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BOREL AND CONTINUOUS SYSTEMS OF MEASURES

AVIV CENSOR AND DANIELE GRANDINI

ABSTRACT. We study Borel systems and continuous
systems of measures, with a focus on mapping properties:
compositions, liftings, fibred products and disintegration.
Parts of the theory we develop can be derived from known
work in the literature, and in that sense this paper is of
an expository nature. However, we put the above notions in
the spotlight and provide a self-contained, purely measure-
theoretic, detailed and thorough investigation of their prop-
erties, and in that aspect our paper enhances and com-
plements the existing literature. Our work constitutes part
of the necessary theoretical framework for categorical con-
structions involving measured and topological groupoids with
Haar systems, a line of research we pursue in separate pa-
pers.

1. Introduction. We first give an overview of the contents of this
paper. This is followed by a discussion of the nature of our work and
its relation to the existing literature.

1.1. Overview. Our treatment of Borel systems of measures (BSMs)
and continuous systems of measures (CSMs) in this paper is very
general. Loosely speaking, a system of measures on a map π : X → Y
is a family of measures λ• = {λy}y∈Y on X, such that each λy is
concentrated on π−1(y). This can be made precise when the nature of
X, Y and π is specified (e.g., topological spaces with a continuous map,
Borel spaces with a Borel map), leading to appropriate assumptions on
the measures {λy}. We will denote a map π : X → Y admitting a

system of measures λ• by the diagram X
π

λ•
// Y .

Mapping properties of systems of measures are in the spotlight of
our work. We establish terminology, notation and basic properties
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1074 A. CENSOR AND D. GRANDINI

of systems of measures in Section 2. Then, in Section 3, we study
composition of systems, corresponding to the following diagram

X
p

α•
// Y

q

β•
// Z .

The composition (β ◦ α)• is defined for any Borel set E ⊆ X by
(β ◦ α)z(E) =

∫
Y
αy(E) dβz(y) (Definition 3.1).

In Section 4 we treat the notion of lifting, namely producing a system
of measures (q∗α)• on πY in the following pull-back diagram:

X ∗ Y

πX

��

πY // Y

q

��
X

p

α•
// Z

The lifting is given by (q∗α)y = αq(y) × δy (Definition 4.1).

Section 5 deals with the fibred product, which is a system of measures
(γX ∗ γY )• on the map f ∗ g in the following diagram:

X2 ∗ Y2 Y2

X2 Z

X1 ∗ Y1 Y1

X1 Z

//
πY2

//
πY1

//p2

//p1

��

πX2

��

q2

��

πX1

��

q1

������������

????

f∗g

������������

??

g γ•
Y

������������

??

f γ•
X

������������

??

id
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The fibred product is defined by (γX ∗ γY )(x2,y2) = γx2

X × γy2

Y (Defini-
tion 5.1).

Section 6 explores the concept of disintegration, a most valuable tool
in applications: If (X,µ) and (Y, ν) are measure spaces, and f : X → Y
is a Borel map, then a system of measures γ• on f is a disintegration
of µ with respect to ν if µ(E) =

∫
Y
γy(E) dν(y) for every Borel set

E ⊆ X.

We conclude, in Section 7, with a brief discussion of systems of
measures for groupoids, in particular Haar systems.

1.2. Broad perspective. While our interest in systems of measures
originated from our work with groupoids, in this paper we develop the
theory from elementary principles, and our approach is purely measure
theoretic. This is in contrast to many references where the subject has
been studied from very specialized perspectives. Systems of measures
(also called π-systems or kernels) appear in various mathematical
contexts, and have been investigated from different viewpoints in the
literature. For example, a general introduction to the topic can be
found in Bourbaki [3], which takes a very functional analytic approach.

The primary goal we set for this paper was to collect and clarify the
categorically-flavored constructions that we needed, details of which we
managed to trace only in part in the functional analysis, probability
and groupoid literature. We do not claim to present an exhaustive
account of the literature on systems of measures.

The world of groupoids, which motivated our study, is a discipline
in which systems of measures play a fundamental role. Most notably,
a Haar system for a groupoid G is essentially a left-invariant system of
measures on the range map r : G→ G(0), which generalizes the notion
of a Haar measure on a group. In particular, Haar systems are a crucial
ingredient for integration on groupoids, for groupoid representations,
and for constructing groupoid C∗-algebras. Beyond Haar systems,
maps between groupoids naturally give rise to systems of measures
as well.

In the groupoid literature, systems of measures have been stud-
ied extensively, for example by Connes in [5] (using the term “ker-
nel,” “noyau” in French), by Muhly in [8] and by Renault and
Anantharaman-Delaroche in [1] (using the term “π-systems”). The
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scope of our current study of systems of measures was therefore re-
stricted to mapping properties which were essential for specific appli-
cations that came up in our work. Some of the results presented here
appear scattered across the literature, which is why we opted to give a
self-contained treatment, including all definitions, and full proofs when-
ever lacking precise references. We point out that some of the formulas
and diagrams which we make explicit can be found in [1]. In fact,
significant parts of the theory are implicit in, and can be non-trivially
derived from, the aforementioned groupoid references, as well as other
works of Renault (e.g., [13]), Ramsay (e.g., [11]) and others. We sin-
gle out a couple of such sources which we refer the specialized reader
to: The first is [1, Appendix A.1] on transverse measure theory, which
builds on Connes’ work, starting with [5]. The second is a fibred prod-
uct construction [11, page 265]. A detailed discussion of how to extract
some of our results from these is beyond the scope of this paper.

This paper provides tools and techniques that allow us to form
certain categorical constructions with topological groupoids, which we
shall present in separate papers. Primarily, we were interested in
forming the so-called “weak pull-back” of a diagram of topological
groupoids, each endowed with a Haar system and a quasi-invariant
measure on its unit space [4]. The weak pull-back is a key ingredient
for degroupoidification à la Baez, Dolan and Trimble [2], which we are
currently generalizing from the discrete setting to the realm of topology
and measure theory.

2. Systems of measures. Throughout, we will assume all topolog-
ical spaces to be second countable and T1. We require spaces also to
be locally compact and Hausdorff whenever dealing with continuous sys-
tems of measures, as well as throughout Section 6. Measures will always
be positive and Borel. Unless stated otherwise, continuous functions
will be complex-valued, whereas Borel functions are allowed to take
infinite values.

We first recall the definition of the support of a Borel measure µ on
a space X:

supp (µ) = {x ∈ X : µ(A) > 0 for every open neighborhood A of x}.

We say that the measure µ is concentrated on a subset S ⊆ X if
µ(X \ S) = 0.
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Lemma 2.1. The support is a closed subset of X. Moreover, if S is a
closed subset of X, then supp (µ) ⊆ S if and only if the measure µ is
concentrated on S.

Proof. Take x /∈ supp (µ). Then x has an open neighborhood A such
that µ(A) = 0. Furthermore, A ∩ supp (µ) = ∅. This shows that the
complement of supp (µ) is open.

For the second part, note first that supp (µ) ⊆ S if and only if

x /∈ S =⇒ ∃A ⊆ X open : x ∈ A, µ(A) = 0.

Assume that µ(X \ S) = 0. Since the complement X \ S is open,
A = X \ S satisfies the above statement for any x /∈ S, and it follows
that supp (µ) ⊆ S.

Vice versa, assume supp (µ) ⊆ S. Fix a countable basis B for the
topology of X. Then the following statement is true:

x /∈ S =⇒ ∃Ax ∈ B : x ∈ Ax, µ(Ax) = 0.

It follows that X \ S ⊆
∪

x/∈S Ax. But this union consists of countably
many distinct elements of the basis B, so we can invoke countable
subadditivity to obtain µ(X \ S) ≤

∑
x/∈S µ(Ax) = 0. �

Definition 2.2. Let π : X → Y be a Borel map. A system of measures
on π is a family of measures λ• = {λy}y∈Y such that:

(1) Each λy is a Borel measure on X;
(2) For every y, λy is concentrated on π−1(y).

If the map π : X → Y is continuous (or proper if the spaces are T2),
then condition (2) is equivalent to

(2′) For every y, supp (λy) ⊆ π−1(y).

This follows immediately from Lemma 2.1 since π−1(y) is a closed
subset of X.

We will denote a map π : X → Y admitting a system of measures

λ• by the diagram X
π

λ•
// Y .
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Trivially, when Y is a singleton {y}, a system of measures on the
projection π : X → {y} is merely a Borel measure on X. This obvious
observation will be of use in the sequel.

Definition 2.3. We will say that a system of measures λ• is:

• positive on open sets if λy(A) > 0 for every y ∈ Y and for every
open set A ⊆ X such that A ∩ π−1(y) ̸= ∅.

• locally bounded if for any x ∈ X there exist a neighborhood Ux

and a constant C > 0 such that λy(Ux) < C for any y ∈ Y .

A system of measures will be called bounded on compact sets if for
any compact set K ⊆ X, λ•(K) is a bounded function on Y . In
general, it is not hard to see that being locally bounded implies being
bounded on compact sets. If X is assumed to be locally compact,
the converse is also trivially true. Our discussion of this property will
usually be restricted to the setting of locally compact spaces, where the
two notions coincide.

Lemma 2.4. Assume that the map π : X → Y is continuous. A
system of measures λ• on π is positive on open sets if and only if
supp (λy) = π−1(y) for every y ∈ Y .

Proof. Suppose that λ• is positive on open sets. For any x ∈ π−1(y)
and any open neighborhood A of x, we have that A ∩ π−1(y) ̸= ∅, and
thus λy(A) > 0. Therefore, x ∈ supp (λy). This proves that π−1(y) ⊆
supp (λy). Condition (2′) above implies that supp (λy) = π−1(y).

Conversely, assume that supp (λy) = π−1(y), and let A ⊆ X be an
open subset satisfying A ∩ π−1(y) ̸= ∅. Pick x ∈ A ∩ π−1(y). Since
x ∈ supp (λy) and A is an open neighborhood of x, it follows that
λy(A) > 0. Therefore, λ• is positive on open sets. �

Definition 2.5. A system of measures λ• on a continuous map π : X →
Y will be called a continuous system of measures or CSM if, for every
non-negative continuous compactly supported function 0 ≤ f ∈ Cc(X),

the map y 7→
∫
X

f(x) dλy(x) is a continuous function on Y .
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Note that implicit in the above definition is the assumption on λ•

that
∫
X
f(x) dλy(x) is finite for all y and for any 0 ≤ f ∈ Cc(X). This

implies that
∫
X
f(x)dλy(x) is finite for any complex-valued function

f ∈ Cc(X). Hence, a CSM can be defined, equivalently, by requiring
the map y 7→

∫
X
f(x) dλy(x) to be a continuous function on Y for any

complex-valued function f ∈ Cc(X).

Definition 2.6. A system of measures λ• on a Borel map π : X → Y
is called a Borel system of measures or BSM if, for every Borel subset
E ⊆ X, the function λ•(E) : Y → [0,∞] given by y 7→ λy(E) is a Borel
function.

In the sequel it will be implicit that, whenever a map π : X → Y
admits a BSM, it is a Borel map, and if it admits a CSM, it is a
continuous map. Also, recall that, in the CSM context, spaces are
assumed to be locally compact and Hausdorff.

Lemma 2.7. A system of measures λ• on π : X → Y is a BSM if and
only if for every nonnegative Borel function f : X → [0,∞], the map

y 7→
∫
f(x) dλy(x) is a Borel function on Y .

Proof. Assume that y 7→
∫
f(x)dλy(x) is Borel for any Borel func-

tion f : X → [0,∞], and let E ⊆ X be a Borel subset. Then the
function y 7→

∫
χ

E
(x) dλy(x) = λy(E) is Borel.

Now suppose λ• is a BSM. The following argument is standard. If
s =

∑n
i=1 riχEi

is a nonnegative simple function on X, then the map

y 7→
∫
s(x) dλy(x) =

∑n
i=1 riλ

y(Ei) is Borel, being a linear combina-
tion of the Borel functions y 7→ λy(Ei). Now let f be any nonnegative
Borel function. There exists an increasing sequence of nonnegative sim-
ple functions sn that converges to f pointwise on X. From the mono-
tone convergence theorem,

∫
f(x) dλy(x) =

∫
limn→∞ sn(x) dλ

y(x) =
limn→∞

∫
sn(x) dλ

y(x). Therefore the function y 7→
∫
f(x) dλy(x) is a

limit of Borel functions and thus Borel. �

Lemma 2.8. Let λ• be a BSM. For any function f ∈
∩

y∈Y

L1(λy), the

map y 7→
∫
f(x) dλy(x) is Borel.
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Proof. The proof is a routine argument stemming from Lemma 2.7.
We will denote Ff (y) =

∫
X
f(x) dλy(x). Assume first that f is real-

valued. Write f = f+ − f−, where f+, f− are respectively the positive
and negative parts of f . By Lemma 2.7, the functions Ff+(y) and
Ff−(y) are both Borel and finite, which implies that the function
Ff (y) = Ff+(y) − Ff−(y) is Borel. For complex-valued f , write
f = f1 + if2, and Ff (y) = Ff1(y) + iFf2(y) is Borel. �

Lemma 2.9. Assume that λ• is a CSM on π : X → Y , and let
f ∈ Cc(X). Let F : Y → C be the continuous function on Y given by

F (y) =

∫
X

f(x) dλy(x). Then supp (F ) ⊆ π(supp (f)).

Proof. Define A = {x ∈ X : f(x) ̸= 0} and B = {y ∈ Y : F (y) ̸= 0}.
By definition, A = supp (f) and B = supp (F ). Recall that λy is
concentrated on π−1(y), from which it follows that

y /∈ π(A) =⇒ π−1(y) ∩A = ∅ =⇒ ∀x ∈ π−1(y),

f(x) = 0 =⇒
∫
X

f(x)dλy(x) = 0 =⇒ y /∈ B.

Thus B ⊆ π(A). Since π is continuous, A is compact, and Y is T2, we

obtain supp (F ) = B ⊆ π(A) = π(A) = π(supp (f)). �

Corollary 2.10. A CSM λ• on π : X → Y satisfies that, for every

f ∈ Cc(X), the map y 7→
∫
X

f(x) dλy(x) is in Cc(Y ).

In the literature, the compact support of the map y 7→
∫
X
f(x) dλy(x)

is often included in the definition of continuity for a system of measures.

Lemma 2.11. A CSM is always locally bounded.

Proof. Let λ• be a continuous system of measures on the continuous
map π : X → Y , and let K ⊆ X be compact. There exists a function
f ∈ Cc(X) such that f : X → [0, 1] and f ≡ 1 on K. Therefore,
λy(K) =

∫
X
χ

K
(x) dλy(x) ≤

∫
X
f(x)dλy(x). By Lemma 2.9, the

support of the continuous function F (y) =
∫
X
f(x) dλy(x) is contained

in π(supp (f)), which is compact. Therefore, F is a bounded function
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on Y , and so is λ•(K). Hence, λ• is bounded on compact sets and
therefore locally bounded. �

Definition 2.12. A system of measures λ• on π : X → Y satisfying
that λy(X) < ∞ for every y ∈ Y will be called a system of finite
measures. If λ• is also a BSM, it will be called a finite BSM, and if λ•

is also a CSM, it will be called a finite CSM.

Definition 2.13. A system of measures λ• on π : X → Y satisfying
that λy(X) = 1 for every y ∈ Y will be called a system of probability
measures. If λ• is also a BSM, it will be called a probability BSM, and
if λ• is also a CSM, it will be called a probability CSM.

Definition 2.14. A system of measures λ• on π : X → Y satisfying
that every x ∈ X has a neighborhood Ux such that λy(Ux) < ∞ for
every y ∈ Y , will be called a locally finite system of measures. If λ• is
also a BSM, it will be called a locally finite BSM.

A locally finite system of measures is, in particular, a system of
locally finite measures. We deliberately choose the stronger notion, as
it is needed for our purposes (in particular for Lemma 2.21).

Observe that a system of measures which is locally bounded, is of
course locally finite. In light of Lemma 2.11, we have the following
immediate corollary.

Corollary 2.15. A CSM is always locally finite.

Before we proceed, we briefly recall the following well-known facts
from basic measure theory. A Dynkin system D is a non-empty
collection of subsets of a space X which is

(i) closed under relative complements, i.e., if A,B ∈ D and A ⊆ B,
then B \A ∈ D;

(ii) closed under countable unions of increasing sequences, i.e., if
Ai ∈ D and Ai ⊆ Ai+1, then

∪∞
i=1Ai ∈ D;

(iii) contains X itself.

An equivalent notion is that of a λ-system D, which is a non-empty
collection of subsets of a space X which is
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(a) closed under complements, i.e., if A ∈ D, then Ac ∈ D;
(b) closed under disjoint countable unions, i.e., if Ai ∈ D and Ai∩Aj =

∅ for all i ̸= j, then
∪∞

i=1Ai ∈ D;
(c) contains X itself.

A π-system P is a non-empty collection of subsets that is closed under
finite intersections. Dynkin’s π-λ theorem says that if a π-system P is
contained in a Dynkin system D, then the entire σ-algebra generated
by P is contained in D.

For our purposes, the following definition will be useful.

Definition 2.16. We will say that a collection D of subsets of X is a
pre-Dynkin system if it satisfies the following two properties:

(1) if E,F and E ∩ F ∈ D, then E ∪ F and E \ F ∈ D;
(2) if C ⊆ D is at most countable, and any finite intersection of

elements in C belongs to D, then the union of all elements of C
belongs to D.

Lemma 2.17. Let D be a collection of subsets of a space X. D is a
Dynkin system if and only if D is a pre-Dynkin system and X belongs
to D.

Proof. Let D be a pre-Dynkin system on X such that X ∈ D. In
order to prove that D is a Dynkin system, we verify properties (a), (b)
and (c) above. Property (c) holds by assumption.

For property (a), let A ∈ D. Since X ∈ D and X ∩ A = A,
property (1) of a pre-Dynkin systems implies that Ac = X \ A ∈ D,
hence D is closed under complements.

Finally, for property (b), let C = {Ai}∞i=1 ⊆ D be a countable
collection of pairwise disjoint subsets of X. For any finite intersection
of distinct elements of C we have

Ai1 ∩Ai2 ∩ · · · ∩Aik =

{
Ai1 ∈ D if k = 1,
∅ = Xc ∈ D if k > 1.

Therefore, property (2) of a pre-Dynkin system guarantees that
∪∞

i=1Ai ∈
D. We conclude that D is a λ-system and thus a Dynkin system.
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We now turn to the converse. Let D be a Dynkin system. Clearly,
X ∈ D. For property (1) of a pre-Dynkin system, let E, F and E∩F ∈
D. Since, by property (i), D is closed under relative complements, we
have that E \F = E \ (E∩F ) ∈ D. Likewise, F \E = F \ (E∩F ) ∈ D.
From property (b) it follows thatD is closed under disjoint finite unions,
and thus we have that E ∪ F = (E \ F ) ∪ (F \ E) ∪ (E ∩ F ) ∈ D. For
property (2) of a pre-Dynkin system, observe first that property (1)
implies that if we have a finite collection of sets in D, satisfying that
all their intersections are also in D, then their union is in D as well.
Now let C = {Ci}∞i=1 ⊆ D be a countable collection such that any

finite intersection of its elements is in D. Denote Vk =
∪k

i=1 Ci,
for any i ≥ 1. Applying the observation we just made to the finite
collections Ck := {C1, C2, . . . , Ck}, we deduce that Vk ∈ D, for all k.
Since by property (ii), D is closed under countable unions of increasing
sequences, we conclude that

∪∞
i=1 Ci =

∪∞
k=1 Vk ∈ D. This completes

the proof. �
Proposition 2.18. Let D be a pre-Dynkin system in X. If there is a
countable basis B for the topology of X such that U1∩U2∩· · ·∩Un ∈ D
for any {U1, U2, . . . , Un} ⊂ B, then D consists of all Borel subsets of X.

Proof. Let A be an open subset of X. Since B is a countable basis,
there is a sequence {U1, U2, . . . , Un, . . .} ⊂ B such that A =

∪∞
i=1 Ui.

Since, by assumption, all finite intersections of elements of the sequence
belong to D, property (2) of Definition 2.16 implies that A ∈ D. It
follows that D contains all open subsets of X and, in particular, X ∈ D.
Therefore, D is a Dynkin system, containing all open subsets. Since
open subsets form a π-system, we can invoke Dynkin’s π-λ theorem to
conclude that all Borel subsets of X are in D. �

Lemma 2.19. Let λ• be a system of finite measures. The collection
of subsets

D = {E ⊆ X Borel : λ•(E) is a Borel function on Y }

is a pre-Dynkin system.

Proof. We will prove that D satisfies properties (1) and (2) of
Definition 2.16. For any y ∈ Y , we have:

λy(E ∪ F ) = λy(E) + λy(F )− λy(E ∩ F ),
λy(E \ F ) = λy(E)− λy(E ∩ F ).
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Therefore, λ•(E∪F ) and λ•(E\F ) are Borel functions, and (1) follows.

If C is finite, then (2) is a consequence of an inclusion-exclusion
formula as in (1). Suppose now that C is infinite, write C = {En}∞n=1

and let E =
∪∞

n=1En. Consider the sets

F1 := E1, F2 := E1 ∪ E2, F3 := E1 ∪ E2 ∪ E3, · · · .

From the finite case, we have that Fn ∈ D for all n ≥ 1. Moreover,
E =

∪∞
n=1 Fn and λy(E) = limn→∞ λy(Fn), for every y ∈ Y . Thus,

λ•(E) is a Borel function, being a limit of the sequence of Borel
functions {λ•(Fn)}. Therefore, E ∈ D, proving the infinite case
of (2). �

Lemma 2.20 (Criterion for a system of finite measures to be a finite
BSM). Let π : X → Y be a Borel map endowed with a system of
finite measures λ•. Assume that there is a countable basis B for the
topology of X such that λ•(U1 ∩ U2 ∩ · · · ∩ Un) is a Borel function for
any {U1, U2, . . . , Un} ⊂ B, n ≥ 1. Then λ• is a finite BSM.

Proof. Consider the collection D = {E ⊆ X Borel : λ•(E) is a Borel
function on Y }. By Lemma 2.19 above, D is a pre-Dynkin system.
With respect to D, the basis B satisfies the condition of Proposi-
tion 2.18, which in turn implies that all Borel subsets of X are in
D. Therefore, λ• is a BSM. �

Lemma 2.21 (Criterion for a locally finite system of measures to be
a locally finite BSM). Let π : X → Y be a Borel map endowed with a
locally finite system of measures λ•. Assume that there is a countable
basis B for the topology of X such that λ•(U1∩U2∩· · ·∩Un) is a Borel
function for any {U1, U2, . . . , Un} ⊂ B, n ≥ 1. Then λ• is a locally
finite BSM.

Proof. Let B = {Ui}∞i=1. Since λ• is locally finite, it is straightfor-
ward to verify that the sub-collection {U ∈ B | λy(U) <∞ for every y ∈
Y } is itself a basis for X. Therefore, we can assume that all Ui ∈ B
satisfy λy(Ui) <∞ for every y ∈ Y .

For any i ≥ 1, consider the map πi : Ui → Y given by composing
the inclusion Ui ↩→ X with π : X → Y . Let λ•i denote the system of
measures on πi obtained by restricting λ•. Note that λ•i is a system
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of finite measures, since λyi (Ui) = λy(Ui) < ∞ for every y ∈ Y . Now
consider the collection

Di = {E ⊆ Ui Borel : λ•i (E) is a Borel function on Y }.

We can apply Lemma 2.19, which guarantees that Di is a pre-Dynkin
system in Ui. Also, the collection Bi = {Ui ∩ Uj}∞j=1 is a basis for
the topology of Ui. Moreover, due to our assumption on B, we see
that Bi satisfies the hypotheses of Proposition 2.18 with respect to the
collection Di. Consequently, Di consists of all Borel subsets of Ui.

Let E ⊆ X be a Borel subset. We need to show that λ•(E) is a Borel
function. For any i, the function λ•i (E ∩ Ui) is a Borel function on Y ,
since E ∩Ui is a Borel subset of Ui and therefore in Di. Therefore, for
any i, λ•(E ∩Ui) is a Borel function on Y . Likewise, for any i1, . . . , ik,
the function λ•(E ∩ Ui1 ∩ · · · ∩ Uik) is a Borel function on Y .

Next, we define Vn =
∪n

i=1 Ui. This is an increasing sequence of
open sets {Vn}∞n=1, and each Vn satisfies λy(Vn) ≤

∑n
i=1 λ

y(Ui) < ∞
for every y ∈ Y . Since E ∩ Vn = E ∩ (

∪n
i=1 Ui) = (E ∩ U1) ∪ (E ∩

U2)∪ · · ·∪ (E ∩Un), a routine inclusion-exclusion type argument yields
that, for all n, λ•(E ∩ Vn) can be written as a linear combination of
functions of the form λ•(E ∩ Ui1 ∩ · · · ∩ Uik), and is therefore a Borel
function on Y .

Finally, λ•(E) is the limit of the increasing sequence of Borel
functions λ•(E ∩ Vn); hence, by the monotone convergence theorem,
λ•(E) is a Borel function on Y , as required. �

An immediate consequence of Lemma 2.21 is the following.

Corollary 2.22. Let π : X → Y be a Borel map endowed with a locally
finite system of measures λ•. If λ•(A) is a Borel function for any open
set A, then λ• is a locally finite BSM.

Proposition 2.23. A CSM is a locally finite BSM.

Proof. Let λ• be a CSM on π : X → Y . By Corollary 2.15, λ• is
locally finite. By Corollary 2.22, it is sufficient to show that λ•(A) is a
Borel function for any open subset A.
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There exists an increasing sequence {An}∞n=1 of open subsets of A
such that An is compact for every n, An ⊂ An+1 and

∪∞
n=1An =

A. Moreover, there exists a non-decreasing sequence of compactly
supported continuous functions ψn : X → [0, 1] such that ψn ≡ 1
on An and supp (ψn) ⊆ An+1 for every n. Therefore, for all x ∈ X,
limn→∞ ψn(x) = χ

A
(x). It follows, by the monotone convergence

theorem, that

λy(A)=

∫
X

χA(x) dλ
y(x)=

∫
X

lim
n→∞

ψn(x) dλ
y(x)= lim

n→∞

∫
X

ψn(x) dλ
y(x).

Since, for all n, ψn ∈ Cc(X) and λ• is continuous, the map y 7→∫
X
ψn(x) dλ

y(x) is continuous for all n. Therefore, the map y 7→ λy(A)
is a (monotone) limit of continuous (hence Borel) functions, and is thus
a Borel function. �

We omit the full proof of the following lemma, which is analogous to
the proof of Lemma 2.21, via a corresponding version of Lemma 2.19
with D = {E ⊆ X Borel : µ(E) = ν(E)}.

Lemma 2.24. Let µ and ν be two locally finite measures on a space X.
Assume that there is a countable basis B for the topology of X such that
µ(U1∩U2∩· · ·∩Un) = ν(U1∩U2∩· · ·∩Un) for any {U1, U2, . . . , Un} ⊂ B,
n ≥ 1. Then µ(E) = ν(E) for any Borel subset E ⊆ X.

Corollary 2.25. Let µ and ν be two locally finite measures on a space
X. If µ(A) = ν(A) for any open subset A ⊆ X, then µ(E) = ν(E) for
any Borel subset E ⊆ X.

We will make use of the above lemma and corollary in the sequel.

3. Composition of systems of measures. The notion of compo-
sition of systems of measures appears in [1, subsection 1.3.a] and is also
mentioned briefly in [15] (see Definition 1.5). Consider the diagram

X
p

α•
// Y

q

β•
// Z ,

where α• is a BSM on p : X → Y and β• is a system of measures on
q : Y → Z.
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Definition 3.1. We define the composition (β ◦ α)• by

(β ◦ α)z(E) =

∫
Y

αy(E) dβz(y) for all z ∈ Z, and E ⊆ X Borel.

Proposition 3.2. The composition (β ◦ α)• is a system of measures
on q ◦ p. If α• and β• are both BSMs, then (β ◦ α)• is a BSM.

Proof. Note that, for any z ∈ Z and any Borel subset E ⊆ X,
(β ◦ α)z(E) is well defined, since α•(E) is a Borel function on Y and
βz is a Borel measure on Y . To prove that (β ◦ α)z is a Borel measure
on X, let {En}∞n=1 be a countable family of disjoint Borel subsets of
X. Using a standard monotone convergence theorem argument with∑k

n=1 α
y(En) ↗

∑∞
n=1 α

y(En), we obtain

(β ◦ α)z
( ∞∪

n=1

En

)
=

∫
Y

αy

( ∞∪
n=1

En

)
dβz(y) =

∫
Y

∞∑
n=1

αy (En) dβ
z(y)

=
∞∑

n=1

∫
Y

αy (En) dβ
z(y) =

∞∑
n=1

(β ◦ α)z(En).

To prove that (β ◦ α)z is concentrated on (q ◦ p)−1(z), observe that, if
y ∈ q−1(z), then p−1(y) ⊆ (q ◦ p)−1(z). Taking complements in X, we
get αy(X \(q◦p)−1(z)) ≤ αy(X \p−1(y)) = 0. Since βz is concentrated
on q−1(z), we obtain

(β ◦ α)z
(
X \ (q ◦ p)−1(z)

)
=

∫
Y

αy
(
X \ (q ◦ p)−1(z)

)
dβz(y) = 0.

We have shown that (β ◦ α)• is a system of measures on q ◦ p. Now
assume that both α• and β• are BSMs. Let E ⊆ X be a Borel subset.
Since α• is a BSM, the function α•(E) is a nonnegative Borel function
on Y . But β• is a BSM as well, so from Lemma 2.7 we have that
z 7→

∫
Y
αy(E) dβz(y), which is precisely (β ◦α)•(E) is a Borel function

on Z. Therefore, (β ◦ α)• is a BSM. This completes the proof. �

Proposition 3.3. If α• and β• are both CSMs, then (β ◦ α)• is a
CSM.

Proof. Let f ∈ Cc(X). We need to show that the map z 7→∫
X
f(x)d(β ◦ α)z(x) is a continuous function on Z. Define g(y) =
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∫
X
f(x) dαy(x). Since α• is a CSM, Corollary 2.10 implies that g(y) ∈

Cc(Y ). From the fact that β• is a CSM, we now get that the map
z 7→

∫
Y
g(y) dβz(y) ∈ Cc(Z). This completes the proof, since∫

Y

g(y) dβz(y)=

∫
Y

(∫
X

f(x) dαy(x)

)
dβz(y) =

∫
X

f(x) d(β◦α)z(x). �

Proposition 3.4. Consider the setting of Definition 3.1.

(1) Assume that p is an open map. If α• and β• are positive on
open sets, then so is (β ◦ α)•.

(2) Assume that p is a continuous map. If α• and β• are locally
bounded, then so is (β ◦ α)•.

Proof. (1) Fix z ∈ Z, and let A ⊆ X be an open set satisfying
A ∩ (q ◦ p)−1(z) ̸= ∅. We need to show that (β ◦ α)z(A) > 0. The set
p(A) ∩ q−1(z) is not empty since

∅ ̸= p
(
A ∩ (q ◦ p)−1(z)

)
⊆ p(A) ∩ p(p−1(q−1(z))) ⊆ p(A) ∩ q−1(z).

Furthermore, p is assumed to be an open map, so p(A) is open in
Y . This implies that βz(p(A)) > 0, since β• is positive on open sets.
Obviously, for every y ∈ p(A), there exists an x ∈ A such that p(x) = y;
hence, p−1(y)∩A ̸= ∅. This implies that αy(A) > 0 for every y ∈ p(A),
since α• is positive on open sets. We conclude that

(β ◦ α)z(A) =
∫
Y

αy(A) dβz(y) ≥
∫
p(A)

αy(A) dβz(y) > 0.

(2) Take x ∈ X. Since β• is locally bounded, there exist an open
neighborhood V of p(x) and a constant C2 such that βz(V ) < C2

for every z ∈ Z. Since p is continuous and α• is locally bounded,
there exist an open neighborhood U of x and a constant C1 such that
p(U) ⊆ V and αy(U) < C1 for every y ∈ Y . Note that, if y /∈ p(U),
then p−1(y) ∩ U = ∅. Hence, αy(U) = 0 for all y /∈ p(U). We therefore
have

(β ◦ α)z(U) =

∫
Y

αy(U) dβz(y) =

∫
p(U)

αy(U) dβz(y)

≤ C1 · βz(p(U)) ≤ C1 · C2

for every z ∈ Z. �



BOREL AND CONTINUOUS SYSTEMS OF MEASURES 1089

In general, the composition of locally finite systems of measures
need not be locally finite. In order to assure local finiteness of the
composition we need to require a stronger property of the system
α•. We omit the proof of the following lemma, which is an obvious
modification of the proof of the second part of Proposition 3.4.

Lemma 3.5. Consider the setting of Definition 3.1, and assume that
the map p is continuous. If α• is locally bounded and β• is locally finite,
then (β ◦ α)• is locally finite.

We have seen in Lemma 2.11 that any CSM is locally bounded.
Taken together with Lemma 3.5 and the fact that a locally bounded
system is in particular locally finite, this implies that the composition
is guaranteed to be locally finite in several more scenarios.

Corollary 3.6. Consider the setting of Definition 3.1, and assume
that the map p is continuous. Each of the following conditions implies
that (β ◦ α)• is locally finite.

(1) α• is a CSM and β• is locally finite.
(2) α• and β• are both locally bounded.
(3) α• and β• are both CSMs.
(4) Either α• or β• is a CSM and the other is locally bounded.

As a particular case of Lemma 3.5, we obtain the following useful
result. The proof amounts to taking Z = {z}, viewing β as a trivial
system of measures on the projection π : Y → {z} and applying
Lemma 3.5.

Corollary 3.7. Let α• be a locally bounded BSM on a continuous map
p : X → Y , and let β be a locally finite measure on Y . For every Borel
set E ⊆ X, define

µ(E) =

∫
Y

αy(E) dβ(y).

Then µ is a locally finite measure on X.

4. Lifting of systems of measures. The concept of lifting, which
we define below, is discussed in [1, Appendix A.1], in the broader
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context of transverse measure theory. Let X, Y and Z be topological
spaces, and let p : X → Z and q : Y → Z be Borel maps. The usual
pullback of X and Y over Z is the space

X ∗Z Y = {(x, y) ∈ X × Y : p(x) = q(y)}.

In order to lighten notation, we will usually write X ∗ Y , keeping Z
implicit. The topology on X ∗Y is inherited from the product topology
on X × Y . Consider the pullback diagram

X ∗ Y

πX

��

πY // Y

q

��
X

p

α•
// Z

where πX and πY are the obvious projections, and α• is a system of
measures on p : X → Z. Observe that the fibres of the map πY are
Cartesian products of the form π−1

Y (y) = p−1(q(y))× {y}.
We will assume throughout this section that α• is a locally finite

system of measures.

Definition 4.1. The lifting of the locally finite system of measures α•

to πY , denoted (q∗α)•, is given by

(q∗α)y = αq(y) × δy.

More precisely, (q∗α)y(E) = (αq(y) × δy)(E ∩ π−1
Y (y)) for every y ∈ Y

and every Borel set E ⊆ X ∗ Y .

Remark 4.2. If β• is a locally finite system of measures on q : Y → Z,
then the lifting (p∗β)• to πX is defined similarly by (p∗β)x = δx×βp(x).
The properties of the lifting (q∗α)• which we state and prove below,
hold for (p∗β)• as well, with the obvious modifications.

Remark 4.3. In the sequel, we will make frequent use of open sets
E ⊆ X ∗Y of the form E = (A×B)∩ (X ∗Y ), where A and B are open
sets in X and Y , respectively. We will refer to these as elementary open
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sets. For any elementary open set we have

(q∗α)y(E) = (q∗α)y(E ∩ π−1
Y (y))

= (q∗α)y
(
(A ∩ p−1(q(y)))× (B ∩ {y})

)
(1)

= αq(y)(A ∩ p−1(q(y))) · δy(B ∩ {y})
= αq(y)(A) · δy(B).

If {An}∞n=1 and {Bm}∞m=1 are countable bases for the topologies of
X and Y , respectively, we can set B = {(An × Bm) ∩ X ∗ Y }∞n,m=1.
This gives a countable basis B for the topology of X ∗ Y consisting of
elementary open sets.

Proposition 4.4. The lifting (q∗α)• is a locally finite system of mea-
sures on πY . If α• is a BSM, then so is (q∗α)•.

Proof. As a product of locally finite (hence σ-finite) Borel measures,
(q∗α)y is a well defined Borel measure for every y ∈ Y . By definition,
it is concentrated on p−1(q(y)) × {y} = π−1

Y (y). Let (x, y) ∈ X ∗ Y .
Since α• is locally finite, there exists a neighborhood Ux of x such
that αz(Ux) < ∞ for all z ∈ Z. By calculation (1) above, the open
neighborhood (Ux × Y ) ∩ (X ∗ Y ) of (x, y) satisfies (q∗α)y((Ux × Y ) ∩
(X ∗ Y )) = αq(y)(Ux) · δy(Y ) = αq(y)(Ux) <∞ for every y ∈ Y ; hence,
(q∗α)• is a locally finite system of measures.

Now assume that α• is a BSM. In order to prove that (q∗α)• is
a BSM, we show first that (q∗α)•(E) is a Borel function for any
elementary open set E = (A × B) ∩ (X ∗ Y ). For such E we have,
by calculation (1), that (q∗α)y(E) = αq(y)(A) · δy(B). Therefore, if we

denote the composition of the Borel functions α•(A) and q by αq(•)(A),
we can write (q∗α)•(E) = αq(•)(A) · χB . Thus, (q∗α)•(E) is a Borel
function.

Finite intersections of elementary open sets are themselves elemen-
tary open sets, and thus the basis B as in Remark 4.3 satisfies the
hypotheses of Lemma 2.21. We conclude that (q∗α)• is a BSM. �

Lemma 4.5. Let X , Y and Z be topological spaces, and let γ• be
a CSM on ϕ : Y → Z. For every ψ ∈ Cc(X × Y), the function

(x, z) 7→
∫
Y
ψ(x, y) dγz(y) belongs to Cc(X × Z).
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Proof. We first show that F (x, z) =
∫
Y ψ(x, y) dγ

z(y) has compact
support. Let πX : X × Y → X and πY : X × Y → Y denote
the projections, and let K ⊆ X × Y be the support of ψ. Observe
that, if (x, z) /∈ πX (K) × ϕ(πY(K)), then (x, y) does not belong to
K for any y ∈ ϕ−1(z). Therefore, for such (x, z), we have F (x, z) =∫
Y ψ(x, y)dγ

z(y) =
∫
ϕ−1(z)

ψ(x, y)dγz(y) = 0. Thus, {(x, z) | F (x, z) ̸=
0} is contained in πX (K)×ϕ(πY(K)) which is compact (hence closed),
and it follows that supp (F ) ⊆ πX (K)× ϕ(πY(K)) is compact.

We turn to proving that F is continuous on X × Z. Fix x0 ∈ X ,
z0 ∈ Z and ε > 0. We claim that there exists a neighborhood Ax0

of
x0 such that supy |ψ(x, y)− ψ(x0, y)| < 2ε for any x ∈ Ax0 .

Let y′ ∈ πY(K). Since ψ is continuous, there exist open sets
Ax0,y′ ⊂ X and Bx0,y′ ⊂ Y such that (x0, y

′) ∈ Ax0,y′ × Bx0,y′ , and
|ψ(x, y)− ψ(x0, y

′)| < ε for any (x, y) ∈ Ax0,y′ × Bx0,y′ . In particular,
|ψ(x, y)− ψ(x0, y)| ≤ |ψ(x, y)− ψ(x0, y

′)|+ |ψ(x0, y′)− ψ(x0, y)| < 2ε.
Since {x0} × πY(K) is compact, it admits a finite cover

∪n
i=1(Ax0,y′

i
×

Bx0,y′
i
). Define Ax0 =

∩n
i=1Ax0,y′

i
and Bx0 =

∪n
i=1Bx0,y′

i
. Now

consider (x, y) ∈ Ax0 ×Y. If y ∈ Bx0 , then |ψ(x, y)−ψ(x0, y)| < 2ε. If
y /∈ Bx0 then (x, y), (x0, y) /∈ K; hence, |ψ(x, y)−ψ(x0, y)| = |0−0| = 0.
Thus, for any x ∈ Ax0 , we have supy |ψ(x, y) − ψ(x0, y)| < 2ε, as
claimed.

For every x ∈ Ax0 and z ∈ Z,

|F (x, z)− F (x0, z)| =

∣∣∣∣ ∫
Y
ψ(x, y) dγz(y)−

∫
Y
ψ(x0, y) dγ

z(y)

∣∣∣∣
=

∣∣∣∣ ∫
Y
(ψ(x, y)− ψ(x0, y)) dγ

z(y)

∣∣∣∣
≤

∫
Y
|ψ(x, y)− ψ(x0, y)| dγz(y)

< 2 ϵ γz(πY(K))

Since γ• is a CSM, by Lemma 2.11 it is locally bounded, or equivalently-
bounded on compact sets. It follows that, for every x ∈ Ax0 and z ∈ Z,

|F (x, z)− F (x0, z)| < ε · C,

where C is a constant depending only on K and γ•.

On the other hand, by the definition of a CSM, there is a neighbor-
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hood Vz0 of z0 such that, for any z ∈ Vz0 ,

|F (x0, z)− F (x0, z0)| < ε.

We conclude that, for every (x, z) ∈ Ax0 × Vz0 ,

|F (x, z)− F (x0, z0)| ≤ |F (x, z)− F (x0, z)|+ |F (x0, z)− F (x0, z0)|
< ε(C + 1),

hence F is continuous. �

Proposition 4.6. If α• is a CSM, then so is the lifting (q∗α)•.

Proof. Let f ∈ Cc(X ∗ Y ). We need to show that the function
y 7→

∫
X∗Y f(x, η) d(q

∗α)y(x, η) is continuous on Y . The space X ∗ Y
is closed in X × Y , as the inverse image of the diagonal ∆(Z) under
the continuous map (p, q). Therefore, by Tietze’s extension theorem,
there exists a function F ∈ C(X × Y ) such that F |X∗Y = f . Since we
can multiply F by a function φ ∈ Cc(X × Y ) which satisfies φ = 1
on K = supp (f), we can assume, without loss of generality, that
F ∈ Cc(X × Y ).

We now apply (a symmetric version of) Lemma 4.5 above and obtain
that the map (y, z) 7→

∫
X×Y

F (x, y) dαz(x) belongs to Cc(Y × Z).

Composing with the continuous function y 7→ (y, q(y)), we deduce that
the map y 7→

∫
X×Y

F (x, y) dαq(y)(x) is continuous on Y .

Observe that αq(y) is concentrated on p−1(q(y)). Therefore, since
p−1(q(y))× {y} ⊂ X ∗ Y , we have∫

X×Y

F (x, y) dαq(y)(x) =

∫
p−1(q(y))×{y}

F (x, y) dαq(y)(x)

=

∫
X∗Y

f(x, y) dαq(y)(x)

=

∫
X∗Y

f(x, η) d(αq(y) × δy)(x, η)

=

∫
X∗Y

f(x, η) d(q∗α)y(x, η).
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We conclude that the map y 7→
∫
X∗Y f(ξ, η) d(q

∗α)y(ξ, η) is continuous
on Y , as required. �

Proposition 4.7. The properties of being positive on open sets and
locally bounded are preserved under lifting.

Proof. Assume that α• is positive on open sets. In order to prove
that (q∗α)• is positive on open sets, it suffices to consider only ele-
mentary open sets, since they generate the topology of X ∗ Y . So fix
y ∈ Y , and let E = (A×B) ∩ (X ∗ Y ) be an elementary open set such
that E ∩ π−1

Y (y) ̸= ∅. This implies that A ∩ p−1(q(y)) ̸= ∅ and y ∈ B;

hence, αq(y)(A) > 0 and δy(B) = 1. Using calculation (1) above, we

obtain that (q∗α)y(E) = αq(y)(A) · δy(B) > 0. This proves that (q∗α)•

is positive on open sets.

Proving that the lifted system is locally bounded is similar to the
proof that it is locally finite in Proposition 4.4. �

Consider the pull-back diagram

X ∗ Y

πX (p∗β)•

��

πY

(q∗α)•
// Y

q β•

��
X

p

α•
// Z

where β• and α• are locally finite BSMs, and (p∗β)• and (q∗α)• are
their lifting to πX and πY , respectively. By Proposition 4.4, (p∗β)• and
(q∗α)• are also locally finite BSMs.

Proposition 4.8. The above pull-back diagram is a commutative dia-
gram of locally finite BSMs. In other words, (β ◦ q∗α)• and (α ◦ p∗β)•
are locally finite and

(β ◦ q∗α)• = (α ◦ p∗β)•.

Proof. Fix z ∈ Z, and denote µ = (β ◦ q∗α)z and ν = (α ◦ q∗β)z.
We claim that µ(E) = ν(E) for any elementary open subset of X ∗ Y .
Indeed, let E = (A×B) ∩ (X ∗ Y ). Then by calculation (1) preceding
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Proposition 4.4, and recalling that βz is concentrated on q−1(z), we
have:

µ(E) = (β ◦ q∗α)z(E) =

∫
Y

(q∗α)y(E)dβz(y)

=

∫
Y

αq(y)(A) · δy(B) dβz(y) =

∫
B∩q−1(z)

αq(y)(A) dβz(y)

=

∫
B

αz(A)dβz(y) = αz(A)βz(B).

Analogously,

ν(E) = (α ◦ p∗β)z(E) =

∫
X

(p∗β)x(E) dαz(x)

=

∫
X

δx(A) · βp(x)(B) dαz(x)

=

∫
A∩p−1(z)

βp(x)(B) dαz(x)

=

∫
A

βz(B) dαz(x) = αz(A)βz(B).

Therefore, µ(E) = ν(E) for any elementary open set.

The systems α• and β• are locally finite. Thus, the topology of X∗Y
admits a basis B as in Remark 4.3, comprised of elementary open sets
of the form E = (A×B)∩ (X ∗Y ) satisfying that αz(A) and βz(B) are
both finite, for any z ∈ Z. It follows from the above calculations that
the compositions (β◦q∗α)• and (α◦p∗β)• are locally finite systems, and
moreover, µ and ν are locally finite measures. Since finite intersections
of elementary open sets are themselves elementary open sets, we can
apply Lemma 2.24 with the basis B, and conclude that µ(E) = ν(E)
for every Borel subset E ⊆ X. This completes the proof. �

5. Fibred products of systems of measures. Fibred products
are mentioned in [1, subsection 1.3.a]. Assume that we have two
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pullback diagrams:

Xi ∗ Yi

πXi

��

πYi // Yi

qi

��
Xi

pi // Z

Also, let X1
f

γ•
X

// X2 and Y1
g

γ•
Y

// Y2 be connecting

maps endowed with locally finite systems of measures, satisfying that
p1 = p2 ◦ f and q1 = q2 ◦ g. Putting these together we obtain the
following diagram:

X2 ∗ Y2 Y2

X2 Z

X1 ∗ Y1 Y1

X1 Z

//
πY2

//
πY1

//p2

//p1

��

πX2

��

q2

��

πX1

��

q1

������������

????

f∗g

������������

??

g γ•
Y

������������

??

f γ•
X

������������

??

id

where the map f ∗ g = X1 ∗Y1 → X2 ∗Y2 is defined by (f ∗ g)(x1, y1) =
(f(x1), g(y1)). This is a Borel map, as the restriction of the Borel
function f × g to the Borel subspace X1 ∗Y1 ⊆ X1 ×Y1. Moreover, the
above diagram is commutative. Observe that the fibres of the map f ∗g
are Cartesian products of the form (f∗g)−1(x2, y2) = f−1(x2)×g−1(y2).

We will assume throughout this section that γ•X and γ•Y are locally
finite systems of measures.
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Definition 5.1. The fibred product of the locally finite systems of
measures γ•X and γ•Y , denoted (γX ∗ γY )•, is defined by

(γX ∗ γY )(x2,y2) = γx2

X × γy2

Y .

More precisely, (γX ∗γY )(x2,y2)(E) = (γx2

X ×γy2

Y )(E∩ (f ∗g)−1(x2, y2)),
for every (x2, y2) ∈ X2 ∗ Y2 and every Borel set E ⊆ X1 ∗ Y1.

Proposition 5.2. The fibred product (γX ∗ γY )• is a locally finite
system of measures on f ∗g. If γ•X and γ•Y are both locally finite BSMs,
then so is (γX ∗ γY )•.

Proof. The proof is very similar to the proof of Proposition 4.4. As
a product of locally finite Borel measures, (γX ∗ γY )(x2,y2) is a well-
defined Borel measure for every (x2, y2) ∈ X2 ∗ Y2. By definition, it is
concentrated on f−1(x2) × g−1(y2) = (f ∗ g)−1(x2, y2). A calculation
analogous to (1) in Remark 4.3 gives

(γX ∗ γY )(x,y)(E) = γxX(A) · γyY (B)(2)

for any elementary open set of the form E = (A × B) ∩ (X1 ∗ Y1).
Therefore, using the local finiteness of γ•X and γ•Y , we can find for any
(x1, y1) ∈ X1 ∗ Y1 a neighborhood (Ux1 × Uy1) ∩ (X1 ∗ Y1) satisfying

(γX ∗ γY )(x2,y2)((Ux1 × Uy1) ∩ (X1 ∗ Y1)) = γx2

X (Ux1) · γ
y2

Y (Uy1) < ∞
for all (x2, y2) ∈ X2 ∗ Y2. Thus, (γX ∗ γY )• is a locally finite system of
finite measures.

Now assume that γ•X and γ•Y are both locally finite BSMs. We need
to prove that (γX ∗ γY )•(E) is a Borel function for any Borel subset
E ⊆ X1 ∗ Y1, but as in Proposition 4.4, it is sufficient to prove it for
any elementary open subset E = (A× B) ∩ (X1 ∗ Y1). The rest of the
proof uses the same arguments as Proposition 4.4. �

In order to prove that a fibred product of CSMs is a CSM, we
first need a lemma. We remind that, in the CSM context, spaces are
assumed to be Hausdorff and locally compact.

Lemma 5.3. Let ψ ∈ Cc(X1 × Y1). The function

(ξ, η) 7−→
∫

X1×Y1

ψ(x, y) dγξX dγηY
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is in Cc(X2 × Y2).

Proof. Define a function F onX2×Y1 by (ξ, y) 7→
∫
X1
ψ(x, y) dγξX(x).

Using (a symmetric version of) Lemma 4.5 with X = Y1, Y = X1 and
Z = X2, we deduce that F ∈ Cc(X2 × Y1).

Now define a function G on X2 × Y2 by (ξ, η) 7→
∫
Y1
F (ξ, y) dγηY (y).

Again by (a symmetric version of) Lemma 4.5 with X = X2, Y = Y1
and Z = Y2, we deduce that G ∈ Cc(X2 × Y2). This is what we had to
prove. �

Proposition 5.4. If γ•X and γ•Y are both CSMs, then so is the fibred
product (γX ∗ γY )•.

Proof. The proof is similar to that of Proposition 4.6. Let ψ ∈
Cc(X1 ∗Y1). We need to show that the function (ξ, η) 7→

∫
X1∗Y1

ψ(x, y)

d(γX ∗γY )(ξ,η)(x, y) is continuous on X2 ∗Y2. As argued in the proof of
Proposition 4.6, by Tietze’s extension theorem, there exists a function
F ∈ Cc(X1 × Y1) such that F |X1∗Y1

= ψ.

By Lemma 5.3, the map G : (ξ, η) 7→
∫
X1×Y1

F (x, y)dγξX(x) dγηY (y)

is in Cc(X2×Y2). In fact, G|X2∗Y2 ∈ Cc(X2 ∗Y2), since X2 ∗Y2 is closed
in X2 × Y2.

Note that the measure γξX is concentrated on f−1(ξ), and the mea-
sure γηY is concentrated on g−1(η). Hence, their product is concentrated
on the set of (x, y) satisfying f(x) = ξ, g(y) = η. For (ξ, η) ∈ X2∗Y2 we
have p2(ξ) = q2(η), so p2(f(x)) = q2(g(y)). Recalling that p1 = p2 ◦ f
and q1 = q2 ◦ g, we get p1(x) = p2(f(x)) = q2(g(y)) = q1(y), i.e.,
(x, y) ∈ X1 ∗ Y1. We conclude that the continuous map G|X2∗Y2 satis-
fies

G|X2∗Y2(ξ, η) =

∫
X1×Y1

F (x, y) dγξX(x) dγηY (y)

=

∫
X1∗Y1

F (x, y) dγξX(x) dγηY (y)

=

∫
X1∗Y1

ψ(x, y) dγξX(x) dγηY (y)
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=

∫
X1∗Y1

ψ(x, y) d(γX ∗ γY )(ξ,η)(x, y).

This completes the proof. �

Proposition 5.5. The properties of being positive on open sets and
locally bounded are preserved under fibred products.

Proof. The proof is very similar to its counterpart for lifting in
Proposition 4.7. Assume that γ•X and γ•Y are positive on open sets.
To prove that (γX ∗γY )• is positive on open sets, it suffices to consider
elementary open sets. Fix (x, y) ∈ X2 ∗Y2, and let E = (A×B)∩ (X1 ∗
Y1) be an elementary open set such that E ∩ (f ∗ g)−1(x, y) ̸= ∅. This
implies that A ∩ f−1(x) ̸= ∅ and B ∩ g−1(y) ̸= ∅, hence γxX(A) > 0
and γyY (B) > 0. Using calculation (2) from Proposition 5.2 we obtain

(γX ∗ γY )(x,y)(E) = γxX(A) · γyY (B) > 0.

Proving that the lifted system is locally bounded is similar to the
proof that it is locally finite in Proposition 3.2. �

Assume that we now have for i =1,2,3 the following three pull-back
diagrams

Xi ∗ Yi //

��

Xi

pi

��
Yi

qi // Z

where the maps pi and qi are all continuous. Furthermore, as-

sume that we have continuous connecting maps X1
f1

γ•
1

// X2 ,

Y1
g1

ξ•1

// Y2 , X2
f2

γ•
2

// X3 and Y2
g2

ξ•2

// Y3 , all

endowed with locally finite systems of measure, satisfying that p1 =
p2 ◦ f1, q1 = q2 ◦ g1, p2 = p3 ◦ f2 and q2 = q3 ◦ g2. Finally, assume
that γ•1 and ξ•1 are locally bounded. This data allows us to implement
the fibred product construction above, giving rise to the following di-
agram, which is commutative as a diagram of topological spaces and
continuous maps:
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X1 ∗ Y1
f1∗g1

(γ1∗ξ1)•
//

����
��
��
��
��

X2 ∗ Y2
f2∗g2

(γ2∗ξ2)•
//

����
��
��
��
��

X3 ∗ Y3

��

����
��
��
��
��

X1
f1

γ•
1

//

p1

��

��

X2
f2

γ•
2

//

p2

��

��

X3

p3

��

Y1
g1

ξ•1

q1

����
��
��
��
��

// Y2
g2

ξ•2

q2

����
��
��
��
��

// Y3

q3

����
��
��
��
��

Z
id // Z

id // Z

Loosely speaking, the following proposition states that fibred products
and compositions of systems of measures, commute.

Proposition 5.6. In the above setting,

[(γ2 ∗ ξ2) ◦ (γ1 ∗ ξ1)]• = [(γ2 ◦ γ1) ∗ (ξ2 ◦ ξ1)]•.

Proof. Both [(γ2 ∗ ξ2) ◦ (γ1 ∗ ξ1)]• and [(γ2 ◦ γ1) ∗ (ξ2 ◦ ξ1)]• are
systems of measures on the map from X1 ∗ Y1 to X3 ∗ Y3, defined by
(x1, y1) 7→ (f2(f1(x1)), g2(g1(y1))). By Proposition 5.2, (γ1 ∗ ξ1)• and
(γ2 ∗ ξ2)• are locally finite, the former being also locally bounded by
Proposition 5.5. Thus, by Lemma 3.5, [(γ2 ∗ ξ2) ◦ (γ1 ∗ ξ1)]• is a locally
finite system of measures. Moreover, by Lemma 3.5, (γ2 ◦ γ1)• and
(ξ2 ◦ ξ1)• are locally finite, implying in turn that [(γ2 ◦ γ1) ∗ (ξ2 ◦ ξ1)]•
is locally finite by Proposition 5.2.

Fix (x3, y3) ∈ X3 ∗ Y3. For any Borel set E ⊆ X1 ∗ Y1, define

µ(E) = [(γ2 ∗ ξ2) ◦ (γ1 ∗ ξ1)](x3,y3)(E)

and

ν(E) = [(γ2 ◦ γ1) ∗ (ξ2 ◦ ξ1)](x3,y3)(E).

Being extracted from locally finite systems of measures, µ and ν are
locally finite measures on X1 ∗ Y1.
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Next, let E = (A×B)∩ (X1 ∗Y1) be an elementary open set. Using
the definitions of fibred products and compositions, along with Fubini’s
theorem, we get

µ(E) = [(γ2 ∗ ξ2) ◦ (γ1 ∗ ξ1)](x3,y3)(E)

=

∫
X2∗Y2

(γ1 ∗ ξ1)(x2,y2)(E) d(γ2 ∗ ξ2)(x3,y3)(x2, y2)

=

∫
Y2

∫
X2

(γ1 ∗ ξ1)(x2,y2)(E) dγx3
2 (x2) dξ

y3

2 (y2)

=

∫
Y2

∫
X2

γx2
1 (A)ξy2

1 (B) dγx3
2 (x2) dξ

y3

2 (y2)

=

(∫
X2

γx2
1 (A) dγx3

2 (x2)

)
·
(∫

Y2

ξy2

1 (B) dξy3

2 (y2)

)
= (γ2 ◦ γ1)x3(A) · (ξ2 ◦ ξ1)y3(B)

= [(γ2 ◦ γ1) ∗ (ξ2 ◦ ξ1)](x3,y3)(E) = ν(E).

Finally, let {An}∞n=1 and {Bm}∞m=1 be bases for the topology of X1

and Y1, respectively. The collection B = {(An×Bm)∩(X1∗Y1)}n,m is a
countable basis for the topology ofX1∗Y1 consisting of elementary open
sets. Moreover, we have seen that µ and ν agree on finite intersections
of sets in B, since these are also of the form E = (A×B) ∩ (X1 ∗ Y1).
We can now apply Lemma 2.24 to the basis B and the locally finite
measures µ and ν, and conclude that µ(E) = ν(E) for any Borel set
E ⊆ X1 ∗Y1. Since (x3, y3) was arbitrary, this completes the proof. �

6. Disintegration. Disintegration of measures (sometimes called
decomposition) has received vast attention in the literature. The
purpose of presenting it here is limited to providing versions and
derivatives of the fundamental results (Theorem 6.5, Corollary 6.6
and Proposition 6.8) which are consistent with our approach and
terminology and suitable for our needs. This is why we chose to
quote Fabec [7], rather than probably the most original source (von
Neumann [9]) or alternatively more generalized versions. We do refer
the reader interested in tracing the theorem historically to Ramsay
([11, page 264]), which in turn cites Mackey, Halmos, and ultimately
von Neumann. Effros ([6, page 446]) also presents a version of the
disintegration theorem.
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Throughout this section, we shall assume all spaces to be second
countable, locally compact and Hausdorff.

Definition 6.1. Let (X,µ) and (Y, ν) be measure spaces. We will say
that a Borel map f : X → Y is measure-preserving if f∗µ = ν. We will
say that f is measure-class-preserving if f∗µ ∼ ν.

In the above definition f∗ is the push-forward, defined for any Borel
set F ⊂ Y by f∗µ(F ) = µ(f−1(F )), and ∼ denotes equivalence of
measures in the sense of being mutually absolutely continuous.

Definition 6.2. Let (X,µ) and (Y, ν) be measure spaces, and let
f : X → Y be a Borel map. A system of measures γ• on f will be

called a disintegration of µ with respect to ν if µ(E) =

∫
Y

γy(E) dν(y)

for every Borel set E ⊆ X.

Lemma 6.3. If γ• is a system of probability measures on f , which is
a disintegration of µ with respect to ν, then f is measure preserving.

Proof. Since γ• is a system of probability measures, γy is concen-
trated on f−1(y) and γy(f−1(y)) = 1 for any y ∈ Y . Therefore,
γy(f−1(F )) = χ

F
(y) for any Borel set F ⊆ Y . Thus, for any Borel

set F ⊆ Y we have

f∗µ(F ) = µ(f−1(F ))

=

∫
Y

γy(f−1(F )) dν(y)

=

∫
Y

χ
F
(y) dν(y) = ν(F ),

so f is measure preserving. �

Lemma 6.4. Let γ• be a system of measures on f which is positive
on open sets. If γ• is a disintegration of µ with respect to ν, then f is
measure-class-preserving.
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Proof. Let F ⊆ Y be a Borel set. For any y ∈ Y , we have
γy(f−1(F )) = χ

F
(y) · γy(f−1(y)) = χ

F
(y) · γy(X). Therefore,

f∗µ(F ) = µ(f−1(F )) =

∫
Y

γy(f−1(F )) dν(y)

=

∫
Y

χF (y)γ
y(X) dν(y) =

∫
F

γy(X) dν(y).

This shows that f∗µ is absolutely continuous with respect to ν. More-
over, since γ• is positive on open sets, γ•(X) is a positive function on
Y , and thus f∗µ is equivalent to ν. We conclude that f is measure-
class-preserving. �

The converse to the previous lemmas is less trivial. The following
theorem is a restatement of [7, Theorem I.27]. The original theorem
requires X to be a standard Borel space, which is a Polish space (i.e.,
a second countable topological space admitting a complete metric that
generates the topology), together with its Borel σ-algebra. However,
recall that our spaces are assumed to be locally compact, Hausdorff
and second countable; hence, they are standard Borel spaces. We refer
the reader to a paper by Ramsay [12] for a discussion of these facts.

Theorem 6.5 ([7], Theorem I.27). Let (X,µ) and (Y, ν) be spaces
equipped with σ-finite measures, and let f : X → Y be a measure-
class-preserving Borel map. Then there exists a BSM γ• on f which
is a disintegration of µ with respect to ν. Moreover, if γ•1 , γ

•
2 are two

disintegrations, then γy1 = γy2 for ν-almost every y ∈ Y .

Corollary 6.6. Let (X,µ) and (Y, ν) be spaces equipped with σ-finite
measures, and let f : X → Y be a measure-class-preserving Borel map.
If µ is a locally finite measure, then there exists a locally finite BSM
α• on f which is a disintegration of µ with respect to ν. Moreover, if
α•
1, α

•
2 are two disintegrations, then αy

1 = αy
2 for ν-almost every y ∈ Y .

Proof. By Theorem 6.5, there exists a BSM γ• on f which is
a disintegration of µ with respect to ν, and it is unique ν-almost
everywhere in Y . Let B = {Bn}∞n=1 be a countable basis for the
topology of X. Since µ is locally finite, it is straightforward to verify
that the sub-collection {B ∈ B | µ(B) < ∞} is itself a basis for
X. Therefore, we can assume that all Bn ∈ B satisfy µ(Bn) =
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∫
Y
γy(Bn) dν(y) < ∞. It follows that γy(Bn) < ∞ for ν-almost all

y ∈ Y .

Consider the Borel sets Yn = {y ∈ Y | γy(Bn) = ∞}. By our
previous argument, the sets Yn all have ν-measure zero; hence, so does∪∞

n=1 Yn. We denote Y ′ = Y \
∪∞

n=1 Yn and define a new BSM α• on
f by

αy(E) =

{
γy(E) y ∈ Y ′

0 y /∈ Y ′

for any Borel set E ⊆ X. It is easy to verify that α• is indeed a
BSM on f . Moreover, since αy(E) = γy(E) for ν-almost all y ∈ Y , it
follows that α• is also a disintegration of µ with respect to ν, and the
uniqueness ν-almost everywhere in Y holds for α•.

It remains to show that α• is locally finite. For any x ∈ X, let
Bn ∈ B be a neighborhood of x. Since

αy(Bn) =

{
γy(Bn) y ∈ Y ′

0 y /∈ Y ′,

it follows that αy(Bn) < ∞ for all y ∈ Y . Thus, α• is locally finite,
and the proof is complete. �

The next lemma, which is rather elementary, is required for the proof
of Proposition 6.8 below. Lacking a formal reference, we include the
proof, which is adapted from lecture notes found on the homepage of
Gabriel Nagy.

Lemma 6.7. Let µ, ν be finite measures on a measurable space (Y,Σ).
Then the Radon-Nikodym derivative h = dµ/dν exists and belongs
to L∞(Y, ν) if and only if there is a constant C ≥ 0 such that
µ(E) ≤ C · ν(E) for all E ∈ Σ.

Proof. Suppose that the Radon-Nikodym derivative h=dµ/dν exists
and is in L∞(Y, ν). Then, for all E ∈ Σ, we have µ(E) =

∫
E
h dν ≤

∥h∥∞ · ν(E).

Conversely, assume that there is a constant C such that µ(E) ≤
C ·ν(E) for all E ∈ Σ. A standard argument using simple functions and
the monotone convergence theorem, yields

∫
Y
f dµ ≤ C ·

∫
Y
f dν, for any
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measurable function f : Y → [0,∞]. It follows that the identity map
f 7→ f is a continuous function L1(Y, ν) → L1(Y, µ). Moreover, we have
a composition of continuous linear functions L2(Y, ν) ↩→ L1(Y, ν) →
L1(Y, µ) → R given by f 7→ f 7→ f 7→

∫
Y
f dµ, which gives rise to

a continuous linear functional on L2(Y, ν). Since L2(Y, ν) is a Hilbert
space, there exists a function h ∈ L2(Y, ν) such that

∫
Y
fh dν =

∫
Y
f dµ

for any f ∈ L2(Y, ν). Setting f = χE we get µ(E) =
∫
E
h dν for any

E ∈ Σ, hence h = dµ/dν. Denote An = {y ∈ Y : h(y) ≥ C + 1/n}.
Then µ(An) =

∫
An

h dν ≥ (C + 1/n)ν(An) ≥ (1 + 1/nC)µ(An), from

which it follows that 0 ≥ 1/(nC)µ(An), so µ(An) = 0. By the above
inequality, this implies that ν(An) = 0. Therefore, A =

∪∞
n=1An =

{y ∈ Y : h(y) > C} also satisfies ν(A) = 0. Thus, ∥h∥∞ ≤ C and, in
particular, h ∈ L∞(Y, ν). �

The following proposition provides a useful criterion for the existence
of a disintegration which is locally bounded. Note that it requires the
map f to be continuous.

Proposition 6.8. Let (X,µ) and (Y, ν) be spaces equipped with locally
finite measures, and let f : X → Y be a measure class preserving
continuous map. The map f admits a disintegration α• which is locally
bounded if and only if for any compact set K ⊆ X there exists a constant
C

K
such that, for all Borel sets E ⊆ Y ,

µ(K ∩ f−1(E)) ≤ C
K
· ν(E).

Proof. Recall that our spaces are always assumed to be locally
compact, Hausdorff and second countable, and as such, every locally
finite measure is σ-finite. By Corollary 6.6, f admits a disintegration
α• of µ with respect to ν, which is unique ν-almost everywhere in
Y . Note that the system α• can be taken to be locally bounded, or
equivalently bounded on compact sets, if and only if for any compact
K ⊆ X, α•(K) is in L∞(Y, ν), i.e., essentially bounded.

For every compact setK ⊆ X, consider the measure µK on Y defined
by µ

K
(E) := µ(K ∩ f−1(E)), for all Borel sets E ⊆ Y . The measure

µK is finite since µ is locally finite, and moreover, since f is measure
class preserving, µ

K
is absolutely continuous with respect to ν. Let

hK = dµK/dν denote the Radon-Nikodym derivative. Thus, for any
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Borel subset E ⊆ Y , we have

µ(K ∩ f−1(E)) = µK (E) =

∫
E

hK (y) dν(y).

On the other hand,

µ(K ∩ f−1(E)) =

∫
Y

αy(K ∩ f−1(E)) dν(y) =

∫
E

αy(K) dν(y).

Therefore,
∫
E
h

K
dν =

∫
E
α•(K) dν for any E, hence h

K
= α•(K),

ν-almost everywhere in Y .

Let νK be another measure on Y , defined by νK (E) = ν(E ∩ f(K)).
The measure ν

K
is finite, since K is compact, f is continuous and ν

is locally finite. Moreover, µK is absolutely continuous with respect
to ν

K
:

ν
K
(E)=0 =⇒ ν(E ∩ f(K))=0

=⇒ f∗µ(E ∩ f(K)) = 0

=⇒ µ(f−1(E ∩ f(K))) = 0

=⇒ µ(f−1(E) ∩ f−1(f(K))) = 0

=⇒ µ(f−1(E) ∩K) = 0

=⇒ µ
K
(E) = 0.

The Radon-Nikodym derivative dµ
K
/dν

K
is equal ν

K
-almost every-

where to hK , since

µ
K
(E) = µ(K ∩ f−1(E))

= µ(K ∩ f−1(E) ∩ f−1(f(K)))

= µ(K ∩ f−1(E ∩ f(K)))

=

∫
E∩f(K)

h
K
(y) dν(y)

=

∫
E

hK (y) dνK (y).

In particular, h
K

= 0 ν-almost everywhere outside f(K), since∫
E∩f(K)

h
K
(y) dν(y) = µ

K
(E) =

∫
E
h

K
(y) dν(y) for any Borel subset

E ⊆ Y . It follows that hK ∈ L∞(Y, ν) ⇔ hK ∈ L∞(Y, νK ).
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We now apply Lemma 6.7 to the finite measures µ
K

and ν
K
: The

Radon-Nikodym derivative dµ
K
/dν

K
∈ L∞(Y, ν

K
) if and only if there

is a constant C = C
K

such that µ
K
(E) ≤ C

K
· ν

K
(E) for all E ⊆ Y

Borel. Equivalently, h
K

∈ L∞(Y, ν) if and only if there is a constant
C

K
such that µ(K ∩ f−1(E)) ≤ C

K
· ν(E ∩ f(K)). Observe that the

condition, µ(K∩f−1(E)) ≤ CK ·ν(E∩f(K)), for all E is equivalent to
the condition, µ(K ∩f−1(E)) ≤ C

K
·ν(E), for all E. Indeed, the latter

implies the former by taking E ∩ f(K). Recalling that hK = α•(K)
ν-almost everywhere in Y , we conclude that α•(K) ∈ L∞(Y, ν) if and
only if there is a constant CK such that µ(K ∩ f−1(E)) ≤ CK · ν(E),
for all E. This completes the proof. �

7. Systems of measures for groupoids. Terminology in the
groupoid literature is often a source of confusion. In this section we
give a definition of Haar systems using the terminology we have adopted
above and show that it coincides with the standard definitions.

Definition 7.1. Let G be a topological groupoid. A system of
measures λ• on the range map r : G → G(0) is said to be a system
of measures on G.

Definition 7.2. A system of measures λ• on G is called left invariant
if, for every x ∈ G and for every Borel subset E ⊆ G,

λd(x)(E) = λr(x)
(
x · (E ∩Gd(x))

)
.

Lemma 7.3. A system of measures λ• on G is left invariant if and
only if, for any x ∈ G and every non-negative Borel function f on G,∫

f(xy) dλd(x)(y) =

∫
f(y)λr(x)(y).

Proof. Assume λ• is left invariant. Fix x ∈ G, and note that
y ∈ x · (E ∩ Gd(x)) ⇔ x−1y ∈ E ∩ Gd(x). Therefore, for any Borel
set E, ∫

G

χE (y) dλ
d(x)(y) = λd(x)(E) = λr(x)

(
x · (E ∩Gd(x))

)
=

∫
G

χ
x·(E∩Gd(x))

(y) dλr(x)(y)
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=

∫
G

Gχ
E∩Gd(x)

(x−1y) dλr(x)(y)

=

∫
G

χ
E
(x−1y) dλr(x)(y).

Replacing x with x−1, we get
∫
G
χ

E
(y) dλr(x)(y) =

∫
G
χ

E
(xy) dλd(x)(y).

Passing, as usual, from characteristic functions to any non-negative
Borel function, we obtain that, for any x ∈ G and for every non-
negative Borel function f ,

∫
G
f(y) dλr(x)(y) =

∫
G
f(xy) dλd(x)(y) as

claimed.

The converse is obtained by reversing the arguments. �

Lemma 7.4. A CSM λ• on G is left invariant if and only if, for any
x ∈ G and every function f ∈ Cc(G),∫

f(xy) dλd(x)(y) =

∫
f(y) dλr(x)(y).

Proof. Assume first that λ• is a left invariant CSM on G. By
Proposition 2.23, λ• is a BSM, and by Lemma 7.3 we have that,
for any x ∈ G and every non-negative Borel function f on G,∫
f(xy) dλd(x)(y) =

∫
f(y) dλr(x)(y). In particular, this holds for

any non-negative f ∈ Cc(G). The usual decomposition of a gen-
eral complex-valued f ∈ Cc(G) as f = f1 + if2, and further as
fk = (fk)+ − (fk)−, yields the property for any f ∈ Cc(G).

Conversely, if a CSM satisfies
∫
f(xy) dλd(x)(y) =

∫
f(y) dλr(x)(y)

for any f ∈ Cc(G), then in particular, the property holds for non-
negative f ∈ Cc(G). By approximating characteristic functions of open
sets by continuous “bump” functions and using a standard monotone
convergence theorem argument, we obtain that

∫
χA(xy) dλ

d(x)(y) =∫
χA(y) dλ

r(x)(y) for any open subset A ⊆ X and any x ∈ G. By means

of a calculation similar to that of Lemma 7.3, we deduce that λd(x)(A) =
λr(x)(x·(A∩Gd(x))) for any open subset A ⊆ X and any x ∈ G. Finally,
we denote µx(A) = λd(x)(A) and νx(A) = λr(x)(x · (A ∩ Gd(x))) and
apply Corollary 2.25 to the locally finite measures µx and νx. We
conclude that µx(E) = νx(E) for any Borel subset E ⊆ X. This holds
for any x ∈ G, which implies that λ• is left invariant. �
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Definition 7.5. A continuous left Haar system for G is a system of
measures λ• on G which is continuous, left invariant and positive on
open sets.

We should point out that, in the groupoid literature, the definition
of a continuous left Haar system for G appears different than ours at
first glance. Modulo minor discrepancies between various sources (see
for example standard references such as [1, 8, 10, 14]), it is usually
defined to be a family λ = {λu : u ∈ G(0)} of positive (Radon) measures
on G satisfying the following properties:

(1) supp (λu) = Gu for every u ∈ G(0);
(2) (continuity) for any f ∈ Cc(G), the function u 7→

∫
f dλu on

G(0) is in Cc(G
(0));

(3) (left-invariance) for any x ∈ G and f ∈ Cc(G),∫
f(xy) dλd(x)(y) =

∫
f(y) dλr(x)(y).

However, by Lemma 2.4, Corollary 2.10 and Lemma 7.4, the above
definition is equivalent to our Definition 7.5.
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