
This proves the claim.

Because linear disjointness is a finitistic condition, the assumption
that

∏m
j=1 Mkj and Mi are not linearly disjoint over K ′ means that

there is a positive integer d ≥ n such that (
∏m

j=1 Lkj )Ed and LiEd

are not linearly disjoint over Ed. (Since tensor product commutes
with direct limit, the preceding assertion can also be seen via the
tensor product view of linear disjointness.) Choose d minimal with
this property. By the claim established above, d > n. Hence, by the
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minimality of d, we have that (
∏m

j=1 Lkj )Ed−1 and LiEd−1 are linearly

disjoint over Ed−1. To prove (i), it suffices to show that this fact, in
conjunction with the fact that (

∏m
j=1 Lkj )Ed and LiEd are not linearly

disjoint over Ed, leads to a contradiction.

Since the above inductive construction ensures that Eν+1 ⊆ Fν

whenever ν ≥ 1 and d ≥ 2, we have Ed ⊆ Fd−1. Therefore,
since Hd−1 and Fd−1 are linearly disjoint over Ed−1, it follows that
(
∏m

j=1 Lkj )LiEd−1 and Ed are linearly disjoint over Ed−1. Next, apply

Lemma 4.7 (c) to J0 := Ed−1, J1 := Ed, J2 := (
∏m

j=1 Lkj
)Ed−1 and

J3 := LiEd−1. The upshot is that Ed

∏m
j=1 Lkj and EdLi are linearly

disjoint over Ed, the desired contradiction. �

Lemma 4.10. Suppose L/K is an algebraic field extension with [L :
K] = ℵd, for some ordinal d, and let n be a positive integer. Suppose
U is an sgs of L/K with the property that [K(t) : K] ≤ n for every
t ∈ U . Then there exists an intermediate field F with K ⊆ F ⊆ L such
that F = K(T ) for some set T of cardinality ℵd with the property that,
for any subsets S1 and S2 of T , one has that K(S1) = K(S2) (if and)
only if S1 = S2.

Proof. We prove the result by induction on n. The base step n = 1
is vacuously true. For the induction step, assume the lemma holds for
n − 1. First, consider the special case where there is a subset V of
U such that [L : K(V )] = ℵd and [K(V )(t) : K(V )] < n for every
t ∈ U . Then, by the induction hypothesis, the extension L/K(V ) must
satisfy the conclusion of the lemma. We thus find a subset T ⊆ L of
cardinality ℵd with the property that, for any subsets S1 and S2 of T ,
one has that K(V )(S1) = K(V )(S2) only if S1 = S2. Clearly then,
K(S1) = K(S2) only if S1 = S2, and so T is the desired set in the
special case. Hereafter, we assume, without loss of generality, that no
V exists with the above properties.

Next, we describe a transfinite recursive procedure that will con-
struct a well-ordered subset T of U such that |T | = ℵd. This transfinite
procedure can be indexed by a subset of the sgs (hence well-ordered set)
U .

Choose the least element of T to be the least element τ ∈ U whose
minimal polynomial over K has degree n. (Such an element must
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exist, for otherwise, the empty set would be a set V with the above
properties.) Observe that [L : K(τ)] = ℵd (since [K(τ) : K] < ∞).
Now, let S be the subset of (the desired set) T that has been constructed
up to some specific step of the transfinite process. If [L : K(S)] < ℵd,
the process terminates, with T = S, as S is clearly an sgs of K(S)/K,
with Lemma 3.1 (b) ensuring that |S| = [K(S) : K] = ℵd. Thus,
without loss of generality, [L : K(S)] = ℵd. Because S cannot satisfy
the properties of V specified in the special case, there must exist an
element t ∈ U whose minimal polynomial over K(S) has degree n.
Choose the least such element t to be the next element of T .

Now that T has been constructed, consider the field F := K(T ).
It remains only to prove that if S1 and S2 are subsets of T such that
K(S1) = K(S2), then S1 = S2. First, note that if t1 ≤ · · · ≤ tk in T ,
then an easy induction on k shows that [K(t1, . . . , tk) : K)] = nk. (For
this induction, it is helpful to recall that [K(τ) : K] = n.) Suppose the
assertion fails. We can, without loss of generality, choose x ∈ S1 \ S2.
Then x ∈ M := K(y1, . . . , ym) for some y1 < · · · < ym in S2. As N :=
K(y1, · · · , ym, x) = M , we have nm = [M : K] = [N : K] = nm+1.
Since n > 1, we have the desired contradiction. �

Lemma 4.11. Let d be any nonzero ordinal number which is not the
supremum of any countable set of smaller ordinals. (Any successor
ordinal has this property.) Suppose L/K is an algebraic field extension
with [L : K] = ℵd. Then there exists an intermediate field F with
K ⊆ F ⊆ L such that F = K(T ) for some set T of cardinality ℵd

with the property that, for any subsets S1 and S2 of T , one has that
K(S1) = K(S2) (if and) only if S1 = S2.

Proof. Define a function f : L → Z as follows: for each t ∈ L, let
f(t) be the degree of the minimal polynomial satisfied by t over K.
For each positive integer i, consider the set Wi := {t ∈ L | f(t) ≤ i}
and the field Li := K(Wi). We claim that there exists n such that
[Ln : K] = ℵd. Suppose the claim fails. Then each Li has a K-basis Bi

of cardinality at most ℵei with ei < d. Let e := sup{ei}. By hypothesis,
e < d. As L is the union of the increasing chain {Li}, we can suppose
that B1 ⊆ B2 ⊆ B3 ⊆ · · · , so that B := ∪∞

i=1Bi is a K-basis of L.
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Therefore,

ℵd = [L : K] = |B| ≤
∞∑
i=1

|Bi| ≤ ℵ0 · ℵe = ℵe < ℵd,

a contradiction. This proves the above claim.

Next, as in the construction that preceded Lemma 3.1, build a special
generating set U of Ln/K such that U ⊆ Wn. Since Ln ∈ S(L/K),
there is no harm in replacing L with Ln. Thus, we may assume, without
loss of generality, that L = K(U), where U is an sgs of L/K and each
element of U has its minimal polynomial over K having degree at most
n. The result now follows from Lemma 4.10. �

We next give the final step in proving Theorem 4.3. Note that the
assertion in Theorem 4.12 would fail if α = 0 (by Proposition 4.2). In
fact, the proof of Theorem 4.12 will use Lemma 4.11, whose proof used
the condition α > 0.

Theorem 4.12. Let L/K be an infinitely generated field extension. Let
X be a transcendence basis of L/K, and let Y be a special generating
set for the (algebraic) field extension L/K(X). Suppose |X ∪ Y | = ℵα

(which is the infinite cardinal such that L/K can be minimally generated
by ℵα elements) for some α > 0. Then λ(L/K) ≥ Ω(ℵα).

Proof. As explained earlier, it suffices to show

(∗) L contains a subset T of cardinality ℵα such that intermediate
fields generated over K by distinct subsets of T are distinct.

Then, by (∗), if there exists a chain with cardinality ℵβ that consists
of subsets of a set of cardinality ℵα, then there exists a chain with
cardinality ℵβ that consists of subsets of T , and hence there exists a
chain in S(L/K) which has cardinality ℵβ . This proves the theorem
and so it only remains to show (∗).

Since |X ∪ Y | = ℵα, either |X| = ℵα or |Y | = ℵα. If |X| = ℵα, we
claim T := X is the desired subset. For suppose S1 and S2 are distinct
subsets of X. Without loss of generality, there exists x ∈ S1 \S2. Then
x ∈ K(S1). However, because the set X is algebraically independent,
S2 ∪ {x} is algebraically independent, and so x /∈ K(S2). In the
remaining case, |Y | = ℵα. Then we claim that it suffices to prove
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(∗) with K replaced by K(X). For, if T is a subset of L such that
intermediate fields generated over K(X) by distinct subsets of T are
distinct, then intermediate fields generated over K by distinct subsets
of T will also be distinct. We have thus reduced to the case where L/K
is an algebraic extension.

By the final assertion of Lemma 3.1 (b), [L : K] = ℵα. If α is not the
supremum of some denumerable set of smaller ordinals, (∗) holds by
Lemma 4.11. So we can reduce to the case where α is the supremum
of some denumerable set d1 < d2 < · · · of smaller ordinals. In this
case, we will find fields E ⊂ F in S(L/K) such that [F : E] = ℵα and
F = E(T ) for some set T of cardinality ℵα, with the property that, if
S1, S2 are subsets of T , then E(S1) = E(S2) if and only if S1 = S2.
This will suffice to prove (∗) as, just as in the above reduction to the
algebraic case, subsets of T that generate distinct intermediate fields
over E will generate distinct intermediate fields over the smaller field
K.

To find suitable E,F and T , first apply Lemma 4.9 to find fields
K ′ ⊂ Mi in S(L/K) such that [Mi : K

′] = ℵdi for every positive integer
i and the linear disjointness properties in condition (i) of Lemma 4.9
hold. For each positive integer i, we have ℵdi < ℵdi+1 = [Mi+1 : K ′] ≤
[L : K ′] ≤ [L : K] = ℵα, and so [L : K ′] = ℵα. Then, by abuse of
notation, we can replace K with K ′. Having done so, we then take E
to be K (that is, the former K ′). We next explain how to find F and
T .

We claim that, for each positive integer i, there exist a set Tdi ⊆ L
with cardinality ℵdi and an intermediate field Hdi := K(Tdi) ∈
S(Mi/K) with the following property: if S1 and S2 are subsets of Tdi

such that K(S1) = K(S2), then S1 = S2. (Observe that this implies
that [Hdi : K] = ℵdi .) If di is not the supremum of a denumerable set
of smaller ordinals, the claim follows by applying Lemma 4.11 to the
field extension Mi/K. On the other hand, if di is such a supremum,
the claim holds because there is no harm in supposing that α is the
minimal counterexample. This proves the above claim.

Let F be the field composite
∏

i Hdi , and let T be the set ∪iTdi . It
is clear that F = K(T ). For every positive integer i,

ℵdi = |Tdi | ≤ |T | ≤ ℵ0 · sup
j

|Tdj | ≤ ℵ0 · ℵα = ℵα,
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and so |T | = ℵα.

It remains to prove that, if S1 and S2 are subsets of T such that
K(S1) = K(S2), then S1 = S2. Hence, it suffices to show, for each
positive integer i, that K(S1 ∩ Tdi) = K(S2 ∩ Tdi). (The point is that
we would then have that S1 ∩ Tdi

= S2 ∩ Tdi
for each i and would only

need to note that each Sj = ∪i(Sj∩Tdi).) To that end, it clearly suffices
to prove that if S is any subset of T and i is any positive integer, then
K(S ∩ Tdi) = K(S) ∩Hdi . As Tdi ⊆ Hdi , one inclusion is clear. If the
assertion fails, pick an element x of K(S)∩Hdi which does not belong
to K(S ∩ Tdi). Consider the field N :=

∏
j ̸=i Hdj . The field composite

of K(S ∩ Tdi) with N obviously contains K(S), and so x is an element
of this field composite. We will proceed to show that x is, in fact, not
an element of this field composite.

Choose B to be a basis of K(S∩Tdi) as a vector space over K. Then
D := B ∪ {x} is linearly independent over K. As D ⊆ Mi, the linear
disjointness established in Lemma 4.9 (i) shows that D is also linearly
independent over the field N :=

∏
j ̸=i Hdj . Using algebraicity, we can

rewrite and properly embed the field composite K(S ∩ Tdi)N as(∑
y∈B

Ky

)
N =

∑
y∈B

Ny ⊂
∑
z∈D

Nz

=

(∑
z∈B

Kz

)
N +Nx

= K(S ∩ Tdi)N +Nx,

whence Nx ̸⊆ K(S ∩ Tdi)N and x /∈ K(S ∩ Tdi)N , the desired
contradiction. The proof is complete. �

Note added in proof. (September 17, 2014). The question raised
in Remark 2.5 (b) has an affirmative answer in the finite-dimensional
case; that is, if R is an integral domain with quotient field K such that
dim (R) < ∞ and C is a maximal chain of rings going from R to K,
then |C| ≥ dim (R) + 1. For a proof, suppose, on the contrary, that C
is the chain R = R0 ⊂ R1 ⊂ · · · ⊂ Rn = K where n+ 1 < dim (R) + 1.
Notice that R0 ⊂ R1 is a minimal ring extension, and apply the fact
that if A ⊂ B is a minimal ring extension, then dim (B) ≤ dim (A) ≤
dim (B)+1. Then n < dim (R) ≤ dim (R1)+1. Iterating the argument,
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we get that n < dim (R2) + 2 < · · · < dim (Rn−1) + (n − 1), and so
1 < dim (Rn−1), contradicting the fact that Rn−1 is a one-dimensional
valuation domain.

However, the question raised in Remark 2.5 (b) has a negative answer
when dim (R) is infinite. We next give an example of a denumerable
integral domain D, with quotient field K, such that dim (D) = 2ℵ0

and there is a maximal chain C of rings going from D to K with
|C| = ℵ0. Let D be the ring of polynomials over Q in denumerably
many indeterminates Xq, where the index q runs over the set of positive
rational numbers. Using the usual arithmetic with infinite cardinal
numbers (assuming only ZFC), we get that the cardinality of D is ℵ0.
To see that dim (D) = 2ℵ0 , consider the chain of prime ideals {Pr | r
is a positive real number}, where Pr is the ideal of D that is generated
by {Xq | q is a positive rational number such that q < r}.

To complete the proof, it suffices to find a maximal chain of rings
going from S := Q[X1, X2, . . .] to L := Q(X1, X2, . . .) of cardinality ℵ0.
(Notice that S ∼= D.) Consider the denumerable (non-maximal) chain
S ⊂ Q(X1)[X2, X3, . . .] ⊂ Q(X1, X2)[X3, X4, . . .] ⊂ . . ., whose union
is L. It suffices to prove that there exists a denumerable maximal
chain inside each of the denumerably many steps of the above chain
(for one could then go from S to L via a maximal chain obtained as
a countable union of countable chains). Since we are working with
countable UFDs, notice that within each of those steps one could
insert a countable (non-maximal) chain that is obtained by successively
adjoining the multiplicative inverse of each member of a set of associate-
class representatives of irreducible elements. It seems reasonable to
speculate that, by using unique factorization, it should be possible to
complete the argument by showing that, within each of those countably
many steps, one can insert a countable maximal chain of rings. We
choose, instead, to complete the argument by establishing the following
(slightly more general) result.

Lemma. Let X1, X2, . . . be denumerably many algebraically inde-
pendent indeterminates over Q, and let D := Q(X1, . . . , Xk)[Xk+1, . . .]
for some integer k ≥ 0. Let E = DS where S is a multiplicatively
closed subset of Q(X1, . . . , Xk)[Xk+1], and let f be a prime element
of Q(X1, . . . , Xk)[Xk+1]. Then there is a countable maximal chain of
rings between E and E[1/f ].
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Proof of Lemma. Let K denote the field Q(X1, . . . , Xk), let x :=
Xk+1, and let Y denote the infinite set of indeterminates {Xk+2, . . .}.
So E = K[x, Y ]S where S ⊂ K[x] and f ∈ K[x]. If Q denotes the
prime ideal Y E of E, then Q + fE is a maximal ideal of E. It is
also easy to see that there exists a maximal denumerable chain of Q-
primary ideals Q = Q1 ⊃ Q2 ⊃ Q3 ⊃ · · · of E whose intersection is
(0). Before constructing the desired maximal chain of rings, we make a
simple observation. If T is an intermediate ring, i.e., E ⊆ T ⊆ E[1/f ],
then each element of T has the form a/f i for some a ∈ E and i ∈ N .
Moreover, a/f i ∈ T if and only if a ∈ f iT ∩ E. Thus, T is completely
described by the set of ideals Ji := f iT ∩ E.

Define Rmn := E[{a/f i | a ∈ Qm, i < n}∪{a/f i | a ∈ Qm+1, i ≥ n}]
for m ≥ 0, n ≥ 1. (In interpreting this definition, we take Q0 := E. In
particular, R01 = E[{a/f i | a ∈ Q}].) Note that Rm1 = E[{a/f i | a ∈
Qm+1}]. We claim that E[1/f ] ⊃ R01 ⊃ · · · ⊃ R1,n+1 ⊃ R1n ⊃ · · · ⊃
R11 ⊃ · · · ⊃ R2n ⊃ · · · ⊃ E is a maximal chain of rings between E[1/f ]
and E. This claim is obviously sufficient to prove the lemma (and the
negative answer to the infinite-dimensional case of the question raised
in Remark 2.5 (b)).

To prove the claim, it suffices to verify the following four facts:
R01 ⊂ E[1/f ] is a minimal ring extension; Rmn ⊂ Rm,n+1 is a minimal
ring extension for each m,n; ∪nRmn = Rm−1,1; and ∩m,nRmn = E. To
see the first of these facts, note that any proper ring extension T of R01

must necessarily contain an element of the form (q+d)/f i /∈ R01, where
q ∈ Q and d ∈ K[x]. As q/f i ∈ R01, it follows that d/f i ∈ T \ R01.
By unique factorization, we can reduce to d ∈ K, whence 1/f ∈ T , as
desired. To see the next fact, first note that if T = Rmn, it is easy
to see that the ideals Ji defined above are given by Ji = Qm + f iE if
i < n and by Ji = Qm+1 + f iE if i ≥ n. Thus, if Rmn ⊂ T ⊆ Rm,n+1,
we see that as the corresponding Ji’s are almost all equal, the ideal
Jn corresponding to T must satisfy Qm+1 + fnE ⊂ Jn ⊆ Qm + fnE.
However, the module (Qm + fnE)/(Qm+1 + fnE) has length 1, and
so T = Rm,n+1, thus proving the second fact. The third fact follows
easily from the definitions. Finally, for the fourth fact, ∩m,nRmn =
∩∞
m=1Rm1 = ∩∞

m=1E[{a/f i | a ∈ Qm+1}]. As f is, without loss of
generality, irreducible in E and ∩mQm = (0), it follows from unique
factorization that this intersection is just E, which completes the
proof. �
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